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Abstract: In this paper, we employ Kranoselskii fixed point theorem and obtain sufficient
conditions for the existence and multiplicity of positive periodic solution to the singular first
order difference equation

∆x(k) = −a(k)x(k) + λb(k)f(x(k)), k ∈ Z.
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1 Introduction

Let R denote the real numbers, Z the integers and R+ = [0,∞), the positive real numbers.
Given a < b in Z, let [a, b] = {a, a+ 1, . . . , b} .

In this paper, we investigate the existence and multiplicity of positive periodic solutions
for singular first order difference equation

x(k + 1) = (1− a(k))x(k) + λb(k)f(x(k)), k ∈ Z (1)

where Z is the set of integer numbers, ω ∈ N is a fixed integer, λ > 0 and b : Z → [0,∞),
a(k) are ω−periodic and a(k) is continuous with 0 < a(k) ≤ 1 for all k ∈ [0, ω − 1] and
f ∈ C(Rn

+\ {0} , (0,∞)).
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The study of the existence of periodic solutions in difference equations was motivated by
the observance of periodic phenomena in mathematical ecological difference models, discrete
single-species models and discrete populations models, see for examples, [3, 4, 5, 6, 8, 9, 10,
13, 14, 15]. Although most models are described with differential equations, the discrete
models are more appropriate than the continuous ones when the size of the population is
rarely small or the population has non-overlapping generations [1].

Recently, Kranoselskii fixed point theorem has become an effective tool in proving the
existence of periodic solutions. It seems that the Kranoselskii fixed point theorem on com-
pression and expansion of cones is quite effective in dealing with the problem. In fact,
by choosing appropriate cones, the singularity of the problem is essentially removed and
the associated operator becomes well-defined for certain ranges of functions even there are
negative terms.

Wang [12] employed the Kranoselskii fixed point theorem to establish the existence and
multiplicity of positive periodic solutions for first non-autonomous singular systems

x′

i(t) = −ai(t)xi(t) + λbi(t)fi(x1(t), . . . , xn(t),

where i = 1, . . . , n. In [1, 2], the authors showed the existence of periodic solutions for
singular first order differential equations. On the other hand, [15] Zeng proved the existence
of positive periodic solutions for a class of non-autonomous difference equation

∆x(k) = −a(k)x(k) + f(k, u(k))

where the operator ∆ is defined as ∆x(k) = x(k + 1)− x(k).
Inspired by the above work, we consider to carry the work of Wang, [12] to the dis-

crete case for scalar difference equations. We shall establish a new result on the existence
and multiplicity of positive solutions of equation (1) by utilizing the well-known theory of
Kranoselskii fixed point theorem.

2 Preliminaries

In this section we state some preliminaries in the form of lemmas that are essential to proofs
our main results.

Let X be the set of all real ω-periodic sequences x : Z+ → R
n
+, endowed with the

maximum norm
‖x‖ = max

k∈[0,ω−1]
|x(k)| .

Thus X is a Banach space. Throughout this paper, we denote the product of x(k) from

k = a to k = b with the understanding that
∏b

k=a x(k) := 1 for all a > b. Let Rn
+ =

∏n

i=1 R+.

We make the following assumptions:

(H1) 0 < a(k) ≤ 1 for all k ∈ [0, ω − 1].

(H2) f : Rn
+\ {0} → (0,∞) is continuous.

We now state the Kranoselskii fixed point theorem [7].

Lemma 1. Let X be a Banach space, and let K ⊂ X be a cone in X. Assume Ω1,Ω2 are
open subsets of X with 0 ∈ Ω1, Ω̄1 ⊂ Ω2, and let

T : K ∩ (Ω̄2 \ Ω1) → K

be a completely continuous operator such that either
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(i) ‖Tx‖ ≤ ‖x‖ , x ∈ K ∩ ∂Ω1 and ‖Tx‖ ≥ ‖x‖ , x ∈ K ∩ ∂Ω2; or

(ii) ‖Tx‖ ≥ ‖x‖ , x ∈ K ∩ ∂Ω1 and ‖Tx‖ ≤ ‖x‖ , x ∈ K ∩ ∂Ω2;

Then T has a fixed point in T : K ∩ (Ω̄2 \ Ω1) → K.

Lemma 2. [15] Assume (H1), (H2) hold. If x ∈ X then x is a solution of (1) if and only if

x(k) =

k+ω−1
∑

s=k

G(k, s)λb(s)f(x(s)),

where

G(k, s) =

∏k+ω−1
r=s+1 (1− a(r))

1−
∏ω−1

r=0 (1− a(r))
, s ∈ [k, k + ω − 1]. (2)

Note that the denominator in G(k, s) is not zero since 0 < a(k) < 1 for k ∈ [0, ω − 1].
It is clear that G(k, s) = G(k + ω, s + ω) for all (k, s) ∈ Z

2. A direct calculation shows
that

m :=

∏ω−1
r=0 (1− a(r))

1−
∏ω−1

r=0 (1− a(r))
≤ G(k, s) ≤

1

1−
∏ω−1

r=0 (1− a(r))
=: M.

Define σ =
∏ω−1

r=0 (1− a(r)) satisfying

σ

1− σ
≤ G(k, s) ≤

1

1− σ
, k ≤ s ≤ k + ω.

Thus, clearly σ = m
M

> 0,

‖x‖ = max
k∈[0,ω−1]

|x(k)| ≤ M

ω−1
∑

k=0

λb(k)f(x(k)).

Therefore

x(k) ≥ mλ

ω−1
∑

k=0

b(k)f(x(k))

≥
m

M
λ

ω−1
∑

k=0

b(k)f(x(k))

≥ σ ‖x‖ .

Now we define a cone

K =
{

x ∈ X, k ∈ [0, ω], x(k) ≥
m

M
‖x‖ = σ ‖x‖

}

.

It is clear that K is a cone in X and mink∈[0,ω] |x(k)| ≥ σ ‖x‖ for x ∈ K. For r > 0,
define Ωr = {x ∈ K : ‖x‖ < r} . Note that ∂Ωr = {x ∈ K : ‖x‖ = r} . Define a mapping
T : X → X by

Tx(k) = λ

k+ω−1
∑

s=k

G(k, s)b(s)f(x(s)), (3)

where G(k, s) is given by (2). By the nonnegativity of λ, f, a, b, and G, Tx(k) ≥ 0 on
[0, ω − 1] . It is clear that Tx(k + ω) = Tx(k).
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Lemma 3. T : K\ {0} ⊂ K is well-defined.

Proof. For any x ∈ K\ {0}, for all k ∈ [0, ω] we have

‖Tx‖ = max
k∈[0,ω−1]

|Tx(k)| ≤ M

ω−1
∑

s=0

λb(s)f(x(s)).

Therefore

Tx(k) = λ

k+ω−1
∑

s=k

G(k, s)b(s)f(x(s))

≥ λm

ω−1
∑

s=0

b(s)f(x(s))

≥
m

M
‖Tx‖ .

Hence Tx(k) ≥ σ ‖Tx‖ . This implies that T : K\ {0} ⊂ K.

Lemma 4. If (H1) and (H2) hold, then the operator T : K\{0} → K is completely contin-
uous.

Proof. Let xm(k), x0(k) ∈ K\ {0} with xm(k) → x0(k) as m → ∞. From (3) and since
f(k, ξ) is continuous in ξ, as m → ∞, we have

|Txm(k)− Tx0(k)| ≤ M

ω−1
∑

s=0

λ |b(s)| |f(xm(s))− f(x0(s))| → 0.

Hence ‖Txm(k)− Tx0(k)‖ → 0, it follows that the operator T is continuous. Further if
x ⊂ X is a bounded set, then ‖x‖ ≤ C1 = const for all x ∈ K\{0}. Set C2 = max f(x(k)), x ∈
K\{0} then from (3) we get, for all x ∈ K\{0},

‖Tx‖ ≤ M

k+ω−1
∑

s=k

λ |b(s)| |f(x(k))| ≤ MωC2.

This shows that T (K\{0}) is a bounded set in K. Since K is n-dimensional, T (K\{0}) is
relatively compact in K. Therefore T is a completely continuous operator.

For the next following lemmas, we now introduce some notations. For r > 0, let

Γ = σm

ω−1
∑

s=0

b(s), χ = M

ω−1
∑

s=0

b(s),

C(r) = max {f(x) : x ∈ R+, ‖x‖ ≤ r} > 0.

Lemma 5. Assume that (H1), (H2) holds. For any η > 0 and x ∈ K\ {0} , if there exists
a f such that f(x(k)) ≥ x(k)η for k ∈ [0, ω], then ‖Tx‖ ≥ λΓη ‖x‖ .
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Proof. Since x ∈ K\ {0} and f(x(k)) ≥ x(k)η for k ∈ [0, ω], we have

Tx(k) = λ

k+ω−1
∑

s=k

G(k, s)b(s)f(x(s))

≥ λm

ω−1
∑

s=0

b(s)f(x(s))

≥ λm

ω−1
∑

s=0

b(s)x(k)η

≥ λm

ω−1
∑

s=0

b(s)σ ‖x‖ η

Thus ‖Tx‖ ≥ λΓη ‖x‖ . This completes the proof.

Let f̂ : [1,∞) → R+ be the function given by

f̂(θ) = max {f(x) : x ∈ R+, and 1 ≤ ‖x‖ ≤ θ} .

It is easy to see that f̂(θ) is nondecreasing function on [1,∞). The following lemma is
essentially the same as Lemma 3.6 in [12] and Lemma 2.8 in [11].

Lemma 6. ([12, 11]) Assume (H2) holds. If limx→∞

f(x)
x

exists (which can be infinty) then

limθ→∞

f̂(θ)
θ

exists and limθ→∞

f̂(θ)
θ

= limx→∞

f(x)
x

.

Lemma 7. Assume that (H1) and (H2) holds. Let r > 1
σ
and if there exists an ε > 0 such

that f̂(r) ≤ εr, then ‖Tx‖ ≤ λχε ‖x‖ for x ∈ ∂Ωr.

Proof. From the definition of T for x ∈ ∂Ωr, we have

‖Tx‖ ≤ λM

ω−1
∑

s=0

b(s)f(x(s))

≤ λM

ω−1
∑

s=0

b(s)f̂(r)η

≤ λM

ω−1
∑

s=0

b(s)εr

≤ λM

ω−1
∑

s=0

b(s)ε ‖x‖ .

This implies that ‖Tx‖ ≤ λχε ‖x‖ .

In views of definition C(r), it follows that

0 < f(x(k)) ≤ C(r) for k ∈ [0, ω],

if x ∈ ∂Ωr, r > 0. Thus it is easy to see the following lemma can be shown in similar manner
as in Lemma 7.

Lemma 8. Assume (H1), (H2) holds. If x ∈ ∂Ωr, r > 0 then ‖Tx‖ ≤ λχC(r).
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Proof. From the definitions of T for x ∈ ∂Ωr we have

‖Tx‖ ≤ λM

ω−1
∑

s=0

b(s)f(x(s))

≤ λM

ω−1
∑

s=0

b(s)C(r)

≤ λχC(r).

Thus it implies that ‖Tx‖ ≤ λχC(r).

3 Main Result

In this section, we establish conditions for the existence and multiplicity of positive periodic
solution of (1).

Theorem 1. Let (H1), (H2) hold, we assume that limx→0 f(x) = ∞.

(a) If limx→∞

f(x)
x

= 0, then for all λ > 0 (1) has a positive solution.

(b) If limx→∞

f(x)
x

= ∞, then for all small λ > 0 (1) has two positive solutions.

(c) If If there exists a λ0 > 0 such that (1) has a positive periodic solution for 0 < λ < λ0.

Proof. (a): From the assumptions, limx→0 f(x) = ∞ there is an r1 > 0 such that

f(x) ≥ ηx

for x ∈ K\{0} and 0 < x < r1, where η > 0 is chosen so that

λΓη > 1.

Let Ωr1 = {x ∈ K : ‖x‖ < r1}. If x ∈ ∂Ωr1 , then

f(x(k)) ≥ x(k)η.

Lemma 5 implies that

‖Tx‖ ≥ λΓη ‖x‖ > ‖x‖ for x ∈ ∂Ωr1 . (4)

We now determine Ωr2 . Let Ωr1 = {x ∈ K : ‖x‖ < r2}. Note that limx→∞

f(x)
x

= 0, it

follows from Lemma 6, limθ→∞

f̂(θ)
θ

= 0. Therefore there is an r2 > max
{

2r1,
1
σ

}

such that

f̂(r2) ≤ εr2,

where the constant ε > 0 satisfies
λεχ < 1.

Thus, we have by Lemma 7 that

‖Tx‖ ≤ λεχ ‖x‖ < ‖x‖ for x ∈ ∂Ωr2 . (5)

By Lemma 1 applied to (4) and (5), it follows that T has a fixed point in Ω̄r2\Ωr1 , which is
the desired positive solution of (1).
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Proof. (b): Fix two numbers 0 < r3 < r4, there exists a λ0 such that

λ0 <
r3

χC(r3)
, λ0 <

r4

χC(r4)
,

where χC(r) defined in Lemma 8. Thus, in Lemma 8 implies that, for 0 < λ < λ0,

‖Tx‖ ≤ λχC(rj)

≤
rj

χC(rj)
χC(rj) = rj = ‖x‖ .

Thus
‖Tx‖ < ‖x‖ for x ∈ ∂Ωrj , (j = 3, 4). (6)

On the other hand, in view of the assumptions limx→∞

f(x)
x

= ∞ and limx→0 f(x) = ∞,

there are positive numbers 0 < r2 < r3 < r4 < Ĥ such that

f(x) ≥ ηx

for x ∈ K\{0} and 0 < x ≤ r2 or x ≥ Ĥ where η > 0 is chosen so that

λΓη > 1.

Thus if x ∈ ∂Ωr2 , then
f(x) ≥ ηx.

Let r1 = max
{

2r4,
Ĥ
σ

}

if x ∈ ∂Ωr1 , then

min
k∈[0,ω]

x(k) ≥ σ ‖x‖ = σr1 ≥ Ĥ,

which implies that
f(x) ≥ ηx.

Thus Lemma 5 implies that

‖Tx‖ ≥ λΓη ‖x‖ > ‖x‖ for x ∈ ∂Ωr1 , (7)

and
‖Tx‖ ≥ λΓη ‖x‖ > ‖x‖ for x ∈ ∂Ωr2 . (8)

It follows from Lemma 1 applied to (6), (7) and (8), T has two fixed points x1 and x2

such that x1 ∈ Ω̄r3\Ωr2 and x2 ∈ Ω̄r1\Ωr4 , which are the desired distinct positive periodic
solutions of (1) for λ < λ0 satisfying

r2 < ‖x1‖ < r3 < r4 < ‖x2‖ < r1.

Proof. (c): Choose a number r3 > 0. By Lemma 8 we infer that there exists a λ0 = r3
χC(r3)

>

0 such that
‖Tx‖ < ‖x‖ for x ∈ ∂Ωr3 0 < λ < λ0. (9)

On the other hand, in view of assumption limx→0 f(x) = ∞, there exists a positive number
0 < r2 < r3 such that

f(x) ≥ ηx
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for x ∈ K\{0} and 0 < x < r2 where η > 0 is chosen so that

λΓη > 1.

Thus if x ∈ ∂Ωr2 , then
f(x) ≥ ηx.

Lemma 5 implies that

‖Tx‖ ≥ λΓη ‖x‖ > ‖x‖ , for x ∈ ∂Ωr2 . (10)

It follows from Lemma 1 applied to (9) and (10), that T has a fixed point x ∈ Ω̄r3\Ωr2 . The
fixed point x ∈ Ω̄r3\Ωr2 is the desired positive periodic solution of (1).

4 Conclusion

In this paper, we employed Kranoselskii fixed point theorem to investigate the existence and
multiplicity of positive periodic solutions of difference equations (1). It still remains open
to generalize it for systems of first order difference equations.
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