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Abstract: In this paper we study the nonterminal complexity of Lindenmayer systems with
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1 Introduction

Formal language theory, introduced by Chomsky in the 1950s as a tool for a description
of natural languages [1, 2, 3], has also been widely involved in modeling and investigating
phenomena appearing in Computer Science and other related fields. The symbolic repre-
sentation of a modeled system in the form of strings makes its processes by information
processing tools very easy. Coding Theory, Cryptography, Computation Theory, and many
other fields use sets of strings for the description and analysis of modeled systems. In the
modeling, we usually have to deal with infinite sets of strings with respect to the number
of symbols. Thus, it is natural to define some finite devices which generate these types of
set of strings. If we consider strings as words, similarly in natural languages, then a set of
strings can be considered as a (formal) language and a generative device as a grammar. A
grammar generally consists of finite sets of terminal and nonterminal symbols, a finite set
of production rules and the axiom. A derivation of a word starts with the axiom and in each
step, some subword of an obtained word are replaced by another subword using production
rules until the word is produced.

With respect to the forms of production rules, grammars can be divided into two major
classes: context-free (exactly one nonterminal symbol can be replaced) and context-sensitive
(a subword containing at least one nonterminal can be replaced). Context-free grammars
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have beautiful mathematical properties and are easily applicable in practical problems.
They were first used in the study of human languages. More modern examples include
the structures of mark-up languages like HTML and XML. Another important application
of context-free grammars occurs in the specification and compilation of programming lan-
guages. Context-free grammars improve the process of implementing parsers into a routine
job that can be completed very quickly. However, they cannot cover all aspects of modeled
phenomena. On the other hand, context-sensitive grammars are too powerful to be used in
applications, and they have bad features, for instance, for context-sensitive grammars, the
emptiness problem is undecidable and the existing algorithms for the membership problem,
thus for the parsing, have exponential complexities. In order to overcome this problem,
we need some “context-free like” generative devices, which have as many context-free like
properties as possible, but are also able to describe the non-context-free features of the spe-
cific languages in question. One of the solutions is that a context-free grammar should be
considered with some additional (control) mechanism which restricts the application of the
rules in order to avoid some derivations and obtain a subset of the language generated in
usual way. The computational power of some grammars with control mechanism turns out
to be greater than the power of context-free grammars. The consideration of different types
of control mechanisms leads to the definition of different types of grammars with controlled
(regulated) rewriting. In the monograph [4], we can find the detailed information on various
types of grammars with regulated rewriting such as matrix, programmed, valence, random
context, tree controlled grammars, etc.

The notion of a tree controlled grammar was introduced in [5] as a regulated genera-
tive device which is a very simple and natural extension of context-free grammars. A tree
controlled grammar is defined as a context-free grammar with some regular language where
the structure of the derivation trees is restricted by requirement that all words belonging
to a level of the derivation tree have to be an element of the regular language. The investi-
gation of tree controlled grammars is interesting for many reasons, for instance, each word
generated by a tree controlled grammar there is a derivation tree exactly like in the context-
free case, and tree controlled grammars are considerably more powerful (Turing complete)
than context-free grammars, yet for a large class of languages generated by tree controlled
grammars parsing methods working in quadratic time are available.

Though the descriptions of grammars (the number of nonterminal symbols and produc-
tion rules) for languages are finite, they may increase with respect to the number of terminal
symbols. Thus, it is always important to study language generative mechanisms from the
point of view of the descriptional complexity : the number of nonterminals and the number
of the production rules.

The study of the descriptional complexity with respect to regulated grammars started
in [6, 7, 8, 9, 10]. In recent years several interesting results on this topic have been obtained.
There are results which compare the conciseness of minimal descriptions of languages by
different types of regulated grammars as well as statements that grammars with a bounded
size suffice to generate all languages of certain language classes. For instance, the nonter-
minal complexity of programmed and matrix grammars is studied in [11], where it is shown
that three nonterminals for programmed grammars with appearance checking, and four
nonterminals for matrix grammars with appearance checking are enough to generate every
recursively enumerable language. There are several papers which present analogous results
for scattered context grammars [12, 13, 14, 15] and semi-conditional grammars [15, 16, 17].

The study of the descriptional complexity of tree controlled grammars was started in
[18], where a number of preliminary results on the nonterminal complexity of tree controlled
grammars were obtained, particularly, it was shown that tree controlled grammars with no
more than nine nonterminals are enough to generate all recursively enumerable languages.
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This bound was improved to seven in [19]. Moreover, it was shown that all linear and regular
simple matrix languages can be generated by tree controlled grammars with the nontermi-
nal complexity bounded by three. In [20] the optimality of this bound was proved, and
also showed that tree controlled grammars with the nonterminal complexity bounded by
four are sufficient to generate all context-free languages. In this paper we start the study of
the nonterminal complexity of tree controlled grammars generating parallel languages, i.e.,
languages generated by Lindenmayer systems. As an initial result, we show that five non-
terminals are sufficient for tree controlled grammars to generate all 0L, D0L (deterministic
0L), and E0L (extended 0L) languages.

The paper is organized as follows. In Section 2 we give some notions and definitions
from the theory of formal languages needed in sequel. In Section 3 we define a normal form
for tree controlled grammars, called the t-normal form, and show that for every E0L system,
one can construct equivalent tree controlled grammars in the t-normal form. In Section 4 we
prove that every L language can be generated by a tree controlled grammar with no more
than five nonterminals.

2 Preliminaries

We assume that the reader is familiar with the basic notations of formal language theory,
for details refer to [4, 21].

Let T be an alphabet which is a finite nonempty set of symbols. A string over the
alphabet T is a finite sequence of symbols from T . The empty string is denoted by ε. The
set of all strings over the alphabet T is denoted by T ∗. A subset of T ∗ is called a language.

A context-free grammar is specified as a quadruple G = (N,T, P, S) where N and T
are the disjoint alphabets of terminals and nonterminals, respectively, P ⊆ N × (N ∪ T )∗

is a finite set of context-free productions, and S is the axiom. Usually, a rule (u, v) ∈ P is
written in the form u → v. A rule of the form u → ε is called an erasing rule. A grammar
is called regular if P ⊆ T ∗N ∪ T ∗ (i.e., if all its rules are of the form A → wB or A → w
with A,B ∈ N and w ∈ T ∗).

By Var(G) we denote the number of the nonterminals of a grammar G, i.e.,

Var(G) = |N |.

A string x ∈ (N ∪ T )∗ directly derives a string y ∈ (N ∪ T )∗ in G, written as x ⇒ y
if and only if there is a rule A → v ∈ P such that x = x1Ax2 and y = x1vx2 for some
x1, x2 ∈ (N ∪ T )∗. The reflexive and transitive closure of the relation ⇒ is denoted by ⇒∗.
The language generated by G, denoted by L(G), is defined by

L(G) = {w ∈ T ∗ | S ⇒∗ w}.

With each derivation in a context-free grammar G, one can associate a derivation tree.
The level associated with a node is the number of edges in the path from the root to the
node. The height of the tree is the largest level number of any node. With a derivation tree
t of height k and each number 0 ≤ i ≤ k, we associate the word of level i which is given
by all nodes of level i read from left to right, and we associate the sentential form of level
i which consists of all nodes of level i and all leaves of level less than i read from left to
right. Obviously, if u and v are sentential forms of two successive levels, then u ⇒∗ v holds
and this derivation is obtained by a parallel replacement of all nonterminals occurring in the
sentential form u.

A tree controlled grammar is defined as a quintuple H = (N,T, P, S,R) where G =
(N,T, P, S) is a context-free grammar and R ⊆ (N ∪ T )∗ is a regular set. The language
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L(H) consists of all words w generated by the underlying grammar G such that there is a
derivation tree t of w with respect to G where the words of all levels (except the last one)
are in R. The family of all tree controlled grammars is denoted by T C.

Since R = L(G′) for some regular grammar G′ = (N ′, T ′, P ′, S′), the tree controlled
grammar H can be given as a pair H = (G,G′). As the nonterminal complexity of the tree
controlled grammar H, we consider the nonterminal complexity of the underlying context-
free grammar G and the nonterminal complexity of the regular grammar G′, i.e.,

Var(H) = Var(G) + Var(G′).

For a language L, we set

VarT C(L) = min{Var(H) : H = (G,G′), where G is a context-free grammar,

G′ is a regular grammar and L(H) = L}.

An E0L system is a quadruple G = (V,Σ, P, ω) where Σ is a non-empty subset of the
alphabet V , ω ∈ V + is the axiom, P is a finite subset of V ×V ∗ which satisfies the condition
that, for each a ∈ V , there is a word wa ∈ V ∗ such that (a,wa) ∈ P (the elements of P are
written as a → wa). The yield relation ⇒ is defined for E0L systems in the following way:
x ⇒ y holds in G iff the following conditions are satisfied:

(a) x = ai1ai2 · · · aik , aij ∈ V for 1 ≤ j ≤ k,

(b) y = y1y2 · · · yk, yj ∈ V ∗ for 1 ≤ j ≤ k,

(c) aij → yj ∈ P for 1 ≤ j ≤ k.

The language L(G) generated by G is given by

L(G) = {w : w ∈ Σ∗, ω ⇒∗ w}.

An E0L system G = (V,Σ, P, ω) is an 0L system if V = Σ, i.e., G = (Σ, P, ω).
An 0L system G = (Σ, P, ω) is deterministic if for each a ∈ Σ, a rule (a,wa) ∈ P is

defined uniquely, i.e., for each a ∈ Σ, there is only one wa in Σ∗.
In this paper we use the common name an “L system” referring to any of types of defined

above.

We denote the language families generated by 0L, D0L and E0L systems by L(0L),
L(D0L) and L(E0L), respectively. By definition, the following result follows immediately

Lemma 1.

L(D0L) ⊆ L(0L) ⊆ L(E0L).

3 Normal Form

In this section, we define a normal form for tree controlled grammars, called the t-normal
form, and show that for every L system, one can construct equivalent tree controlled gram-
mars in the t-normal form.

Definition 1. A tree controlled grammar H = (N,T, P, S,R) is said to be in the t-normal
form if and only if

1. N = N1 ∪ N2 ∪ N3 ∪ {S} where N2 = {A+ : A ∈ N1}, N3 = {A− : A ∈ N1},
S /∈ N1 ∪N2 ∪N3;
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2. P may only consist of rules of the following forms

S → x1A1Sx2A2Sx3 · · ·xkAkSxk+1,

where Ai ∈ N1, 1 ≤ i ≤ k, xj ∈ T ∗, 1 ≤ j ≤ k + 1,

S → A−x1A1Sx2A2Sx3 · · ·xkAkSxk+1,

where Ai ∈ N1, 1 ≤ i ≤ k, A− ∈ N3, xj ∈ T ∗, 1 ≤ j ≤ k + 1,

S → A−x,

where A− ∈ N3 and x ∈ T ∗,

A → A+, A+ → ε, A− → ε

for all A ∈ N1, A
+ ∈ N2 and A− ∈ N3;

3. the control set is defined by

R = ({S} ∪ {A+A− : A ∈ N1} ∪N1S ∪ T )∗.

Before we prove that for every E0L system G = (V,Σ, P, ω), we can construct an equiv-
alent tree controlled grammar in the t-normal form, we slightly modify the definition of the
E0L system G by

(1) replacing all terminals a in the rules of P with the new nonterminals a,

(2) introducing new rules a → a and a → a for all terminals a ∈ Σ,

(3) imposing a restriction on the derivations in G such a way that no terminal appears in
any sentential form except the last one.

Definition 2. An E0L system G = (V,Σ, P, ω) is called terminal controlled if

(a) ω ∈ (V − Σ)∗,

(b) each (a,wa) ∈ P with a ∈ Σ has wa = a,

(c) for every terminal derivation

ω ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wn ∈ Σ∗

in G, wi ∈ (V − Σ)∗ for 1 ≤ i ≤ n− 1.

Lemma 2. For every E0L system G, one can construct an equivalent terminal controlled
E0L system G′.

Proof. Let G = (V,Σ, P, ω) be an E0L system. We set Σ = {a : a ∈ Σ} and define a
homomorphism φ : V ∗ → ((V −Σ)∪Σ)∗ by setting φ(ε) = ε, φ(A) = A for all A ∈ (V −Σ),
and φ(a) = a for all a ∈ Σ.

We construct a terminal controlled E0L system G′ = (V ∪Σ,Σ, P ′, ω) where ω = φ(ω),
and

P ′ ={A → φ(α) : A → α ∈ P,A ∈ (V − Σ), α ∈ V ∗}

∪ {a → φ(α) : a → α ∈ P, a ∈ Σ, α ∈ V ∗}

∪ {a → a : a ∈ Σ}.
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It is not difficult to see that for every terminal derivation

ω ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wn ∈ Σ∗

in G we can construct a terminal derivation

ω ⇒ φ(w1) ⇒ φ(w2) ⇒ · · · ⇒ φ(wn) ⇒ wn

in G′, where wn is obtained from φ(wn) by applying rules of the form a → a, a ∈ Σ. On the
other hand, for any terminal derivation

ω ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wm = w ∈ Σ∗

in G′, one can construct the terminal derivation

ω ⇒ w′
1 ⇒ w′

2 ⇒ · · · ⇒ w′
m−1 = w

in G, by replacing each nonterminal a ∈ Σ in ω and wi, 1 ≤ i ≤ m − 2 with the terminal
a ∈ Σ. Thus, L(G) = L(G′).

Remark 1. Using the same arguments of the proof of Lemma 2, one can easily show that
for every (D)0L system there exists an equivalent terminal controlled (D)0L system.

Lemma 3. For every L system G, there is an equivalent tree controlled grammar H in the
t-normal form.

Proof. We only prove this lemma for E0L systems, and for other L systems it can be proved
analogously.

Let G′ = (V,Σ, P, ω) be a terminal controlled E0L system equivalent to an E0L system
G. Let S′ /∈ V is a new symbol. We define two homomorphisms ϕ : V ∗ → (V ∪ {S′})∗ and
ϕ′ : (V ∪ {S′})∗ → V ∗ by setting

• ϕ(ε) = ε, ϕ(a) = a for all a ∈ Σ and ϕ(A) = AS′ for all A ∈ V − Σ,

• ϕ′(ε) = ε, ϕ′(x) = x for all x ∈ V and ϕ′(S′) = ε.

We construct a tree controlled grammar H = (N ′, T, P ′, S′, R) in the t-normal form
where N ′ = N ∪N+ ∪N− ∪ {S′} where

N = V − Σ, N+ = {A+ : A ∈ N}, N− = {A− : A ∈ N}, S′ /∈ N ∪N+ ∪N−,

and

P ′ ={S′ → ϕ(ω)}

∪ {S′ → A−ϕ(α) : A → α ∈ P}

∪ {A → A+ : A ∈ N}

∪ {A → ε : A ∈ N+ ∪N−},

R is defined as
R = ({S′} ∪ {A+A− : A ∈ N} ∪NS′)∗.

Let ω ⇒ w1 ⇒ w2 ⇒ · · · ⇒ wn = w ∈ Σ∗ be a derivation in G′. We construct a terminal
derivation D with a derivation tree d in H generating w. Since any sentential form in D
– except the last (terminal) one – contains only nonterminals (by the construction of P ′),
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each sentential form in D associated with some level of the derivation tree d is the same as
the control word in this level of d.

D starts with S′ ⇒ A1S
′A2S

′ · · ·AkS
′ by the rule S′ → ϕ(ω) ∈ P ′ where ω =

A1A2 · · ·Ak. If w1 is obtained by some rules Ai → αi, 1 ≤ i ≤ k, in D we choose the
rules S′ → A−

i ϕ(αi) ∈ P ′ and the rules Ai → A+

i , which result in

D : S′ ⇒ A1S
′A2S

′ · · ·AkS ⇒∗ A+

1 A
−

1 ϕ(α1)A
+

2 A
−

2 ϕ(α2) · · ·A
+

k A
−

k ϕ(αk).

If, for all 1 ≤ i ≤ k, αi ∈ Σ∗, then

w1 = α1α2 · · ·αk ∈ Σ∗,

and ϕ(αi) = αi, 1 ≤ i ≤ k. After erasing the subwords A+

i A
−

i by A+

i → ε and A−

i → ε, the
same word w1 is also obtained in H.

Suppose that for 1 ≤ k < n, wk = B1B2 · · ·Bm, Bi ∈ N , 1 ≤ i ≤ m, and

w′ = A+

i1
A−

i1
zi1A

+

i2
A−

i2
zi2 · · · zit−1

A+

it
A−

it
zit

is the corresponding sentential form in D associated with a level of the derivation tree d.
Then, by construction, zij ∈ (NS′)∗, 1 ≤ j ≤ t and by definition of ϕ,

zi1zi2 · · · zit = B1S
′B2S

′ · · ·BmS′ = ϕ(wk).

Let wk+1 is obtained by rules Bi → βi ∈ P for all 1 ≤ i ≤ m. Then, in the sentential
form w′, we choose the rule Bi → B+

i for Bi and the rule S → B−

i ϕ(βi) ∈ P ′ for the
occurrence of S′ following Bi. Moreover, the substrings A+

ij
A−

ij
, 1 ≤ j ≤ t, are erased by

A+ → ε and A− → ε, which result in the sentential form in D associated with the next level
of the derivation tree d:

w′′ = B+

1 B−

1 ϕ(β1)B
+

2 B−

2 ϕ(β2) · · ·B
+
mB−

mϕ(βm).

If k = n− 1, then βi ∈ Σ∗, 1 ≤ i ≤ m, and wn = β1β2 · · ·βm ∈ Σ∗. Again, ϕ(βi) = βi,
1 ≤ i ≤ m, and after erasing the subwords B+

i B−

i , 1 ≤ i ≤ m, we obtain the terminal word
wn in H too. Thus L(G′) ⊆ L(H).

Let D : S′ ⇒∗ w1 ⇒∗ w2 · · · ⇒
∗ wn = w ∈ Σ∗ be a derivation in H with a derivation

tree d, where each wi ∈ (NS′ ∪ {A+A− : A ∈ N})∗, 1 ≤ i ≤ n − 1, is a sentential form
associated with level i of the derivation tree d.

By construction of R, w1 = A1S
′A2S

′ · · ·AkS
′ where ω = A1A2 · · ·Ak, Ai ∈ N , 1 ≤ i ≤

k. Again, by construction R, each Ai, 1 ≤ i ≤ k, in w1 is replaced with A+

i (by the rules
Ai → A+

i ) and for the occurrence of S′ following Ai, some rule S′ → A−

i αi ∈ P ′ is applied,
which result in

w2 = A+

1 A
−

1 α1A
+

2 A
−

2 α2 · · ·A
+

k A
−

k αk.

By construction of R, αi ∈ (NS′)∗ for all 1 ≤ i ≤ k or αi ∈ Σ∗ for all 1 ≤ i ≤ k.

Case 1. If αi ∈ Σ∗ for all 1 ≤ i ≤ k, after erasing the substrings A+

i A
−

i , 1 ≤ i ≤ k, the
terminal word w3 = α1α2 · · ·αk ∈ Σ∗ is obtained. Then

ω = A1A2 · · ·Ak ⇒ α1α2 · · ·αk

is the derivation in G′ simulating D.
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Case 2. If αi ∈ (NS′)∗ for all 1 ≤ i ≤ k, then

ω = A1A2 · · ·Ak ⇒ ϕ′(α1)ϕ
′(α2) · · ·ϕ

′(αk)

is the derivation in G′ simulating D.

Suppose that for 1 < t < n,

wt = A+

i1
A−

i1
y1A

+

i2
A−

i2
y2 · · ·A

+

im
A−

im
ym,

where yj ∈ (NS′)∗, 1 ≤ j ≤ m, and A+

ij
∈ N+, A−

ij
∈ N−, 1 ≤ j ≤ m, is a sentential form

in D, and z = ϕ′(y1)ϕ
′(y2) · · ·ϕ

′(ym) is the corresponding sentential form generated in G′.

From wt, the derivation is continued by erasing the subwords A+

ij
A−

ij
by the rules A+

ij
→ ε

and A−

ij
→ ε, 1 ≤ j ≤ m, by applying for each nonterminal A ∈ N in yi, 1 ≤ i ≤ m, the

rule A → A+, and by applying for the occurrence of S′ following each A, some rule S′ →
A−α ∈ P ′, which result the sentential form wt+1 = y′1y

′
2 · · · y

′
m where y′i ∈ (NS′ ∪ {A+A− :

A ∈ N})∗, 1 ≤ i ≤ m. Then z′ = y′′1 y
′′
2 · · · y′′m is the corresponding sentential form in G′,

where y′′i , 1 ≤ i ≤ m, is obtained from y′i by erasing all occurrences of S′ and all subwords
of the form A+A−.

If t = n − 1, then yi ∈ Σ∗ for all 1 ≤ i ≤ m, and z = y1y2 · · · ym = w ∈ Σ∗. Thus
L(H) ⊆ L(G′).

4 A Nonterminal Complexity Bound

In this section we prove that every L language can be generated by a tree controlled grammar
with no more than five nonterminals.

Theorem 1. Every E0L language can be generated by a tree controlled grammar having no
more than five nonterminals.

Proof. Let L ⊆ Σ∗ be an E0L language generated by the tree controlled grammar H =
(N ′, T, P ′, S′, R) in the t-normal form defined in the proof of Lemma 3. Let N = {Ai : 1 ≤
i ≤ n} where S = A1, and A,B,C /∈ N ′ be new nonterminals. We define the morphism
φ : (N ∪N+ ∪N−)∗ → {A,B,C}∗ by setting

φ(Ai) = Ai, φ(A+

i ) = φ(A−

i ) = CBiC, 1 ≤ i ≤ n,

and construct the tree controlled grammarH ′ = (N ′′, T, P ′′, S′, R′) whereN ′′ = {S′, A,B,C}
and P ′′ consists of the rules

S′ → φ(Ai1)S
′φ(Ai2)S

′ · · ·φ(Aik)S
′

for the rule of the form
S′ → Ai1S

′Ai2S
′ · · ·AikS

′ ∈ P ′,

Aij ∈ N , 1 ≤ j ≤ k,
S′ → φ(A−)φ(Aj1)S

′φ(Aj2)S
′ · · ·φ(Ajl)S

′

for each rule of the form

S′ → A−Aj1S
′Aj2S

′ · · ·AjlS
′ ∈ P ′,

A ∈ N , Aji ∈ N , 1 ≤ i ≤ l,
S′ → φ(A−)x
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for each rule of the form

S′ → A−x ∈ P ′,

A ∈ N , x ∈ Σ ∪ {ε}, and the chain as well as erasing rules

A → B, B → ε, C → ε.

The control set R′ is defined as

R′ = ({S′} ∪ {AiS′ : 1 ≤ i ≤ n} ∪ {BiCBiC : 1 ≤ i ≤ n})∗.

Any derivation D in the grammar H can be directly simulated by the derivation D′ in
the grammar H ′ as follows:

• the application of

S′ → Ai1S
′Ai2S

′ · · ·AikS
′

is replaced by

S′ → φ(Ai1)S
′φ(Ai2)S

′ · · ·φ(Aik)S
′;

• the application of a rule

S′ → A−Aj1S
′Aj2S

′ · · ·AjlS
′

or

S′ → A−x,

x ∈ T ∪ {ε} is replaced by

S′ → φ(A−)φ(Aj1)S
′φ(Aj2)S

′ · · ·φ(Ajl)S
′

or

S′ → φ(A−)x,

respectively;

• the application of Ai → A+

i , 1 ≤ i ≤ n, is replaced by the application of the sequence
of the rules

A → B, . . . , A → B
︸ ︷︷ ︸

i times

;

• the applications of A+

i → ε,A−

i → ε, 1 ≤ i ≤ n, are replaced by the applications of
the sequences of the rules

B → ε, . . . , B → ε
︸ ︷︷ ︸

i times

and

C → ε,B → ε, . . . , B → ε
︸ ︷︷ ︸

i times

, C → ε,

respectively, and it is not difficult to see that the words at the levels of the derivation tree
for D′ is in R′. Thus, L(H) ⊆ L(H ′).

Let

D′ : S′ ⇒ w1 = Ai1S′Ai2S′ · · ·AikS′ ⇒∗ wn ∈ Σ∗
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be a terminal derivation in H ′ with a derivation tree d, where each

wi ∈ ({S′} ∪ {AiS′ : 1 ≤ i ≤ n} ∪ {BiCBiC : 1 ≤ i ≤ n})∗, 1 ≤ i ≤ n,

is a sentential form associated with level i of the derivation tree d.
It is not difficult to see that w2 is obtained from w1 by applying A → B for all occurrences

of A in w1 and applying for each S′ following Aij , 1 ≤ j ≤ ik, some rule of the form
S′ → CBijCαj where

αj ∈ ({AiS′ : 1 ≤ i ≤ n})∗ or αj ∈ Σ∗,

i.e.,
w2 = Bi1CBi1Cαi1B

i2CBi2Cαi2 · · ·B
ikCBikCαik .

Then the derivation D in the grammar H simulates D′ as follows:

S′ ⇒ w′
1 = Ai1S

′Ai2S
′ · · ·AikS

′ ⇒∗ A+

i1
A−

i1
α′
i1
A+

i2
A−

i2
α′
i2
· · ·A+

ik
A−

ik
α′
ik
.

where α′
ij
= αij , 1 ≤ j ≤ k, if αij ∈ Σ∗ or it is obtained from αij by replacing each substring

of the form Al by nonterminal Al.

wt ∈ ({AiS′ : 1 ≤ i ≤ n} ∪ {BiCBiC : 1 ≤ i ≤ n})∗,

and it results in wt+1 by (1) erasing all occurrences of B,C, (2) replacing all occurrences of
A with B, and (3) applying some S′ → CBiCα ∈ P ′′ for the occurrence of S′ following the
substring Ai.

Correspondingly, w′
t+1 in D is obtained from w′

t by (1’) erasing all occurrences of all
nonterminals of the form A+, A−, (2’) replacing each Aj in w′

t with A+

j , and (3’) applying

some S′ → A−

j α
′ ∈ P ′ for the occurrence of S′ following Aj , where α′ is obtained from αij

by replacing each substring of the form Al by nonterminal Al.
If t = n − 1, then each α in (3) is a terminal string, and α′ = α in (3’). Since the

terminal string wn in D′ is obtained by erasing all occurrences of B,C in wn−1, we similarly
erase all occurrences of all nonterminals of the form A+, A− in w′

n−1, and obtain the same
string wn in H ′′.

Thus L(H ′) ⊆ L(H). Since R′ can be generated by a regular grammar with one nonter-
minal symbol, Var(H ′) = 5 and VarT C(L) ≤ 5.

From Lemma 1 and Theorem 1 the following result follows immediately

Corollary 1. Every (D)0L language can be generated by a tree controlled grammar with no
more than five nonterminals.

5 Conclusions

In this paper we have established a bound five for nonterminal complexity for tree controlled
grammars generating L languages, using the t-normal form for tree-controlled grammars with
one “active” nonterminal and a coding homomorphism. But it remains open if this bound
is optimal. We also do not know a good bound for T0L and ET0L languages.

Acknowledgments

This work has been supported by Ministry of Higher Education Fundamental Research
Grant Scheme FRGS /1/11/SG/UPM/01/1 and University Putra Malaysia via RUGS 05-
01-10-0896RU/F1.



22 S. Turaev et al.

References

[1] N. Chomsky. Three models for the description of languages. IRE Trans. on Information
Theory, 2(3):113–124, 1956.

[2] N. Chomsky. Syntactic structure. Mouton, Gravenhage, 1957.

[3] N. Chomsky. On certain formal properties of grammars. Information and Control,
2:137–167, 1959.
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