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Abstract: An analysis is carried out to study the unsteady two dimensional stagnation
point flow and heat transfer over a stretching/shrinking sheet with prescribed surface heat
flux. The governing partial differential equations are converted into nonlinear ordinary dif-
ferential equations using similarity variables, and solved numerically. The effects of the
unsteadiness parameter A, stretching/shrinking parameter ε and Prandtl number Pr on the
flow and heat transfer characteristics are studied. It is found that the skin friction f ′′(0)

and the local Nusselt number
1

θ(0)
increase as the the unsteadiness parameter A increases.

Moreover, the velocity and temperature increase as ε and Pr increase.
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1 Introduction

The study of flow and heat transfer over a stretching/shrinking sheet is an important problem
in many engineering processes with application in industries such as extrusion of plastic
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sheets, wire drawing, hot rolling and glass fiber production. Sakiadis [1, 2] performed the
pioneering work of boundary layer flow over a continuous moving surface. Later, his work was
verified experimentally by Tsou et al. [3]. Crane [4] studied the flow over a linearly stretching
sheet in an ambient fluid and gave a closed form similarity solution for the steady two-
dimensional problem. Gupta and Gupta [5] extended the work of Crane [4] by investigating
the effect of mass transfer on a stretching sheet with suction or blowing. On the other hand,
the stretching boundary problem [2] was extended by Wang [6] to a three-dimensional flow.
Mahapatra and Gupta [7] considered the combination of both stagnation flow and stretching
surface, and extended to the oblique stagnation flow by Lok et al. [8]. Carragher and Crane
[9] investigated the heat transfer flow over a stretching surface in the case of temperature
difference between the surface and the ambient fluid is proportional to the power of distance
from a fixed point.

Dutta et al. [10] and Grubka and Bobba [11] studied the temperature field in the flow
over a stretching surface subject to a uniform heat flux, while Elbashbeshy [12] considered
the case of stretching surface with a variable surface heat flux. Lin and Chen [13] presented
an exact solution of heat transfer from a stretching surface with a variable heat flux. Magyari
and Keller [14, 15] investigated the heat and mass transfer in the boundary layers on an
exponentially stretching continuous surface and studied the exact solutions for self-similar
boundary-layer flows induced by permeable stretching surface. A few works have been
done on flow induced by shrinking sheet. Miklavcic and Wang [16] found that the fluid
is stretched toward a slot and the flow characteristic is different from the stretching case.
Fang [17] and Fang et al. [18] investigated the flow induced by a shrinking sheet with a
constant velocity distribution. Hayat et al. [19] and Sajid [20] extended Fang [17] and Fang
et al.’s [18] work with magnetohydrodynamic and rotating flows of viscous fluid. Further,
Wang [21] generalized the flow over a shrinking sheet with a stagnation flow. Teipel [22]
studied the heat transfer behavior for the three-dimensional unsteady stagnation point flow
which focused on the effect of the unsteadiness parameter. Later, Wang [23] investigated
the unsteady oblique stagnation point. Recently Bhattacharyya [24] investigated the dual
solutions in unsteady stagnation point flow over a shrinking sheet.

The presentation of the paper is in the following order. Section 1 deals with the intro-
duction and some background of the problem. Section 2 discusses the mathematical model
and formulation of the flow over a stretching and shrinking sheet with prescribed surface
heat flux. Numerical results and discussion are given in Section 3. Conclusion is given in
Section 4.

2 Mathematical formulation

Consider the unsteady stagnation point flow over a stretching or shrinking sheet immersed
in an incompressible viscous fluid of ambient temperature T∞. It is assumed that the free
stream velocity is in the form U∞(x, t) = ax(1− λt)−1, the sheet is stretched with velocity
Uw(x, t) = bx(1 − λt)−1 and the surface heat flux is qw(x, t) = cx(1 − λt)−1. The x-axis
runs along the sheet and y-axis is measured normal to it. These assumptions along with
the boundary-layer approximations and neglecting the viscous dissipation, the governing
equations are given by Fang et al. [25]
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Now consider the following boundary conditions

v = 0, u = Uw,
∂T

∂y
=

−qw
k

at y = 0

and u→ U∞, T → T∞ as y → ∞ (3)

where u and v are velocity components in x and y directions, respectively, ν is kinematic
viscosity, α is thermal diffusivity and T is fluid temperature. Introducing the following
similarity transformations
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where η is the similarity variable and ψ is the stream function defined as u =
∂ψ

∂y
and

v = −
∂ψ

∂x
. Thus we have

u =
ax

1− λt
f ′(η) and v = −

(

aν

1− λt

)
1

2

f(η) (5)

where prime denotes differentiation with respect to η. It is easy to see that (5) satisfies
Eq. (1) identically. Substituting (4) into Eqs. (2) and (2) yield the nonlinear differential
ordinary equations

f ′′′ + ff ′′ + 1− f ′2 +A

(

1− f ′ −
1

2
ηf ′′

)

= 0 (6)

1

Pr
θ′′ + fθ′ − f ′θ −A

(

θ +
η

2
θ′
)

= 0 (7)

and the boundary conditions (3) becomes

f(0) = 0, f ′(0) =
b

a
= ε, θ′(0) = −1, θ(∞) → 0, f ′(∞) → 1 (8)

where ε(=
b

a
) is the stretching/shrinking parameter and the free stream velocity parameter,

Pr =
v

α
is the Prandtl number and A =

λ

a
is the unsteadiness parameter. The quantities

of physical interest are the skin friction coefficient Cf and the local Nusselt number Nux
which are defined as

Cf =
τw

ρU∞

2/2
, Nux =

xqw
k(Tw − T∞)

(9)

where the surface shear stress τw and the surface heat flux qw are defined as

τw = µ

(

∂u

∂y

)

y=0

, qw = −k
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with µ and k being the dynamic viscosity and thermal conductivity, respectively. Substitut-
ing (4) into (9) we obtain

1

2
CfRe

1/2
x = f ′′(0)

Nux

Re
1/2
x

=
1

θ(0)

where Rex =
U∞x

ν
is the local Reynolds number. It should be noticed that Eqs. (6) and

(7) are reduced to those of Wang [21] and Nik Long et. al [26] when A = 0 (steady-state
flow) and A = 0.1, respectively.

3 Results and discussion

Table 1: Values of f ′′(0) for different values of ε
ε Wang [21] Nik Long et. al [26] Present

A=0 A=0.1 A=0 A=0.1
4 -7.130017 -7.086378 -7.130017
3 -4.276545 -4.308713
0.2 1.05113 1.072329 1.051130 1.072329
0.1 1.14656 1.171193 1.146561 1.171193
-0.2 1.373886 1.410656
-0.5 1.49567 1.549006 1.495672 1.549006
-1.15 1.08223 1.082232 1.255264

Table 2: Values of
1

θ(0)
for different values of ε when A = 0 and Pr = 1.0

ε Wang [21] Present
4 2.116738
3 1.870671
0.2 0.91330 0.913303
0.1 0.86345 0.863452
-0.2 0.50145 0.501448
-0.5 0.50145 0.501448
-1.15 -0.297995 -0.2979953

The nonlinear ordinary differential Eqs. (6) and (7) subject to the boundary conditions
(8) was solved numerically using the shooting method where we convert the boundary value
problem into an initial value problem. The results are given to carry out a parametric
study showing the influence of the non-dimensional parameters, namely the unsteadiness
parameter A, stretching/shrinking parameter ε and Prandtl number Pr. For the validation

of the numerical results, the values of f ′′(0) and
1

θ(0)
for the case A = 0 (steady state flow)

and A = 0.1 with Pr = 1.0 and Pr = 0.7, respectively have been considered and compared
with those of Wang [21] and Nik Long et. al [26]. The quantitative comparison are shown

in Tables 1 and 2 for the values of f ′′(0) and
1

θ(0)
, respectively for different values of ε, and

found that they are in a favorable agreement.
We observed that, when the value of the unsteadiness parameter A = 0.01, it has dual

solutions for −1.2536 ≤ ε ≤ −1, the solution is unique for ε > −1 and there is no solution
for ε < −1.2536. Whereas, when the unsteadiness parameter A = 0.1 and A = 0.3, the dual
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Figure 1: Skin friction coefficient f ′′(0) as a function of ε for different
values of A when Pr = 0.7

Figure 2: Local Nusselt number
1

θ(0)
as a function of ε for different

values of A when Pr = 0.7
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Figure 3: Velocity profiles f ′(η) for different values of ε when A =
0.01 and Pr = 0.7

Figure 4: Temperature profiles θ(η) for different values of ε when
A = 0.01 and Pr = 0.7

solutions exist for −1.3118 ≤ ε ≤ −1 and −1.4520 ≤ ε ≤ −1, respectively. The solution
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Figure 5: The dual solutions of velocity profiles f ′(η) for different
values of ε when A = 0.01 and Pr = 0.7

Figure 6: The dual solutions of temperature profiles θ(η) for different
values of ε when A = 0.01 and Pr = 0.7

for both values of A is unique for ε > −1 and there are no solution for ε < −1.3118 and
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Figure 7: Temperature profiles θ(η) for different values of A when
ε = 0.1 and Pr = 0.7

Figure 8: The temperature profiles θ(η) for different values of Pr
when A = 0.01 and ε = −0.5
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Table 3: Range of ε for unique solution,dual solutions and non-existence of the solution for
different values of A

A Unique solution Dual solutions Non-existence

0.01 (−∞,−1.2536) [−1.2536,−1.0000] (−1,∞)
0.1 (−∞,−1.3118) [−1.3118,−1.0000] (−1,∞)
0.3 (−∞,−1.4520) [−1.4520,−1.0000] (−1,∞)

ε < −1.4520, respectively. These results are presented in concise form in Table 3. From
the table, it can be concluded that the solution exists up to a critical value (εc) of ε, which
depends on A. Based on our computations, εc = −1.2536, −1.3118 and −1.4520 for A =
0.01, 0.1 and 0.3, respectively. Figures 1 and 2 show the relationship between the skin friction
coefficient and the local Nusselt number with different values of unsteadiness parameters A
when Pr = 0.7. As seen in these figures, as the unsteadiness parameter A increases, the skin

friction f ′′(0) and local Nusselt number
1

θ(0)
increase as well. The samples of velocity and

temperature profiles are given in Figures 3-8, respectively. These figures show the boundary
conditions (8) for Eqs. (6) and (7) are satisfied and approached infinity asymptotically,
which support the numerical results presented in Figures 1 and 2. Figures 3 and 4 show the
velocity and temperature f ′(η) and θ(η) for different values of ε. It is seen that the velocity
increases as ε increases. However, the surface temperature decreases as ε increases. Figures
5 and 6 show the dual solutions of velocity and temperature profiles for different values of ε.
These figures exhibit the existence of the dual solution for the dealt problem. It is observed
that for the dual solutions of velocity and temperature fields, the boundary layer thickness
for the first solution is smaller than the second solution. Meantime, the temperature profiles
for different values of A are presented in Figure 7. These figure shows the temperature
decreases monotonously with increasing values of A. The effect of Pr on the temperature
profile is illustrated in Figure 8 for some values of Pr when A = 0.01 and ε = −0.5, which
show the temperature inside the boundary layer increases with Pr. However, the surface

temperature θ(0) decreases, which increases the local Nusselt number
1

θ(0)
. Thus, the heat

transfer rate at the surface increases as Pr increases.

4 Conclusion

A numerical study is performed for the problem of unsteady two-dimensional stagnation
point flow and heat transfer over a stretching and shrinking sheets with prescribed heat
flux. The similarity transformation is employed to reduce the partial differential equations
into non-linear ordinary differential equations. The effects of the governing parameters A, ε
and Pr on the fluid flow and heat transfer characteristics was discussed and the numerical
results obtained are comparable well with the previously reported cases. The numerical
results indicated that the parameter A increases the skin friction coefficient f ′′(0) and the

local Nusselt number
1

θ(0)
. Moreover, the velocity and temperature increase as the values

ε and Pr increase but leads to a decrease in surface temperature.
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