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Abstract: In this paper, two reliable modifications of Variational Iteration Method (VIM) are 

tested for two nonlinear mathematical problems like Emden-Fowler Equation and Lane-Emden 

Equation, which arises in diverse fields of physics. It has been observed that these modifications 

are very efficient and reliable for the solution of the non-linear problems. Numerical results 

represent the reliability, effectiveness and efficiency of the proposed modifications. 
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1 Introduction 

Most of the problems in natural and engineering sciences are modeled by differential equations. 

These equations arise in various scientific models such as the fluid mechanics, chemical reaction 

diffusion, propagation of shallow water waves, Schrodinger equation models. To solve such 

models, a large amount of work has been invested several techniques [1-10] including Homotopy 

Perturbation, Methods of Characteristic, Multi Grid, Periodic Multi Grid Wave form, Riemann 

invariants, Finite Difference, Polynomial and Non-polynomial Spline, Variational of Parameter, 

Sink Galerkin, Parameter Expansion, Energy Balance, Homotopy analysis have been developed for 

the solution of the natural and engineering problems. Most of the techniques have their limitations 

and encounter the inbuilt deficiencies like linearization, limited convergence, divergent results, 

unrealistic assumptions and a lot of computational work. 

 Recently, Ghorbani et. al. [11] introduced He’s polynomials by splitting the non-linear term. 

He’s polynomial are calculated from He’s Homotopy Perturbation method [12-14]. More recently, 
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Noor and Mohyud-Din [15,16] combined correction functional and He’s polynomials of the 

Variational Iteration Method (VIMHP) and applied this reliable modified form of VIM to a wide 

class of physical problems. The basic motive of the present study is the implementations of the 

reliable modifications of Variational Iteration Method to the singular initial value problems. 

2 Analysis of Variational Iteration Method (VIM) 

To elucidate the basic of the variational Iteration Method (VIM), we consider the differential 

equation in the general form 

 
( ),xfuNuL =+

                   (1) 

where L is a linear operator, N is non-linear operator and ( )xf  is source term respectively. 

According to variational iteration method, the correction functional of Eq. (1) can be written as, 

 ( ) ( ) ( ) ( ) ( ) ( )( )∫ −++=+

x

nnnn dfuNuLxuxu
0

1 ,~ τττττλ               (2) 

where λ  is a Lagrange multiplier, which can be identified optimally via variational theory. After 

determined the Lagrange multiplier, the successive approximation ,0,1 ≥+ nun  of the solution u 

will be readily obtained by using determined Lagrange multiplier and any selective function 0u . 

Consequently, the solution is given by 

 ( ) ( ).xuLimxu n
n ∞→

=                              (3) 

3 Variational Iteration Method using He’s Polynomials (VIMHP) 

Variational Iteration Method using He’s polynomials is a modified form of Variational Iteration 

Method. This modification is obtained by coupling of correction functional of Variational Iteration 

Method with He' Polynomials and is given by  
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By comparing the like indexes of p, give solution of various order. 

4 Variational Iteration Method using Adomian’s Polynomials (VIMAP) 

Variational Iteration Method using Adomian’s Polynomials is another modified form of Variational 

Iteration Method. This Modification is obtained by coupling of correction functional of Variational 

Iteration Method with Adomian’s Polynomials and is given by 
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where ,nA are called Adomian’s Polynomials which can be generated for all type of non-linearity, 

and determined by the algorithm defined in [17]. 

 
( ),00 uFA =

 

 
( ),011 uFuA ′=

 

 

( ) ( ),
!2

0

1
2

022 uF
u

uFuA ′′+′=
 

 

( ) ( ) ( )

.

,
!3

030210

1
3

3

M

uFuuFuuuF
u

A ′+′′+′′′=

 

4 Analysis of VIM for Singular initial value Problem 

Consider the singular initial value problem 

 ( ) ( ) ( ) ( ) ( ),xfxyxgxy
x

k
xy =+′+′′                            (6) 

Subject to the conditions 

 
( ) ( ) .10,00 =′= yy

 

According to variational Iteration Method, the correction functional of Eq. (6) can be written as, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,~~22
,

0

1 ∫ 







−+′

−
+′+′′+=+

x

nnnnnn dfygxy
k

yyxxyxy ττττ
τ

τ
τ

ττλ   (7) 

Where λ  is called general Lagrange multiplier, which can be identified optimally via variational 

theory, and ny~ , is considered as restricted Variations so, taking δ  on both sides, we get 
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The Lagrange multiplier can be identified via variational theory. 

 ( ) ,,
2

τ
τ

τλ −=
x

x  

Now, Eq. (5) becomes,
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Consequently, the solution is given by 

 ( ) ( ).xyLimxy n
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=  

5 Numerical Applications 

5.1 Example 

Consider the classical Emden-Fowler equation of the second kind 

 ,0
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subject to the initial conditions, 

 
( ) ( ) .00,10 =′= yy

 

where ,α m and r are constants. 

VIMHP 

According to VIM, the correction functional for the Eq. (10) can be written as 
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The Lagrange Multiplier can be identified via variational theory. 
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Now Eq. (11) becomes 
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According to VIMHP, Eq. (12) can be written as, 
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Now, comparing the co-efficient of like powers of p, 
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This is the same result is as obtained by Chowdhury [18]. 
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VIMAP 

According to VIMAP, Eq. (10) can be written in the form, 
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The initial approximate solution is reads as 
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And so on. Finally, we have 
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This is the same result as obtained by Chawdhary [18]. 

Particularly, we obtained the exact solution as 

For ,0,0 == randm  
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for ,0=m and ,1=r  
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for ,0=m and ,5=r  
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Plot of graphically representation for .5,1,0=r  
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Fig. 1 

5.2 Example 

Consider the non-linear Emden-Fowler Equation 
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Subject to the conditions 
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VIMHP 

According to VIM, the correction functional for the Eq. (18) can be written as  
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The Lagrange Multiplier can be identified via variational theory. 
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According to VIMHP, Eq. (20) can be written as, 
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Now, comparing the co-efficient of like powers of p, 
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where .,
2

3
,3,2 L−−−≠m  The exact solutions are exist for ,3,2,1,0,10 −== mandr  

respectively. 
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VIMAP 

According to VIMAP, Eq. (18) can be written in the form, 
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The initial approximation is reads as 
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Plot of graphical representation of solution (25) are: 

    

For  r = 0,

m.= -1,

m = 0,

m = 1,

m = 2,

m = 3,

0.2 0.4 0.6 0.8 1.0
x

1.1

1.2

1.3

1.4

1.5

y�x�

 

       Fig. 2 



 

 

 

252                                                                                                                                 J. Ahmad et al. 

5.3 Example 

Consider a linear homogeneous Lane-Emden Equation 

 ( ) ,0.64
2 2

2

2

=+−+ yx
xd

yd

xxd
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                                   (26) 

Subject to the conditions 

 
( ) ( ) .00,10 =′= yy

 

VIMAP 

According to VIM, the correction functional for the equation (26) can be written as  
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            (27) 

The Lagrange Multiplier can be identified via variational theory. 
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Now Eq. (27) becomes 
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According to VIMHP, equation (28) can be written as, 
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Comparing the coefficients of like powers of p: 
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Therefore the closed form solution is 

 
( ) .

2
x
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This is the exact solution of the Lane-Emden equation. 

VIMAP 

According to VIMAP, Eq. (26) can be written as, 
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The initial approximation is reads as  
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Consequently, we have 
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The closed solution is 
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 .)(
2

xexy =           

This is solution of the Lane-Emden equation; this result is same as obtained [18]. 

Graphical representation of the solution is: 
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      Fig. 3 

5.4 Example 

Consider a Time-Dependent Lane-Emden equation  
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subject to the condition 
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VIMHP 

According to VIM, the correction functional for the equation (31) can be written as  
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where λ  is called general Lagrange multiplier, which can be identified as 
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Therefore, Eq. (32) becomes 
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According to VIMHP, Eq. (33) can be written as, 
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Comparing the co-efficient of like powers of p: 

 
( ) ,: sin

0

0 teyp =  

 

( )








+=

5
:

4
2sin

1

1 x
xeyp

t

 

 

( )
,

90105

13

10

3
:

8
64sin

2

2









++=

x
xxeyp

t

 

Thus, the closed form solution is 
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This is the same result as obtained by A. Sami Bataineh, M. S. M. Noorani, and I. Hashim in [19]. 

VIMAP 

According to VIMAP, the Eq. (31) becomes 
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The initial approximate solution is reads as 
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Thus, the close form solution is 
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This is the same result as obtained by A. Sami Bataineh, M.S.M. Noorani, and I. Hashim [19]. 

Plot of graphical representation of the solution: 

 

 

6  Conclus ion  

Fig. 4 
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In this paper, two modifications of Variational Iteration Method (VIM) are implemented 

successfully to obtain the analytical exact and approximate solutions of two nonlinear mathematical 

problems. The solution procedure is very simple by means of variatonal theory, and only a few 

steps lead to highly accurate solutions. It has been observed that these modifications are very 

efficient and reliable for the solution of the non-linear problems. 
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