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ABSTRACT 

This paper explores the application of the augmented Lagrangian method (ALM) for 
constructing optimal control of some interconnected systems. The ALM proves to be a robust 
technique in handling the stability and observability restrictions arising from interconnections 
among subsystems. By segregating Lagrange multipliers from the solution process, the method 
effectively solves the optimal control problems in a simpler unconstrained setting. The proposed 
approach is substantiated through numerical simulation, demonstrating its efficacy in obtaining 
optimal control strategy for the interconnected networks of a power grid model.  

Keywords: Interconnected systems, state-feedback control, augmented Lagrangian method, 
power grid model. 

1 INTRODUCTION 

Consider the following control system: 
 
�̇� = 𝐴𝑥 + 𝐵1𝑑 + 𝐵2,          (1) 
𝑧 = 𝐸𝑥 + 𝐷𝑢,           (2) 
 
where 𝑥 ∈  𝑅𝑛, 𝑑 ∈  𝑅𝑞, 𝑢 ∈  𝑅𝑚 and 𝑧 ∈  𝑅𝑠, is the state variable, disturbance, control variable, and 

output, respectively, while 𝐸 = [𝑄
1

2   0]
𝑇

∈  𝑅𝑠×𝑛 and 𝐷 = [0   𝑅
1

2]
𝑇

∈  𝑅𝑠×𝑚 where 𝑄 = 𝑄𝑇 ≽  0 and 

𝑅 = 𝑅𝑇 ≻  0 is the state and performance weights, respectively. Assume that 𝐴 ∈ 𝑅𝑛×𝑛 is given such 
that (𝐴, 𝐵2) is stabilizable and (𝐴, 𝑄1/2) is detectable. 
 

By letting 𝑢 = −𝐾𝑥, the corresponding closed-loop system is then given by 

�̇� = (𝐴 − 𝐵2𝐾)𝑢 + 𝐵1𝑑,         (3) 
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𝑧 = [𝑄
1

2   − 𝑅
1

2𝐾]
𝑇

𝑥,          (4) 

where 𝐾 ∈ 𝑅𝑚×𝑛 denotes the state-feedback matrix. Such control systems arise in the analysis of 
distributed controllers for interconnected systems [1, 2, 3, 11, 14] where the interconnection 
structure of the system is usually characterized by 𝐴. The embedded structure is then incorporated 
into the feedback matrix that governs the controllers via some Lyapunov-type equation [3]. The 
design of optimal control strategies based on the closed-loop system (3) – (4) was well-studied, for 
example [1, 14]. A typical optimal control problem that could be considered is the standard linear-
quadratic-regulator (LQR) control problem in which the stabilizing 𝐾 is required to minimize the 
𝐻2 − norm of the communication cost from 𝑑 to z (see for example, [17]). 

min
𝐾

𝑡𝑟( (𝑃(𝐾)𝐵1𝐵1
𝑇),          (5) 

where tr denotes the trace and 𝑃(𝐾) ∈  𝑅𝑛×𝑛 is the observability Gramian of (3) – (4) given by 

𝑃(𝐾) = ∫ exp((𝐴 − 𝐵2𝐾)𝑇𝑡)(𝑄 + 𝐾𝑇𝑅𝐾) ⋅ exp((𝐴 − 𝐵2𝐾)𝑡) 𝑑𝑡
∞

0
.    (6) 

For simplicity, we shall replace 𝑃(𝐾) by 𝑃 only. Hence, after discretization (see for example [1, 14]), 
𝑃 can be obtained by solving the following: 

𝐿(𝐾, 𝑃) = (𝐴 − 𝐵2𝐾)𝑇𝑃 + 𝑃(𝐴 − 𝐵2𝐾) + 𝑄 + 𝐾𝑇𝑅𝐾 = 0.      (7) 

The solution of (3) subjected to (4) will lead to the desired state-feedback optimal control law. 

Traditionally, the optimization problem (5) – (7) is solved directly using constrained optimization 
techniques such as interior point method [6]. Consider rephrasing to: However, in large networks of 

dynamical systems controllers based on dense feedback matrix, it may impose expensive 

computation burden in its solution process. Hence the main aim of this paper is to formulate the 

constrained optimization problem into an unconstrained optimization problem using augmented 

Lagrangian method (ALM) that is well-known for handling large number of equality constraints.  

2 UNCONSTRAINED OPTIMIZATION MODEL VIA AUGMENTED LAGRANGIAN APPROACH 

ALM is a powerful optimization technique widely employed in solving constrained optimization 

problems. Developed as an extension of the classical Lagrangian method, ALM introduces an 

augmented term that enhances its convergence properties and performance [4, 5, 7]. Particularly, the 

method incorporates penalty and Lagrange multiplier terms by introducing an augmented term, 

which helps address the limitations of traditional Lagrangian methods, especially in cases with non-

convex and complex constraints. ALM finds applications in various fields, including engineering, 

economics, and machine learning. It has proven to be particularly useful in problems involving 

structural optimization, control system design, and parameter estimation. Additionally, ALM has 

gained prominence in sparse signal recovery, image processing, and machine learning applications, 

showcasing its versatility across different domains [12, 13]. 
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By considering ALM on (3) – (4), the associated augmented Lagrangian function is then given by 

Φ(𝐾, 𝑃, Λ, β) = 𝑡𝑟(𝑃(𝐾)𝐵1𝐵1
𝑇) + 𝑡𝑟(Λ𝑇 𝐿(𝐾, 𝑃)) +

𝛽

2
 ‖𝐿(𝐾, 𝑃)‖|𝐹

2 ,    (8) 

where ‖⋅‖𝐹 denotes the Frobenius norm of a matrix, Λ ∈  𝑅𝑛×𝑛 is the matrix of Lagrange multipliers 

and 𝛽 > 0  is an appropriate penalty parameter. For some given initial 𝐾0, 𝑃0, Λ0 , and a finite 𝛽 > 0, 

the approach to minimize Φ via ALM takes an alternating iteration between two modules (see e.g. 

[4]): 

{
(𝐾𝑘+1, 𝑃𝑘+1) ≔ arg min{𝛷(𝐾, 𝑃, 𝛬𝑘)} ,

       𝛬𝑘+1 = 𝛬𝑘 + 𝛽𝑘Φ(𝐾𝑘+1, 𝑃𝑘+1, Λ𝑘).              
       (9) 

Since the updating scheme for Λ is done explicitly, then the solution process for obtaining an 

approximating sequence (𝐾𝑘 , 𝑃𝑘) can be computed independently of Λ and 𝛽.  

To establish the complete algorithm for constructing optimal control law via ALM, we first give the 

following convergence result, which is due to [4]: 

Theorem 2.1. Consider the following minimization problem: 

min
𝑥

𝑓(𝑥) subject to ℎ(𝑥) = 0,         (10) 

where 𝑓: 𝑅𝑛 → 𝑅 is continuously differentiable and ℎ: 𝑅𝑛 → 𝑅𝑚 are component-wise continuously 

differentiable function. Assume that 𝑋∗ is an isolated set of local minima of (10), which is compact. 

Then, there exists a subsequence {𝑥𝑘}𝑘∈𝐾 converging to a point 𝑥∗ ∈ 𝑋∗ such that 𝑥∗ is a local 

minimum of Φ(𝑥, 𝛬𝑘, 𝛽𝑘) = 𝑓(𝑥) + 𝛬𝑘
𝑇ℎ(𝑥) +

𝛽𝑘

2
‖ℎ(𝑥)‖2 for each 𝑘 ∈ 𝐾, where {𝛬𝑘} is assumed to be 

bounded and 0 < 𝛽𝑘 < 𝛽𝑘+1, 𝛽𝑘 → ∞. Furthermore, if problem (10) consists of a single unique 

minimum point 𝑥∗, then there exists a sequence {𝑥𝑘} and an integer  �̅� > 0 such that 𝑥𝑘 → 𝑥∗, which 

is also the unique minima of Φ(𝑥, 𝛬𝑘 , 𝛽𝑘) for all 𝑘 ≥ �̅�. 

Based on the convergence conditions as stated in Theorem 2.1, we can now give the following 

algorithm: 

ALOC Algorithm: 

Step 0. Input 𝐾0, 𝑃0, 𝛬0, 𝛽0. Set 𝜌 > 1 and 𝑘 = 0. 

Step 1. Employ an unconstrained optimization solver to obtain (𝐾𝑘+1, 𝑃𝑘+1) from (𝐾𝑘, 𝑃𝑘), i.e. 

 (𝐾𝑘+1, 𝑃𝑘+1) ≔ fmin𝐾,𝑃 { 𝛷(𝐾, 𝑃, 𝛬𝑘, 𝛽𝑘)}. 

Step 2. If the stopping condition is achieved, STOP. Else 𝛬𝑘+1 = 𝛬𝑘 + 𝛽𝑘Φ(𝐾𝑘+1, 𝑃𝑘+1, Λ𝑘) and  

𝛽𝑘+1 = 𝜌𝛽𝑘.   

Step 3. Set 𝑘 ← 𝑘 + 1 and go to Step 1. 

Remark 2.1. In Step 1, the quasi-Newton method is an ideal unconstrained optimization method to 

handle a small to medium problem. Otherwise, one can utilize the conjugate gradient method if the 

problem is large.  
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3 NUMERICAL SIMULATION 

3.1 Test Example 

To validate the performance of our method, an optimal control problem involving the IEEE 39 New 
England Power Grid Model is considered. The model consists of 39 buses and 10 generators where 
generator 10 is an equivalent aggregated model for the part of the network that it is assumed to be 
uncontrollable; Generator 1 to 9 are equipped with power system stabilizers, which provide good 
damping of local modes and stabilize otherwise unstable open-loop system. Detailed description of 
the model can be found in [10, 13, 14, 15, 16]. Inter-area oscillations are associated with the dynamics 
of power transfer, and they are characterized by groups of coherent machines that swing relative to 
each other. These oscillations are caused by weakly damped modes of the linearized swing equations, 
and they physically correspond to active power transfer between different generator groups. In the 
absence of higher-order generator dynamics, for purely inductive lines and constant current loads, 
the dynamics of each generator can be represented by the electromechanical swing equations. After 
the linearization at an operating point the swing equations reduce to 
 

𝑀�̈� + 𝐷�̇� + 𝐿𝜃 =  0,          (11) 
 

where 𝜃 is the rotor angles of the synchronous generators, 𝑀 and 𝐷 are diagonal matrices of inertia 
and damping coefficients, and the coupling among generators is entirely described by the weighted 
graph induced by the Laplacian matrix 𝐿. Let the state of the power network be partitioned as 𝑥 =

 [𝜃𝑇  �̇�𝑇  𝑥𝑟
𝑇] where 𝑥𝑟 are the state variables which correspond to fast electrical dynamics [12, 13]. 

Hence, the linearized dynamics is given by (3) – (4) where the data set for 𝐴, 𝐵1, 𝐵2 are available in 

[15]. For illustration, we set 𝑅 =  𝐼, and 𝑄 =  𝑐𝐼 +
1

𝑁
𝑒𝑒𝑇 are chosen, where the choice of 𝑄 is inspired 

by slow coherency theory with 𝑐 > 0 denoting a small regularization parameter and 𝑒 is the vector 
of all ones.  

 

 

Figure 1: IEEE 39 buses system [15] 
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3.2 Implementation 

Numerical experiments are performed on MATLAB 8.5 programming platform (R2015b) running on 
a machine with Window 10 operating system. The implementation of ALOC consists of the main loop 
and an inner loop as described in Step 2 where an unconstrained optimization is employed to obtain 
an approximate minimizer for a given Δ𝑘 and 𝛽𝑘. Hence in Step 2, a quasi-Newton BFGS [4] method 
is chosen for the mentioned task. Number of iterations for the main loop and that within the inner 
loop are denoted by 𝑘 and �̅�, respectively. In our experiments, the upper limit for 𝑘 is 10. As for the 
inner loop, BFGS method is terminated when the number of iterations, �̅� reaches 100 or the following 
stopping criterion is satisfied: 
 

‖∇Φ(𝐾, 𝑃, Λk, βk)‖ ≤ 10−4.         (12) 

 
The upper limit on iterations for both main and inner loop will lead to a total of 1000 iteration. In 
practice, it is sufficient to ensure convergence. Initial approximate for 𝐾, 𝑃, Δ is set as follows: , 𝑃0 =
𝐼,  𝐾0, Δ0 are matrices with all unit components. Other parameters are: 𝛽0 = 5 and 𝜌 = 4. These give 
the largest value for the penalty parameter 𝛽 as 5 × 410, which is sufficiently large to guarantee the 
satisfaction of the constraint in practice.   

4 RESULTS AND DISCUSSIONS 

The ALOC algorithm is compared to the MATLAB solver fmincon [5, 6, 8, 9], which solves the 
constrained optimization problem directly using the interior-point algorithm with analytic Hessian. 
Two performance indicators are used to illustrate the performance of the algorithms, namely 

 

𝑟𝑇𝑖𝑚𝑒 =
Execution time for fmincon

Execution time for ALOC
,   𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =

Function value at optimal for fmincon

Function value at optimal for ALOC
 .   (13) 

 
The relative performance of the methods is then given in Table 1. 
 

Table 1 : Performance of ALOC and fmincon on the test example  

𝑟𝑇𝑖𝑚𝑒 𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

1.317183 0.981445 

  

 

We can observe from Table 1 that fmincon utilizes approximately 32% more computation time when 
compared to ALOC. We believe that the additional computational effort required by fmincon is due 
to the need to compute and store the analytic Hessian matrix. Moreover, in term of solution’s quality, 
fmincon can obtain a solution with slightly lower function value but the deviation is not more that 
2% when compared to ALOC. Hence, in general we can conclude that ALOC is a promising alternative 
to methods that solve constrained optimization problems directly when computational resource is 
limited.  
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5 CONCLUSION 

This paper analyzed and developed an optimization method that utilizes the concept of augmented 
Lagrangian method for optimization problems with equality constraints. We showed the proposed 
algorithm, namely ALOC performed better with respect to computational time when compared to the 
well-known optimization solver, fmincon. In terms of quality of solution, the proposed method is also 
comparable to fmincon. Thus, we can conclude that ALOC would serve as a good alternative when 
reasonable accurate solution is required urgently. 

REFERENCES 

[1]  B. D. O.  Anderson and J. B. Moore, Optimal Control: Linear Quadratic Methods, Englewood Cliffs 
New Jersey: Prentice-Hall, 1990. 

 
[2] B. Bamieh, F. Paganini, and M. A. Dahleh, “Distributed control of spatially invariant systems”, 

IEEE Trans. Automat. Control, vol. 47, pp. 109–1107, 2002. 
 
[3]  R. H. Bartels and G. W. Stewart, “Solution of the matrix equation AX+XB = C”, Communications 

of the ACM, vol. 15, pp. 820–826, 1972.  
 
[4] D. Bertsekas, Nonlinear Programming, 3rd Edition, Nashua New Hampshire: Athena Scientific, 

2016. 
 
[5]  R. H. Byrd, J. C. Gilbert, and J. Nocedal, “A Trust Region Method Based on Interior Point 

Techniques for Nonlinear Programming”, Mathematical Programming, vol. 89, pp. 149–185, 
2000. 

 
[6]  R. H. Byrd, M. E. Hribar, and J. Nocedal, “An Interior Point Algorithm for Large-Scale Nonlinear 

Programming”, SIAM Journal on Optimization, vol. 9, pp. 877–900, 1999. 
 
[7]  G. A. de Castro and F. Paganini, “Convex synthesis of localized controllers for spatially invariant 

system”, Automatica, vol. 38, pp. 445–456, 2002. 
 
[8]  T. F. Coleman, and Y. Li, An Interior, “Trust Region Approach for Nonlinear Minimization 

Subject to Bounds”, SIAM Journal on Optimization, vol. 6, pp. 418–445, 1996. 
 
[9]  T. F. Coleman, and Y. Li, On the Convergence of Reflective Newton Methods for Large-Scale 

Nonlinear Minimization Subject to Bounds”, Mathematical Programming, vol. 67, pp. 189–224, 
1994. 

 
[10] R. D’Andrea and G. E. Dullerud, “Distributed control design for spatially interconnected 

systems”, IEEE Transactions on Automatic Control, vol. 48, pp. 1478–1495, 2003. 
 
[12] F. Dörfler, M. R. Jovanović, M. Chertkov, and F. Bullo, “Sparsity-promoting optimal widearea 

control of power networks”, IEEE Transactions on Power Systems, vol. 29, pp. 2281-2291, 
2014. 



Applied Mathematics and Computational Intelligence 
Volume 13, No. 2, 2024 [67-73] 

 

73 

 
[13] F. Dörfler, M. R. Jovanović, M. Chertkov, and F. Bullo, “Sparse and optimal wide-area damping 

control in power networks”, in Proceedings of the 2013 American Control Conference, pp. 4295-
4300, 2013. 

 
[14]  G. Dullerud and R. D’Andrea, “Distributed control of heterogeneous systems”, IEEE 

Transactions on Automatic Control, vol. 49, pp. 2113–2128, 2004. 
 
[15]  LQRSP - Sparsity-Promoting Linear Quadratic Regulator. Retrieved June 30, 2017, from 

http://people.ece.umn.edu/users/mihailo/software/lqrsp/ 
 
[16]  M. Rotkowitz and S. Lall, “A characterization of convex problems in decentralized control”, 

IEEE Transactions on Automatic Control, vol. 51, pp. 274–286, 2006. 
 
[17]  K. Teo, K. Wong, and W. Yan, “A gradient flow approach to computing nonlinear quadratic 

optimal output feedback gain matrix”, Journal of Optimization Theory and Applications, vol. 85, 
pp. 75-96, 1995. 


