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ABSTRACT 

Honeybees live in colonies with one queen running the whole hive. Worker honeybees are all 
females and are the only bees most people ever see flying around outside of the hive. They 
forage for food, build the honeycombs, and protect the hive. This study developed and analyzed 
the honeybee’s transmission dynamics under fractional order derivative via Laplace Adomian 
Decomposition Method, spread of varroa-mite by analyzing the disease-free equilibrium and 
global stability of endemic of our formulated model were investigated. Based on the 
trajectories, it was concluded that the memory index or fractional order could use to control 
the honeybees infested by varroa-mite carrying virus transmission dynamics. 

Keywords: Honeybees, model formulation, disease free equilibrium, Laplace Adomian 
Decomposition Method 

1 INTRODUCTION 

Honeybees are the food crops' commonest pollinators in the world and one-third of the food we eat 
daily dwells on the pollination by bees [1]. Many important crops in the world are being pollinated 
by honeybees and depend on them for their reproduction [3]. Honeybees pollinate 70% of 1330 
cultivated species of crops in tropical crops and 84% of the 264 cultivated species of crops are 
pollinated by animals. It has been established that the yields of many crops will decline by over 
90% without the aid of these pollinators [5]. Bees are of great importance not only for humans but 
also for all plant species that they pollinate and therefore the economic importance of bees cannot 
be overemphasized due to their contribution to pollinating many food crops. Honey is a sweet 
natural substance produced by Honeybees, produced from the nectar of flowers by changing it with 
the enzymes that are present in the saliva of the worker bees [4]. Despite the enormous importance 
of bees, a great concern has been raised in the last 20 years due to the reduction in the number of 
honeybees, which affects the quality of life of all human populations that depend on their product 
[6, 7]. Also, there is a great concern that with a 50% growth increase in honeybee stocks, the supply 
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fails to keep up with an over 300% increase in agricultural demands [2]. Globally, the number of the 
colony of honeybee losses has continued to increase rapidly since 2006 [8-10]. Some of the factors 
that lead to losses include weather conditions, poor diet, and transportation of bees for agricultural 
practices, pesticides and parasites [11]. One of the major causes of the decline is the parasitic mite 
called Varroa destructor and the viruses it carries [12, 13]. Varroa-mites feed on brood and adult 
bees and carry and spread viruses from one bee to another [14, 15].  

Mathematics has helped to develop models to study the population dynamics of bee colonies. [11] 
worked on mathematical models of honeybees and the models are divided into three namely: 
colony, Varroa and foraging models.  In the work of [16], the colony of the bees is divided into hive 
and forager bees. The model was to check the effect of the loss of forager bees on the adaptive early 
recruitment of hive bees to foraging, and how it affects the overall strength of the colony and 
survival. [17] studied the mathematical model of the honeybee Varroa destructor acute bee 
paralysis virus system with seasonal effects, where all the parameters are time-periodic to cater for 
seasonal influence. Their result reveals that the mites have to be controlled, to control the 
epidemic of the virus. [18] developed a model that shows how the internal demographic processes 
within a colony interact with the availability of food and brood rearing to change the growth in 
forager population size.[4] studied the populations of adult and immature honeybees and their 
honey production using mathematical and statistical modeling approaches. The mathematical 
approach consists of two models namely: a smooth model and a non-smooth model. In the smooth 
model, the conditions for the existence and stability of the equilibrium solutions are investigated 
and in the non-smooth model; the mortality rate of bees is incorporated as a function of the number 
of adult bees in the population. [20] studied a model to investigate the impact of external stress on 
social inhibition, forager recruitment rate and the laying rate of the queen. 

[22] presented a time-based honeybee colony growth model and the population of Varroa mites 
was added by [21] to study their dynamics. [23] used a difference equation to model the population 
of Varroa mites reproducing in a honeybee colony. [25] developed a population model of Varroa 
that incorporates mortality due to the virus and later modeled the impacts of a constant population 
of Varroa mites on the brood and adult worker bees, and the result shows that the infestations by a 
large volume of mites can make hives vulnerable to extinction due to viral epidemics [24]. Some 
mathematical models of an infectious disease have been developed and analyzed such as in [29-40] 
and fractional order model of infectious disease were studied by [26, 27, 28] but not in honeybee. 
However, this study developed a mathematical model of dynamical transmission of varroa-mite in 
honeybee’s colony with bio-control agent population together with fractional order derivative 
version which was analyzed via Laplace Adomian Decomposition Method to the best of my 
knowledge this approach has never been exploited especially in the ecology field by any 
researchers.  

1.1  Essentials of fractional calculus 

Definition1. The fractional derivative of order  for every  and ][=n the Rieman-Liouville 
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Definition 2. The Caputo fractional derivative in the origin is defined as 
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for a function m(t), m(t) = 0, if  t >0 where [ ] = n and c is constant, then 00 =cDt

c  . 

2 MODEL FORMULATION 

The model consists of different compartments which is divided into the following compartments: 

susceptible brood sB , brood infested with varroa-mite mB , brood infested with varroa-mite 

carrying virus iB , susceptible hive bees sH , hive bees infested with virus-free varroa-mite mH , hive 

bees infested with virus-free varroa-mite carrying virus iH , susceptible forager bees sF , forager 

bees infested with virus-free varroa-mite mF , forager bees infested with varroa mite-mite carrying 

virus iF , virus-free varroa-mite population 
fV , varroa-mite carrying virus population vV  and bio-

control agent population BA respectively. The parameters used in the model are properly defined in 

Table1. 

Table1. 

Parameter Descriptions 

1 , 2  Transmission rate of infestation 

1 , 2  Disinfestation rate for honeybee 

  Infection induced death rate of honeybee 

d  Natural death rate of honeybee 

  Eclosion rate of brood to hive bee 

A  Recruitment rate of healthy bee 
  Treatment using thymol powder 
  Natural death rate for bio-control agent population 

v  Natural death rate for varroa-mite population 

1C  Conversation coefficient of virus free varroa-mite to bio-agent 

2C  Conversation coefficient of virus carrying varroa-mite to bio-agent 

1  Rate at which virus free varroa-mite acquires virus 

2  
Rate at which virus carrying varroa-mite loss it to healthy bee 

3  
Constant recruitment rate of varroa-mite carrying virus into the colony 

Q  
Environmental carrying capacity for varroa-mite 

K  
Environmental carrying capacity or bio-control agent 

  Intrinsic growth rate of varroa-mite 
  Intrinsic growth rate of bio-control agent 

1  
Reversion rate of hive bee to forager bee 
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2  
Reversion rate of forager bee to hive bee 

 

Putting all these assumptions together we obtained the model (1) 
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But ims NNNN ++= , where ssss FNBN ++= , mmmm FNBN ++= , iiii FNBN ++= , 

vfv VVN += , 
vvf VNV −= . 

With initial condition: 0sB , 0mB , 0iB , 0sH , 0mH , 0iH , 0sF , 0mF , 0iF , 

0fV , 0vV , 0BA  
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3 MODEL ANALYSIS 

3.1 Disease Free Equilibrium 

The system is qualitatively analyzed for disease free equilibrium which is obtained by setting all the 

derivatives to zero 
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3.2 Global Stability of Endemic  

Theorem 1. The endemic equilibrium 

1E of the model (1) is globally asymptotically stable if and 

only if 1R . 
 
Proof: We employ Lyapunov functions to demonstrate the endemic equilibrium’s global 
asymptotically stable and unstable if 1R . Lyapunov function was considered as follows; 
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Finding the derivatives of F to obtain the following 
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From (2) to obtain the following; 

 

   

 

 

 

 

 

 









−++








−













−+









+−+

++
−

++
−













−+












+−













−














−+

+++−+++












−+

++−+−+












−+

+++−++++












−+

+++−++++












−+

++−++−+












−+

−−+++++++++−












−+

++++−+












−++++−−













−+

+−+−++++












−=

BBvf

B

B

B

B

vvB

ims

s

v

ims

i

vv

v

v

fvB

f

f

f

f

iivmivs

i

i

mivmmfs

m

m

iiivmivs

s

s

iiivmivs

i

i

mmivmmfs

m

m

ssssssimsivmfs

s

s

ivms

i

i

mvmfs

m

m

svfsim

s

S

AAVCVC
K

A
A

A

A

VAC
NNN

N
V

NNN

N
VN

V

V

VAC
NQ

V
V

V

V

FdHVFHVF
F

F

FdHVFHVF
F

F

HdBBVHBVH
F

F

HdBBVHBVH
H

H

HdBBVHBVH
H

H

dHHFHRFHRHHBBVBVH
H

H

BdVBB
B

B
BdVBVB

B

B

BdVVBBBA
B

B

dt

dF























)(11

)()(1

)(
)(

11

)()()(1

)()()(1

)()()(1

)()()(1

)()()(1

),(),()()()(1

)()(1)(1

)()()()(1

21*

2321*

1*

221*

121*

221*

221*

121*

211*

221*121*

121*

 

 

 

 

 

 

 



Applied Mathematics and Computational Intelligence 
Volume 13, No. 2, 2024 [43-66] 

 

49 

The following parameters were obtained at endemic point of the model (1) 
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then 0=
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. Therefore by Lasalle’s invariant principle every solution of system (1) together with 
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initial condition in ( ) 12,,,,,,,,,,, += Bvfimsimsims AVVFFFHHHBBB  it means that 
**  is 

globally asymptotically stable. 

Caputo’s fractional derivatives order of (1) is writing below 
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Taking Laplace transformation of (4), we obtained the following; 
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From the above equation upon the simplification, we obtained the following; 
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4 NUMERICAL SIMULATION RESULTS AND DISCUSSION 

The following initial conditions together with parameters are used for computation of Laplace 

Adomian Decomposition Method and the results are displayed below. 

800)0( =sB , 750)0( =mB , 600)0( =iB , 500)0( =sH , 400)0( =mH , 300)0( =iH , 200)0( =sF , 

150)0( =mF , 100)0( =iF , 90)0( =fV , 70)0( =vV , 50)0( =BA  

1984.01 = , 05.02 = , 6.01 = , 4.02 = ,  2.0=d , 3.0= , 6.0= , 01656.0= , 2500= , 

5.0=Q , 1593.01 = , 04959.02 = , 3003 = , 600=K , 9.0= , 60000=A , 001.0= , 

56.0=R , 5.11 =C , 5.12 =C , 002.0=v , 005.0=  
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Consider numerical simulations of the suggested approach utilizing the fractal fractional technique 

for fractional order in this section. For a spread of varroa-mites in honeybee model was used. 

The various numerical methods identify the mechanical features of the fractional-order model with 

the time-fractional parameters. The results of the nonlinear system memory were also detected 

with the help of fractional values. Figure.1 to Figure 5 represents the simulations obtained by 

fractal fractional method and easily observed that all the compartments start decreasing by 

increasing the fractional values which converge to steady state. Also, susceptible brood, brood 

infested by virus free varroa-mite and brood infested by varroa-mite carrying virus were 

successfully compared in Fig.6 and it was discovered that susceptible brood keep increasing while 

brood infested by virus-free varroa-mite and brood infested by varroa-mite carrying virus 

decreasing as time increasing. Similarly, susceptible hive bees, hive bees infested by virus free 

varroa-mite and hive bees infested by varroa-mite carrying virus were successfully compared in 

Figure 7 and it was noted that hive bees infested by varroa mite carrying virus increased to a peak 

before it starts declining gradually as time increasing. Susceptible forager bees, forager bees 
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infested by virus free varroa mite and forager bees infested by varroa mite carrying virus were 

successfully compared in Figure 8 and it was observed that forager bees infested by varroa-mite 

carrying virus increased to a peak before it starts declining gradually as time increasing.  

Finally, virus free varroa mite, varroa mite carrying virus and bio-control agent were successfully 

compared in Figure 9 and bio-control agent was increasing indefinitely as time increasing. 

  

 (a)      (b) 

 

      (c) 

Figure 1: Behavior of numerical trajectory of brood population ( )B t  at different values of fractional order   
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(a)       (b) 

 

(c) 

Figure 2: Behavior of numerical trajectory of Hive )(tH  at different values of fractional order   
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(a)       (b) 

 

 

      (c)  

Figure 3: Behavior of numerical trajectory of forager population )(tF  at different values of fractional order   
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(a)        (b) 

Figure 4: Behavior of numerical trajectory of varroa-mite )(tV f
 population at different values of fractional 

order   

 

 

 

Figure 5: Behavior of numerical trajectory of )(tAb  at different values of fractional order   
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Figure 6: Comparison of behavior among brood population at different values of time 

 

 

 

 

Figure 7: Comparison of behavior among hive population at different values of time 
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Figure 8: Comparison of behavior among forager population at different values of time 

 

 

 

Figure 9: Comparison of behavior between varroa-mite population and bio-control agent at different values of 
time 

Theorem 2. Let X be a Banach space and 𝑃 ∶ X→ X be a contractive nonlinear operator such 

that for all x,  x1 ∈ X , ‖‖𝑇 (X ) - 𝑇 (X1) ‖‖≤ 𝑘‖‖ x -x1‖‖ , 0 < 𝑘 < 1. Then 𝑇 has a unique point x 

such that 𝑇 x = x, where RJTDUEVVSx ,,,,,,,, 21= . 

The series given in (10) can be written by applying Adomian decomposition method as: 
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x𝑚 =𝑇 x𝑚-1, x𝑚-1 = ∑x𝑖 𝑚 = 1, 2, 3, … .,  and assume that x0 ∈ 𝐵𝑟(x) where 𝐵𝑟(x) = {x1 ∈ X ∶ 

(𝑖) x𝑚 ∈ 𝐵𝑟(x)}; (𝑖𝑖) lim𝑛→∞ x𝑚 = x 

Proof.   

For (𝑖), using mathematical induction for 𝑚 = 1, we have 

‖‖x0 - x‖‖ = ‖‖𝑇(x0) - 𝑇(x)‖‖ ≤ 𝑘‖‖x0 - x‖‖. 

Let the result is true for 𝑛 = 1, then ‖‖x0 - x‖‖ ≤ 𝑘𝑛-1 ‖‖x0 - x‖‖. 

We have ‖‖x𝑛 - x‖‖ = ‖‖𝑇 (x𝑛-1) - 𝑇 (x)‖‖ ≤ 𝑘 ‖‖x𝑛-1 - x‖‖ ≤ 𝑘𝑛 ‖‖x𝑛 - x‖‖  

i.e. ‖‖x𝑛 - x‖‖ ≤ 𝑘𝑛 ‖‖x0 - x‖‖ ≤ 𝑘𝑛𝑟 <   which implies that x𝑚 ∈ 𝐵.  

(ii) Since ‖‖x𝑛 - x‖‖ ≤ 𝑘𝑛 ‖‖x0 - x‖‖ and as lim𝑛→∞ 𝑘𝑛 = 0, therefore,  

we have  lim 𝑛→∞‖‖x𝑛 - x‖‖ = 0 ⇒lim𝑛→∞ x𝑚 = x 

5 CONCLUSION 

We have comprehensively analyzed the honeybee’s transmission dynamics under fractional order 

derivative via Laplace Adomian Decomposition Method (LADM) in the form of infinite series that 

converge quickly to its exact value. The results obtained with different values of  are compared, 

and it is determined that the results obtained with   equal to one are stronger. The qualitative 

aspect of the spread of varroa-mite by analyzing the disease-free equilibrium and global stability of 

endemic of our proposed model are investigated. Numerical trajectories are obtained for twelve 

compartments in the fractional order model. Based on the trajectories, we hypothesized that the 

memory index or fractional order could be used to control the honeybees infested by varroa-mite 

carrying virus transmission dynamics. Based on this, we think that the research presented in this 

study will help the honey’s bee practitioners. Future versions of the model could be created by 

combining appropriate time-dependent control actions and cost effectiveness analysis will be 

carried out. 
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