Applied Mathematics and Computational Intelligence
Volume 13, No. 2, 2024 [43-66] | 3 %I;‘I\IIYAEYRSSIHI

U..MAP PERLIS

A Mathematical Model for The Spread of Varroa-Mites in Honeybee
Colony with Fractional Order

Musibau A. Omoloye!?, Sunday O. Adewale?, Saheed Ajao3, Muritala A. Afolabi*, Akeem O. Sanusi5

1Department of Mathematical Sciences, Nigerian Defence Academy Kaduna, Nigeria
ZDepartment of Pure and Applied Mathematics, LAUTECH Ogbomoso, Oyo State, Nigeria
3Department of Mathematics and Computer Science, Elizade University Ilara-Mokin, Ondo State, Nigeria
“Department of Science and Social Sciences, Osun State Polytechnic Iree, Nigeria
5Department of Mathematics, Federal Polytechnic Offa, Kwara State, Nigeria

Corresponding Author: omoloye2011@gmail.com; am.omoloye@nda.edu.ng

Received: 23 November 2023
Revised: 31 January 2024
Accepted: 14 March 2024

ABSTRACT

Honeybees live in colonies with one queen running the whole hive. Worker honeybees are all
females and are the only bees most people ever see flying around outside of the hive. They
forage for food, build the honeycombs, and protect the hive. This study developed and analyzed
the honeybee’s transmission dynamics under fractional order derivative via Laplace Adomian
Decomposition Method, spread of varroa-mite by analyzing the disease-free equilibrium and
global stability of endemic of our formulated model were investigated. Based on the
trajectories, it was concluded that the memory index or fractional order could use to control
the honeybees infested by varroa-mite carrying virus transmission dynamics.

Keywords: Honeybees, model formulation, disease free equilibrium, Laplace Adomian
Decomposition Method

1 INTRODUCTION

Honeybees are the food crops' commonest pollinators in the world and one-third of the food we eat
daily dwells on the pollination by bees [1]. Many important crops in the world are being pollinated
by honeybees and depend on them for their reproduction [3]. Honeybees pollinate 70% of 1330
cultivated species of crops in tropical crops and 84% of the 264 cultivated species of crops are
pollinated by animals. It has been established that the yields of many crops will decline by over
90% without the aid of these pollinators [5]. Bees are of great importance not only for humans but
also for all plant species that they pollinate and therefore the economic importance of bees cannot
be overemphasized due to their contribution to pollinating many food crops. Honey is a sweet
natural substance produced by Honeybees, produced from the nectar of flowers by changing it with
the enzymes that are present in the saliva of the worker bees [4]. Despite the enormous importance
of bees, a great concern has been raised in the last 20 years due to the reduction in the number of
honeybees, which affects the quality of life of all human populations that depend on their product
[6, 7]. Also, there is a great concern that with a 50% growth increase in honeybee stocks, the supply
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fails to keep up with an over 300% increase in agricultural demands [2]. Globally, the number of the
colony of honeybee losses has continued to increase rapidly since 2006 [8-10]. Some of the factors
that lead to losses include weather conditions, poor diet, and transportation of bees for agricultural
practices, pesticides and parasites [11]. One of the major causes of the decline is the parasitic mite
called Varroa destructor and the viruses it carries [12, 13]. Varroa-mites feed on brood and adult
bees and carry and spread viruses from one bee to another [14, 15].

Mathematics has helped to develop models to study the population dynamics of bee colonies. [11]
worked on mathematical models of honeybees and the models are divided into three namely:
colony, Varroa and foraging models. In the work of [16], the colony of the bees is divided into hive
and forager bees. The model was to check the effect of the loss of forager bees on the adaptive early
recruitment of hive bees to foraging, and how it affects the overall strength of the colony and
survival. [17] studied the mathematical model of the honeybee Varroa destructor acute bee
paralysis virus system with seasonal effects, where all the parameters are time-periodic to cater for
seasonal influence. Their result reveals that the mites have to be controlled, to control the
epidemic of the virus. [18] developed a model that shows how the internal demographic processes
within a colony interact with the availability of food and brood rearing to change the growth in
forager population size.[4] studied the populations of adult and immature honeybees and their
honey production using mathematical and statistical modeling approaches. The mathematical
approach consists of two models namely: a smooth model and a non-smooth model. In the smooth
model, the conditions for the existence and stability of the equilibrium solutions are investigated
and in the non-smooth model; the mortality rate of bees is incorporated as a function of the number
of adult bees in the population. [20] studied a model to investigate the impact of external stress on
social inhibition, forager recruitment rate and the laying rate of the queen.

[22] presented a time-based honeybee colony growth model and the population of Varroa mites
was added by [21] to study their dynamics. [23] used a difference equation to model the population
of Varroa mites reproducing in a honeybee colony. [25] developed a population model of Varroa
that incorporates mortality due to the virus and later modeled the impacts of a constant population
of Varroa mites on the brood and adult worker bees, and the result shows that the infestations by a
large volume of mites can make hives vulnerable to extinction due to viral epidemics [24]. Some
mathematical models of an infectious disease have been developed and analyzed such as in [29-40]
and fractional order model of infectious disease were studied by [26, 27, 28] but not in honeybee.
However, this study developed a mathematical model of dynamical transmission of varroa-mite in
honeybee’s colony with bio-control agent population together with fractional order derivative
version which was analyzed via Laplace Adomian Decomposition Method to the best of my
knowledge this approach has never been exploited especially in the ecology field by any
researchers.

1.1 Essentials of fractional calculus

Definition1. The fractional derivative of order « for every « and n=[«]the Rieman-Liouville
derivative of order « is defined as

a _ 1 i " _ n-a-1
D, m(t)_—r(n_a)(dxj j (t—u)™**m(u)du
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Definition 2. The Caputo fractional derivative in the origin is defined as

DEm(t) = ﬁ [ty mu)du

for a function m(t), m(t) = 0, if ¢ >0 where [ ] = n and c is constant, then ;D/’c =0.

2 MODEL FORMULATION

The model consists of different compartments which is divided into the following compartments:
susceptible brood BS , brood infested with varroa-miteB_, brood infested with varroa-mite

carrying virus B, , susceptible hive bees H s » hive bees infested with virus-free varroa-mite H_, hive
bees infested with virus-free varroa-mite carrying virus H;, susceptible forager beesF,, forager
bees infested with virus-free varroa-mite F_, forager bees infested with varroa mite-mite carrying
virus F;, virus-free varroa-mite population V., varroa-mite carrying virus populationV, and bio-

control agent population Ag respectively. The parameters used in the model are properly defined in
Tablel.

Tablel.

Parameter Descriptions

B, B, Transmission rate of infestation
a,, a, Disinfestation rate for honeybee

o Infection induced death rate of honeybee
d Natural death rate of honeybee

@ Eclosion rate of brood to hive bee

A Recruitment rate of healthy bee

V4
Y7,

Treatment using thymol powder
Natural death rate for bio-control agent population

U, Natural death rate for varroa-mite population

C, Conversation coefficient of virus free varroa-mite to bio-agent

C, Conversation coefficient of virus carrying varroa-mite to bio-agent
n, Rate at which virus free varroa-mite acquires virus

n, Rate at which virus carrying varroa-mite loss it to healthy bee

1M, Constant recruitment rate of varroa-mite carrying virus into the colony
Q Environmental carrying capacity for varroa-mite

K Environmental carrying capacity or bio-control agent

/4 Intrinsic growth rate of varroa-mite

T Intrinsic growth rate of bio-control agent

o, Reversion rate of hive bee to forager bee
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o, Reversion rate of forager bee to hive bee

Putting all these assumptions together we obtained the model (1)

O k(o m)B, + (@B, — BV, +V,) -+ B,
dB
=pBV, -4,B.V, —(a+7r+¢+d)B,
dB
o =(p,B, + B,B, )V, — (a,+7+¢+d +5)B,
ddHts=—,31HS(\/f+Bm+VV+Bi)+¢Bs+(a1+7z)Hm+(a2+7r)Hi+R(HS, F.)-R(H,,F)H, —dH,
dH
=pH WV, +B,)-B,H, (V, +B)+#B, —(a+7r+d)H
dH
—_ﬂlH Vv, +B)+p,H, (V,+B)+#B —(a,+7r+d +)H,
ddFts =R(H,,F))H, -R(H,,F,))-BFV; +H_ +V, +H,)+(a+7)F, +(a,+7)F —dF
dF,
dt _ﬂlF (Vf+H )— ﬂsz(V +H) (0{1+7Z'+d)|:
ddli =pF.(V, +H,)+p,F.(V, +H,)—(a,+7 +d + 5)F,
id 7)\/( j (C.A; Vi
= + 4,
"7 QN)
dv N. N
Y=p(N -V)———"——— —pV —5 —(C,A \/
at n. (N, V)N5+Nm+Ni 7, vNS+Nm+Ni+773 (C,A; +1,)V,

dditB = A, (1-%} (CV, +C,V,)A, — 1A,

ButN =N, +N_, +N,, whereN, =B, + N, +F,N,_ =B, ,+N_+F ,N, =B, +N,+F,
N, =V, +V,,V; =N, -V,.

With initial condition: B, >0,B,_ >0,B,>0,H, >0, H_ >0, H,>0,F, >0, F, >0,F, >0,
V, 20V, >0,A, >0
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3 MODEL ANALYSIS
3.1 Disease Free Equilibrium

The system is qualitatively analyzed for disease free equilibrium which is obtained by setting all the
derivatives to zero

dB, dF, dF de_dVv_dAB_o
dt dt dt dt dt dt dt dt dt dt dt dt

E A Agp+R(H,,F)(¢+d) 00, R[A¢+(p+d)+(p+d)R+d)
©\g+d T (R(H,, F) +d)(g+d) (p+d)*(R+d)?

dB, dB, dH, dH, dH, dF,

,0,0,0,0,0]

3.2 Global Stability of Endemic

Theorem 1. The endemic equilibrium E,” of the model (1) is globally asymptotically stable if and
onlyifR >1.

Proof: We employ Lyapunov functions to demonstrate the endemic equilibrium’s global
asymptotically stable and unstable if R < 1. Lyapunov function was considered as follows;

F(B,,B,.B,H, H, HFFFVVA)(B B|nBj(B_B|nS*J+(i—7 si]

e

mrm @i e (-and)

Finding the derivatives of F to obtain the following

dt B! Ty B, ) dt HS dt H | dt H ) dt
dav,
+1- Fi dFs +(1 F”l dF, + l— d—F+ 1- 1—VV* dv, +1- AE 9A
F, ) dt F, ) dt dt dt vV, ) dt A; ) dt

dB, dB, dB dH, dH, dH, dF, dF, dF dVi dv, dA

Rl ) ) ) 1] ) ] ) ) ] .
eplacing=u ™4t dt  dt  dt Cdt’ dt ' dt’ dt’ dt’ dt

m i

e

)
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From (2) to obtain the following;

dd—l::(l— Ei j[A+((,¥l+7Z')Bm +((,Z2+7Z')Bi _ﬁlBs(Vf +Vv)_(¢+d)Bs]

S

+ 1_B_T [ﬁlBsz _ﬂzBva —(0{1+7z'+¢+d)Bm]+[l— j[(ﬂlBs +ﬁzBm)Vv _(a2+”+¢+d +5)Bi]

Bi
B B’

+11-—= [ BH, (v, +B, +V, + B)+ B, + (a,+7)H, + (a,+7)H, +R(H,,F,) = R(H,,F,)H, —dH_]

#|1- 20 B H,(V, +B,) - BH, (V, +B) + B, — (aytn+d)H, ]

+|1- L [ﬁle(\/v+Bi)+ﬂ2Hm(\/v+Bi)+¢Bi—(0!2+7Z'+d+5)Hi]

+|1- S* [ﬂle(Vv+Bi)+ﬁ2Hm(Vv+Bi)+¢Bi_(a2+”+d+5)Hi]

#|1- T [BF,(V, +H,) = BFa (v, + H,) - (@t + d)F, |

+|1- F‘* [B.F.(V, + H))+ B,F,(V, + H,) - (@ +7 +d + S)F, |

Vf Vf
+1- _7Vf 1_Q(N) —(C1Ag + 1,V
v Ni Ns
+1- * nl(Nv _VV)N _772Vv

S R N (CA tu
v, ) IN_ TN, N.+N_+N, 7 (Caha + )V,

i A
A, [1—?5} +(CV, +CV,)A, - ,uAB}
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The following parameters were obtained at endemic point of the model (1)

p+d= A+ (a+7)B, +(a,+7)B - BB (V +V,)
B* )

S

BBN( - B,BV,

a+r+¢+d= 5

)

m

(BB + B,B, )V,
B’ '

BHIV( +B,) - BH, (V) +B)+ 4B,
H*

m

aAr+¢+d+0 =

atr+d=

)

ﬂlH:(Vv* + B:)+ﬂ2H;(Vv* + Br)+¢B|*

a,+r+d+0 =

H,
BF (Vi +H ) - B,F (V) +H))
a+r+d= - ,
Fm
a'2+7r+d +5ZIB1FS (Vv +Hi)+*ﬁ2|:m(vv +Hi)
F
then
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B A+ (a+7)B +(a,+7)B - BB (V, +V,
a9 _ 1- = | A+ (a+7)B, + (a,+7)B, = BB, (V, +V,) - (@xim)B, + (o *) A8 Vs ) B,
dt B. B
B, | BV, - B,BLV,
+1- BT ﬁlBsz _IB2Bva _[ﬁl f *ﬂz JBm]

+|1- :L (ﬂlBs +IBZBm)Vv _[

(58 + BB ),
L

#|1-—= [- BH, (v, + B, +V, +B,)+ B, + (a+m)H, + (e, +7)H, +R(H,,F,)~R(H,,F,)H, —dH,]

T ﬂle(Vf +Bm)_IBZHm(Vv +Bi)+¢Bm _[

H

ﬁlH:NHB;)—ﬂZH;(v:+B§>+¢B;]H ]

m

BHIV, +B))+ BHA(V, + B?)+¢B?]H.]

+|1- l* ﬂle(\/v+Bi)+ﬂ2Hm(\/v+Bi)+¢Bi_[ H

+1-= [ﬁle(Vv+Bi)+ﬂ2Hm(Vv+Bi)+¢Bi_(a2+ﬂ+d+5)Hi]

L1 Fe ﬂlFs(Vf+Hm)ﬁszNV+Hi)[ﬂlFSNme)F*ﬂZFmM+HJJFJ

m

+|1- FF ARV, +H)+BF(, + Hi)_[/’lF:(\’f i Hi*);*ﬂzF”w“* . H‘*)]Fi]

N. N
+{1-— N,-V)———— -V, ———— 45, —(C,A, + u,V
* 771( v V)N5+Nm+Ni 772 v N5+Nm+Ni 773 ( 2"'B :uv) v:|

+H1-— rAB(l—%jHClVf +C2VV)AB—yAB}

Without loss of generality, it was assumed that
B,.=B,,B, =B ,B. =B ,H =H,,H =H H =H ,F,.=F ,F =F ,F =F"\V, =V, \V, =V A, = A,

s!=m m?! =i

dF
then— = 0. Therefore by Lasalle’s invariant principle every solution of system (1) together with
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1M s m !

initial condition in Q) = {(BS ,B,.B,H, H, . H F,F. . F.V.V, AB)E ‘le}it means that Q" is
globally asymptotically stable.

Caputo’s fractional derivatives order of (1) is writing below

‘DB, (t) = A+(a+7)B,, +(a,+7)B, - f,B,(V, +V,)—(4+d)B,

‘DB, (t)=p,BV, -B,B,V, —(a,+7+¢+d)B,

‘DB, (t) = (B, + B,B, )V, (@ 47 +¢+0d +5)B,

‘DiH(t)=-BH.(V, +B, +V, +B,)+ @B, +(a,+7)H , + (@ +7)H, +R(H,,F,)-R(H,, F,)H, —-dH,
‘DH, (t)=pH,\V, +B,)-B,H, (V,+B)+dB, —(a+7r+d)H
‘DiH,(t)=pH.(V,+B)+4,H,(V, +B,)+¢B, —(a,+7+d +)H,
“DiF,(t)=R(H,,F)H,-R(H,,F,)-B,F.(V, +H_ +V, +H.)+(a+7)F, +(a,+7)F, —dF,
DR, = AFV, +H,) - fF , +H) - (atr +d)F, @
“DIF.(t)=B,F,(V, +H,)+B,F, (V, +H,)—(a,+7 +d + 5)F,
Vf

QM)

N. N
DV, (t)=n,(N, -V ' -V : +n, —(C A, +u, )V
t v() 771( v v)N +N +N- 772 st-l'Nm-l-Ni 773 (2 B :uv) v

CDtan(t):W{l_ j_(clAB"',uv)Vf

A
- D Ag(t) = A, [1_%}" (CV; +CV, ) Ay — 1A,
Let

B, =n,B, =n,,B =ng,H =n,,H, =ng, H; =ng, F =n;, F =ng, F =ng Vy =n,,V, =ny, Ag =ny,

1" =m

Taking Laplace transformation of (4), we obtained the following;
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SL{B, (t)}—B, (0) = L{A+ (ar+7)B,, +(a,+7)B, - BB, (V; +V,)—(¢+d)B, |
sL{B, ()}~ B, (0) = L{8B.V, - B,B,V, —(a+z+¢+d)B, |
sL{B, (t)}-B,(0) = L{(ﬂlBs+ﬂzBm)V (a AT +4+d+5)B, }

sL{H.(®)}- H (0= L{ PH.(V, +B, +V, +B,)+¢B, +(a+7)H  +(a,+7)H, +R(H,,F.)-R(H,,F,)H, —dH

SLIH, (1)} —H, (0)=L{BH,(V, +B,)- B,H, (v, +B))+ B, —(atr+d)H,, |

SLiH, ©) - H, )} = L{BH, (v, +B))+ B,H, (V, +B)+ B, — (a,+7 +d +5)H |

SLIF, (1)}—F, (0) = L{R(H,,F,)H, —R(H,, F,) - B,F.(V, +H, +V, +H,)+ (@, +7)F, +(a ,+7)F, —dF. }
SLIF, (0)}-F, (0) = L{B,F.(V; +H,) = B,F, (V, + H;) —(a;+7 +d)F, }

sL{Fi(t)} F.(0)=L{B,F.(V, +H,)+B,F, (V, +H,)—(a,+7+d + 5)F}

V,
SL{V } {Wf(l_ (N)] (ClAB+:uv)Vf}

SL{\/V (t)}_vv (O) = L{nl(Nv _Vv) Ni _772Vv NS +1; _(CZAB +,UV)V}

N.+N_+N. N.+N_+N

s m i S m i v

SL{AB (t)}_ AB (O) = L{TAB [l_T(Bj + (C1Vf + szv )AB - ILIAB}

From the above equation upon the simplification, we obtained the following;
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B, (t) = B(O)+L{1 L[A+ (et 7)B, + (a,+7)B, - BB,V +V,) - (¢+d)B]}

B, (t) =B (0)+|_{ L[aBY, - 5,8, (a1+7z+¢+d)Bm]}

B/(t) = B(O)+L{ L[(5B, + ,B,)V, - (0!2+7T+¢+d+5)8i]}
Hs(t):HS(O)+Ll{aL[—ﬂle(\/f+Bm+VV+Bi)+¢BS+(al+7r)Hm+(a2+7r)Hi+R(Hs, F)-R(H,, F.)H, —dH ]}
H,(t)=H (O)+L1{ L[BH.(V, +B,) - BH,(V, +B) + 4B, - (al+7z+d)Hm]}
Hi(t)=Hi(0)+L‘1{SaL[,BlHS(VV+Bi)+,Bsz(VV+Bi)+¢Bi—(a2+7z+d +5)Hi]}

F.(t)=F(0)+ L‘l{; LR(H,, F)H, —R(H,, F.) = BF.(V, + H, +V, + H)) + (et 7)F, + (a4 7)F —dFS]}

Fa(t) = F,(0)+ Ll{sla LIAF.V, + H,) — BV, + Hi)_(a1+”+d)|:m]}
Fi(t):Fi(O)+L1{SlaL[,BlFS(VVJrHi)+,BZFm(\/V+Hi)—(a2+7r+d +5)Fi]}

Vi (t) = V(0)+|_{ {wf( Q\(/N)] (CA + 1)V, }}

N.

N
' -1V, s +1,—(C,A; + 11,V
N.+N, +N. vy NN +N 1, —(CoAg + 14,) }}

S m 1

V. () =V,(0)+ Ll{sla L|:771(Nv -V)

AO=A0)+ L{: L (12 e, A —uAB}}

4 NUMERICAL SIMULATION RESULTS AND DISCUSSION

The following initial conditions together with parameters are used for computation of Laplace
Adomian Decomposition Method and the results are displayed below.

B, (0) =800, B, (0) =750, B,(0) =600, H,(0) =500, H, (0) =400, H.(0) =300, F,(0) = 200,
F.(0)=150, F,(0) =100, V, (0) =90, V, (0) = 70, A, (0) =50

p,=0.1984, g, =0.05, o, =0.6, ¢, =04, d=0.2, 6=0.3, 7=0.6, y =0.01656 , x = 2500,
Q=05, 7, =0.1593, n, =0.04959, 7, =300, K=600, ==0.9, A=60000, y =0.001,
R=056, C, =15,C, =15, 4, =0.002, x=0.005

Bs (t) =n + le + Bsz
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641 p3
50841 2800 — 1.1066453051 0°t s 16451.24000t
36349.0000t L1 [(p, +1) T'(p, +1)
[(p, +1) C(p, +1) N 1391.973408t°*° . 7.3819434361 0°t~**
r(1010 +1) r(1010 +1)

tt

B, =800 +

B,=n,+B,,+B,,,

6.49047744010°t”" _ 7.3819434361 0°t™""
T(p,+1) F(pyu +1)
B 750 ,10384.0500t”* = 1 6.75327888010°t"* | 1.75399875010°t™ || .,
[(p+1)  T(p, +1) T(py +1) F(pp +1)
17663.26905t
I'(p, +1)
B, =n, +B, + B,
([5.0481491201 0°t” 7.38104343610°t"" .. 22791.20480t" +th3
8 _gog . 12654.8000t7° [(p, +1) [py +1) [(p; +1) ‘o
I I(p; +1) I'(p; +1)

)

H,=n,+H,+H,,,

19948885671 0%t~ ~ 4.7067330881 0%t~ N
[(p, +1) [(py, +1)
H, =500 + 6.7750075001 0°t~° N 1 1.28066576010"t”* N 2.74432251210"t"° L0750 — | ft7®
[(ps +1) I'(ps +1) [(p; +1) I(ps +1)
1.2195013501 0°t*°
[(ps +1)

H,=n+H_ ,+H_,,
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_ 2.50105432310°t”*  6.9598670401 0°t~*°
C(p, +1) [(py +1)
H 400 + 81920075001 0°t”® 1 , 1.0300987981 0't”* 3.170306902107t"° e
" I'(ps +1) I'(ps +1) I(p, +1) I'(ps +1)
_ 2.53096000010°t”
[(py +1)
H,=n,+H;,;+H,,,
~1.99488856710°t”*  4.70673308810°t""*
[(p, +1) [(py, +1)
H =300+ 6.7750075001 0°t~° L1 1.28066576010"t”°  2.74432251210"t"° +0.750 —
I I'(ps +1) I'(ps +1) [(p; +1) I'(ps +1)
1.2195013501 0°t~° .
I'(ps +1)

Fo=n+F,+F,,

_ 2.27640850710°t”" _ 2.19430501110°t™ |
[(p; +1) ['(p, +1)
F _ o004 725860007 1 3.196448538107t”° 3.03644200010°t"° o
S T(py+1)  T(p, +1) (s +1) T(ps +1)
_ 34513.20000t”°
I'(pg +1)
F,=ng+F,+F.,,
_3.01470315810°t”" _ 2.78304681610°t""" |
C(p; +1) C(py, +1)
F, =150 + 16413.2000t*° 1 3.25058857610"t”°  3.31546640010°t"° ) "

+
['(pg +1) I'(pg +1)

34881.9151810°t"* _5.0812556251 0°t~° N

[(ps +1) [(pg +1)

F=n+F +F,,

(o, +1) (s +1)

55

t7°



Omoloye et al / A Mathematical Model for The Spread of Varroa-Mites in Honeybee Colony with
Fractional Order

| 2.27640850710°t”7  2.19430501110°t*"
[(p; +1) I'(p +1)
_p . 17256.6000t” = 1 3.196448538107t”° | 3.03644200010°t” || .
C 0 T(pe+D)  T(pe+D) T(ps +1) I'(ps +1)
34513.20000t*°
['(py +1)
Vi =Ny +Viy +Vy,,
[_ 101.7319275t"° _1.62439813310°(t™)* S}pm
pLO I'(p,, +1 I'(p,, +1)? '
v, —gp_ 7015:095000t” (P +1) (Pyo +1) .
['(py +1) I'(py+1)

Vv =Ny +Vvl +sz

64 p12 54 pll
(299.2179759 | 1.26311653110°t”2  2.32555403010°t }pn

+
4950.922024t " T'(p, +1) T(p,, +1)

V, =70 + 4o

[(py, +1) I(py,+1)

A =N, + A+ A,

(3.2551715971 0°t”?  1.44713231010°(t"*)* 1.05239925010°t"* Jt 2
A =50- 12027.25000t" T(py, +1) [(py, +1)° T(py, +1)
r(/012 +1) l—‘(/o12 +1)

Consider numerical simulations of the suggested approach utilizing the fractal fractional technique
for fractional order in this section. For a spread of varroa-mites in honeybee model was used.
The various numerical methods identify the mechanical features of the fractional-order model with
the time-fractional parameters. The results of the nonlinear system memory were also detected
with the help of fractional values. Figure.1 to Figure 5 represents the simulations obtained by
fractal fractional method and easily observed that all the compartments start decreasing by
increasing the fractional values which converge to steady state. Also, susceptible brood, brood
infested by virus free varroa-mite and brood infested by varroa-mite carrying virus were
successfully compared in Fig.6 and it was discovered that susceptible brood keep increasing while
brood infested by virus-free varroa-mite and brood infested by varroa-mite carrying virus
decreasing as time increasing. Similarly, susceptible hive bees, hive bees infested by virus free
varroa-mite and hive bees infested by varroa-mite carrying virus were successfully compared in
Figure 7 and it was noted that hive bees infested by varroa mite carrying virus increased to a peak
before it starts declining gradually as time increasing. Susceptible forager bees, forager bees
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infested by virus free varroa mite and forager bees infested by varroa mite carrying virus were
successfully compared in Figure 8 and it was observed that forager bees infested by varroa-mite
carrying virus increased to a peak before it starts declining gradually as time increasing.

Finally, virus free varroa mite, varroa mite carrying virus and bio-control agent were successfully
compared in Figure 9 and bio-control agent was increasing indefinitely as time increasing.
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Theorem 2. Let X be a Banach space and P : X— X be a contractive nonlinear operator such
that forall x, x1 € X, |||IT (X)-T (X1 ||lI< k|||l x -x1||||, 0 < k < 1. Then T has a unique point x
such that T x =x, wherex=S5,V,,V,, E,U,D, T, J, R.

The series given in (10) can be written by applying Adomian decomposition method as:
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Xm =T Xm-1, Xm-1=Yxim=1, 2,3, ...., and assume that xo € Br(x) where B-(x) = {x1 €X:
(i) xm € Br(x)}; (ii) limn—oo xm = x

Proof.

For (i), using mathematical induction for m = 1, we have

[lIxo0 - x|l = [[[IT (x0) - TYIII < K[ [Ix0 - x][]]-

Let the result is true for n = 1, then ||||xo - x|||| < k™1 ||||x0 - x]|]|-
We have ||[|xx- x|[[| = [IT (xn-1) - T (| < k& [HIxn-1- x| < K |[{|xn- x]|
i.e. [[lIxn- X|||| < kn|l||x0- X|||| < ke < which implies that x= € B.

(ii) Since |[||xx- x|||| € k= ||||X0- x]|||| and as limn-« k= 0, therefore,

we have lim w-w||||x2- X|||| = 0 2limM-wXn= X

5 CONCLUSION

We have comprehensively analyzed the honeybee’s transmission dynamics under fractional order
derivative via Laplace Adomian Decomposition Method (LADM) in the form of infinite series that
converge quickly to its exact value. The results obtained with different values of p are compared,

and it is determined that the results obtained with p equal to one are stronger. The qualitative

aspect of the spread of varroa-mite by analyzing the disease-free equilibrium and global stability of
endemic of our proposed model are investigated. Numerical trajectories are obtained for twelve
compartments in the fractional order model. Based on the trajectories, we hypothesized that the
memory index or fractional order could be used to control the honeybees infested by varroa-mite
carrying virus transmission dynamics. Based on this, we think that the research presented in this
study will help the honey’s bee practitioners. Future versions of the model could be created by
combining appropriate time-dependent control actions and cost effectiveness analysis will be
carried out.
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