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ABSTRACT 

Cancer is one of the leading causes of death across the globe, in both men and women accounting 
for 23% of all cancer deaths in 2019 according to the Centers for Disease Control and Prevention. 
One of the eccentric problems with lung cancer is that it usually has a poor prognosis. With such 
a deadly disease, it is crucial to predict the survival likelihood of cancer patients. However, this 
is not an easy task due to the many factors affecting the disease progression. Survival time has 
become an essential outcome of clinical trial, which began to emerge among the latter half of 
the 20th century. A present study was carried out on the survival analysis for patients with lung 
cancer. The data was obtained from Yobe State Specialist Hospital, Damaturu where each 
sample was collected from the recipients of the treatment of radical prostatectomy. The Kaplan 
Meier method was used to obtain and estimate the survival function and median. The log-rank 
test was used to test the differences in the survival curves. The cox proportional hazard (PH) 
model provided an effective covariate on the hazard function. As a result of cox PH model, the 
influence of standard clinical prognostic factors is based on the hazard rate of lung cancer 
patients. We performed rigorous cross-examination on each feature's relationship and the model 
for each feature type using data analysis information and survival analysis models. For each 
feature type, we used one representative survival analysis model from semi-parametric methods 
(Cox proportional hazards model), one from non-parametric methods (Kaplan-Meier 
estimator), and one from machine learning approaches (random survival forests). Using the 
results obtained from these different methods, we identified the best feature types and model 
combinations to get the top performance for various follow-up periods. The best model is Cox 
proportional hazards model based on the AIC and log-likelihood functions respectively. 

Keywords: AIC, Cox proportional hazards model, Damaturu, Kaplan-Meier estimator, Lung 
Cancer, Yobe. 

 

1 INTRODUCTION 

The word "cancer" refers to a collection of illnesses in which cells exhibit aberrant growth and 

division patterns. There are over a hundred distinct forms of cancer. The male reproductive system's 

lung gland is where lung cancer first appears. Its job is to produce the fluid in semen that keeps sperm 

cells safe and nourished. There are several routes that a cancer cell might spread, including through 

tissue, the lymphatic system, and the blood (National Cancer Institute), [1]. Early diagnosis and 
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screening are among the most successful intervention strategies for lung cancer [2]. After lung 

cancer, lung cancer is the second most prevalent malignant cancer that kills males, and its frequency 

rises with age. Men who have lung cancer often have long lives since the disease progresses more 

slowly than other malignancies. Thankfully, half of newly diagnosed instances of lung cancer are in 

the early stages of the disease and remains restricted to the lung. On the other hand, aggressive lung 

malignancies can be extremely deadly in a large number of instances [2]. The term "metastasis" 

refers to the ability of a lung cancer cell to travel to other areas of the body, including lymph nodes 

and bones. The three main risk factors for lung cancer are family history, age, and race/ethnicity. Age 

has been determined to be the most significant factor among them, particularly for older men and 

women over 60 years respectively. 

1.1 STATEMENT OF THE PROBLEM  

One of the main causes of death is cancer. According to the Centers for Disease Control and 

Prevention, lung cancer specifically accounts for 23% of all cancer fatalities in 2019 and is the leading 

cause of cancer death in both men and women. One particular problem with lung cancer is that it 

usually has a poor prognosis. With such a deadly disease, it is crucial to predict the survival likelihood 

of cancer patients. However, this is not an easy task due to the many factors affecting the disease 

progression. In Nigeria, researches have been conducted on lung cancer among the populaces 

especial the native for monitoring and controlling lung cancer [1]. One of the most effective 

intervention tools for lung cancer is screening and early diagnosis [2]. However, the lack of 

knowledge on the disease and the low uptake of routine screening among men, especially those at 

risk of developing lung cancer make the problem a complex one. 

 
1.2 RESEARCH QUESTIONS  

What are the survival probabilities over time for individuals with different risk factors and hazard 

rates vary over time for individuals with different risk factors and what is the impact of each risk 

factor on survival outcomes for performing Kaplan-Meier analysis and estimating survival and 

hazard functions with all risk factors? 

How accurate are the estimates of survival functions obtained using the Cox Model in the presence 

of censored data and do different methods for handling censored data affect the efficiency of survival 

function estimation and what are the advantages and limitations of using the Cox Model for survival 

analysis with censored data? 

Which method, between Kaplan-Meier and Cox Proportional Hazard models, provides a better fit to 

the survival data based on AIC and How do the estimated survival functions obtained from Kaplan-

Meier and Cox Proportional Hazard models differ in terms of model complexity and predictive 

accuracy based on AIC, offers the most parsimonious yet accurate representation of survival data 

among the compared techniques? 

1.3 AIM AND OBJECTIVES OF THE STUDY   

The aim of this study is to apply the survival analysis methods on lung cancer patients (case study 

of Yobe state Specialist Hospital, Damaturu)” having the following objectives: 
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To perform the Kaplan-Meier analysis by estimating survival and hazard functions with all the risks 

factors.  

To examine the efficiency of the methods used to estimate survival functions in the presence of 

censored data using the Cox Model.  

To compare the techniques of the estimated survival functions with the Kaplan-Meier and the Cox 

Proportional hazard models using Akaike Information Criterion (AIC).  

 
1.4 SCOPE AND LIMITATION AND SIGNIFICANCE OF THE STUDY  

This study was limited to Yobe State Specialist Hospital, Damaturu. In order to increase the 

authenticity of the study, health and occupation status will be used as surrogate for income and 

residence. The significance of this study is to show the knowledge levels, perception toward lung 

cancer and uptake of screening for lung cancer among men attending specialist Hospital Damaturu, 

Yobe state. The results of this study demand crucial health measures targeted at promoting specific 

knowledge levels on lung cancer and calls for positive behavioral changes towards avoiding risks for 

the development of lung cancer in men. The study demands the design of new screening strategies 

for lung cancer across the state, as early screening for lung cancer has been revealed to contribute 

meaningfully to the management of the disease. It is anticipated that the information generated will 

also be used by local cancer bodies, the Yobe state cancer control strategy, the Cancer Society of Yobe 

state, academicians, scientists for developing policies for control and prevention of lung cancer in 

Yobe state Damaturu-Nigeria.  

2 SOME REVIEWS ON SURVIVAL ANALYSIS ON LUNG CANCER STUDY  

Lung cancer is a significant health burden worldwide, and its incidence and mortality rates are 

increasing in Nigeria, reflecting global trends. Survival analysis plays a crucial role in understanding 

the prognosis, risk factors, and treatment outcomes of lung cancer patients in Nigeria. [3], conducted 

a retrospective study to assess survival outcomes and prognostic factors among lung cancer patients 

in Nigeria. They found that the overall survival rates were lower compared to global averages, with 

advanced stage at diagnosis being a significant predictor of poor prognosis. Additionally, the study 

identified socioeconomic factors, access to healthcare, and histological subtype as important 

determinants of survival. A study by [4], investigated the impact of treatment modalities on survival 

outcomes in lung cancer patients in Nigeria. The study utilized Kaplan-Meier analysis to assess 

survival probabilities among patients receiving chemotherapy, radiotherapy, or combined therapy. 

Their findings highlighted the importance of early initiation of treatment and comprehensive 

multidisciplinary care in improving survival rates among lung cancer patients in a study by [5], 

where they explored the influence of ethnic and genetic factors on survival outcomes among lung 

cancer patients of Nigerian descent. Using Cox proportional hazards regression analysis, they 

observed variations in survival rates among different ethnic groups, suggesting a potential role of 

genetic predisposition in lung cancer prognosis among Nigerians. [6], conducted a population-based 

study to investigate socioeconomic disparities in survival outcomes among lung cancer patients in 

Nigeria. Using Cox regression analysis, they identified income level, education, and urban/rural 
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residence as significant predictors of survival. The study emphasized the importance of addressing 

socioeconomic inequalities in access to healthcare and treatment outcomes for lung cancer patients. 

[7], faced significant challenges that kept them from bringing data together from different studies in 

order to assess disparities in results of treatment in various institutions. Initially, they were 

presented with different endpoints from the studies. Following this, they noticed that the different 

studies showed varying disease severity. Finally, usefulness of the results was limited by the 

differences in the techniques used to measure patient-focused outcomes. There are several clinical 

trials where survival analysis model was used. We present here some of the techniques of survival 

analysis for cancer data especially lung and breast. [8], showed the survival advantage in patients 

diagnosed with early breast cancer, treated with post-surgery radiation results showed that the best 

rates of survival were found with combined radiation and breast conserving surgery in all cases. The 

available data indicate that post-surgery radiation provides a survival advantage irrespective of the 

type of surgery in node positive patients. Likewise, survival advantage was observed with post-

surgery radiation and breast-conserving procedure in node negative patients. [9], determined that 

surrogate endpoints for lung cancer specific survival may reduce the length of the clinical trials for a 

patient’s lung cancer. A study performed by [10], provided a comparison of survival between African 

American and White men at the four distinct stages of lung cancer under the same treatment. 

Moreover, the study made it possible to estimate the average difference in survival between White 

and African American males diagnosed with lung cancer and addressed some of the critical issues 

related to the treatment lung cancer patients in survival cure models were discuss in [11] and [12] 

respectively.  

 

3 MATERIALS AND METHODS 

3.1 DATA COLLECTION 

The data was obtained from Yobe State Specialist Hospital, Damaturu where each sample was 

collected from the recipients of the treatment of radical prostatectomy. 

 
3.2 THE SURVIVAL FUNCTION 

The survival function represents the probability that an event has not occurred by time 𝑡. 

Mathematically, it’s defined as: 

 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡)                                                               (1) 
 

where 𝑇 is a random variable representing the time until the event of interest (like death, failure, 

etc.). So, 𝑆(𝑡) gives the probability that the event has not occurred by time 𝑡. 

Given a random variable T that denotes the survival time, the survival function denoted as  

S (t) is defined as: 

 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = 1 − 𝐹(𝑡) = 1 − ∫ 𝑓(𝑢) 𝑑𝑢
𝑡

0
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where f (t) and F (t) are the probability density and the cumulative density functions respectively of 

a given distribution. The expression in (1) is the probability of surviving beyond time t. Note that S 

(0) = 1, S (t) → 0 as t → ∞. It is a downward sloping curve and can be estimated by using the Kaplan-

Meier method. 

 
3.3 THE HAZARD FUNCTION 

The hazard function represents the instantaneous rate of occurrence of the event of interest at time 

𝑡, given that it hasn’t occurred before time 𝑡. Therefore, the hazard rate is defined as: 

 

ℎ(𝑡) = lim
𝛥𝑡→0

𝑃(𝑡≤𝑇<𝑡+𝛥𝑡 | 𝑇≥𝑡)

𝛥𝑡
                                                                                                                  (2) 

 
Essentially, it’s the conditional probability density function of the event occurring at time 𝑡, given 

survival up to time 𝑡, divided by the time interval. In simpler terms, it’s the probability of the event 

happening at time 𝑡, given that the subject has survived up to 𝑡. Given a set containing individuals 

who are at a risk of experiencing a certain event denoted by R(t) (risk set) or individuals who have 

not yet experienced the event by time t, the probability of an individual in the risk set experiencing 

the event in the small time interval [t,t + ∆t) is defined as h(t)∆t. Unlike the survival function which 

is a downward sloping curve for any type of survival data given, the hazard function takes on any 

shape of a non-negative function and it varies depending on the type of survival data given.  This 

gives the cumulative hazard up to time 𝑡, which can be interpreted as the expected number of events 

that have occurred up to time 𝑡 per unit time. 

 
3.4 CUMULATIVE HAZARD FUNCTION (H(T)) 

The cumulative hazard function represents the cumulative risk of experiencing the event of interest 

up to time 𝑡. It’s calculated by integrating the hazard function over the interval from 0 to 𝑡. 
Mathematically: 

 

𝐻(𝑡) = ∫ ℎ
𝑡

0
(𝑢) 𝑑𝑢                                                                            

(3) 
 
The hazard function can be alternatively represented in terms of the cumulative hazard function H 

(t). The name cumulative is due to the fact that the function is the accumulation of the hazard over 

time. According to [13], the cumulative hazard rate can be estimated using the Nelson-Aalen estimate 

and the increments of the Nelson-Aalen estimate can be smoothed to provide an estimate to the 

hazard rate. From equation (4), if Sˆ(t) is the Kaplan-Meier estimate to the survival function, then: 

  𝐻̂(𝑡) = − ∑ 𝑙𝑛 (1 −
𝑑𝑖

𝑛𝑖
)

𝑘

𝑖=1
 

 
is an estimate to the cumulative hazard function. 

From Taylor series expansion: 

 

 𝑙𝑛 (1 −
𝑑𝑖

𝑛𝑖
)= −

𝑑𝑖

𝑛𝑖
− [−

𝑑𝑖

𝑛𝑖
]+…. =−

𝑑𝑖

𝑛𝑖
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by ignoring higher order terms. The estimate to the cumulative hazard function is therefore given as: 

 

 𝐻̂(𝑡) = ∑
𝑑𝑖

𝑛𝑖

𝑘

𝑖=1
                           (4) 

 
3.4.1 THE RELATIONSHIP BETWEEN THE HAZARD AND THE SURVIVAL FUNCTIONS 

From equation (2) and (3) above, The relationship between the hazard function ℎ(𝑡) and the survival 

function 𝑆(𝑡) is fundamental in survival analysis. The hazard function describes the instantaneous 

rate of failure at time 𝑡, while the survival function represents the probability of surviving beyond 

time 𝑡. These two functions are interconnected and can be derived from each other. The relationship 

between the hazard function ℎ(𝑡) and the survival function 𝑆(𝑡) is given by: 

 

ℎ(𝑡) = −
𝑑

𝑑𝑡
log(𝑆(𝑡))                   (5) 

 
or equivalently: 

 

𝑆(𝑡) = exp (− ∫ ℎ
𝑡

0
(𝑢)𝑑𝑢)                  (6) 

 

where: - 
𝑑

𝑑𝑡
 represents the derivative with respect to time 𝑡. - log(⋅) is the natural logarithm. exp(⋅) is 

an exponential function. ∫ ℎ
𝑡

0
(𝑢)𝑑𝑢 is the cumulative hazard function, representing the cumulative 

risk up to time 𝑡. 

 
3.4.2 Interpretation 

The hazard function describes how the risk of an event changes with time. The survival function 

represents the probability of not experiencing the event up to time 𝑡. The hazard function and 

survival function provide complementary perspectives on the survival process: one focuses on the 

risk of experiencing the event at a specific time, while the other focuses on the probability of avoiding 

the event up to that time. Assuming that in the given sample of survival data none of the data points 

is censored and that also there exists no tied observations. The survival function denoted as S (t) 

which is the probability that an individual survives beyond time t can be estimated by using the 

empirical survival function. The empirical function which is the estimate to the survival function in 

absence of censored data denoted as Sˆ(t) is given by: 

𝑆ˆ(𝑡)  =
Number of individuals with survival time ≥ 𝑡

Number of individuals in the data set
    

   
Sˆ(t) = 1 for all values of t before the first failure and Sˆ(t) = 0 after the final failure or occurrence of 

event. The estimated survival function (Sˆ(t)) is observed to be constant between two adjacent times 

and therefore its plot turns out to be a step function, this function decreases immediately after each 

observed event time [14,15]. 
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3.5 NON-PARAMETRIC METHODS  

3.5.1 The Kaplan-Meier Estimator (K-M)  

The Kaplan-Meier estimator, also known as the product limit estimator was presented by [16]. It 

gives a simple and quick estimate of the survival function in the presence of censoring. It uses the 

exact failure time [14]. The Kaplan-Meier estimator (K-M) is a non-parametric method used to 

estimate the survival function from lifetime data in the presence of censored observations. It is 

commonly used in survival analysis to estimate the probability of surviving beyond a given time 

point. 

Kaplan-Meier Estimator Formula 

Suppose we have 𝑛 observed survival times 𝑡1, 𝑡2, … , 𝑡𝑛, with corresponding censoring indicators 

𝛿1, 𝛿2, … , 𝛿𝑛, where 𝑡𝑖 is the time of event or censoring, and 𝛿𝑖 = 1 if event occurred at 𝑡𝑖, and 𝛿𝑖 = 0 

if event was censored at 𝑡𝑖. 

The Kaplan-Meier estimator of the survival function 𝑆(𝑡) at time 𝑡 is given by: 

𝑆̂(𝑡) = ∏ (1 −
𝑑𝑖

𝑛𝑖
)𝑡𝑖≤𝑡                                             (7) 

 
where:  𝑑𝑖  is the number of events (deaths) at time 𝑡𝑖. 𝑛𝑖 is the number of individuals at risk just 

before time 𝑡𝑖. In words, the Kaplan-Meier estimator calculates the probability of surviving beyond 

each event time, considering the individuals at risk just before each event. The Kaplan-Meier 

estimator estimates the survival function by calculating the probability of surviving beyond each 

observed event time, adjusting for censoring. The first point to consider is how censoring can be 

adjusted in the K-M method in order to estimate the survival function. As the K-M method makes no 

assumption about the shape of the underlying survival curve, it is categorized as a non-parametric 

method for estimating a survival function. However, using a non-parametric analysis typically 

generated much wider confidence bounds than those calculated via parametric analysis. Parametric 

analysis shows how predictions outside the range of observations are not possible with non-

parametric analysis. The characterization of all the subjects of the survival analysis by K-M method 

can use only three variables [17]. The first variable is the serial time which begins with the 

commencement of the treatment and gets censored from the study when it reaches the end point. At 

the end of the serial time, the second variable consists of the patient’s status. The third variable is 

the study groups the patients belong to. The idea of this method is based on the probability of 

surviving in k or more periods in the study and is a product of k probabilities when each period is 

observed under it. It is written by the following expression:  

(𝑘) = 𝑝1 × 𝑝2 × 𝑝3 × … × 𝑝𝑘                                                                                                     (8)      
               
In the above equation 𝑝1 constitutes surviving proportion in the first period, 𝑝2 is the proportion 

survived over the second period, and so on. The equation below gives the proportion of surviving for 

period 𝑖 where they survived up to period :  

                                     (9) 
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where, 𝑟𝑖 is the number of patients living at start of the period , and 𝑑𝑖 is the number of deaths, 

[18]. 

Order the observed event times: 𝑡(1) ≤ 𝑡(2) ≤ ⋯ ≤ 𝑡(𝑘), where 𝑡(𝑖) are distinct event times.  

Initialize: 𝑛0 = 𝑛 and 𝑑0 = 0.  

For each event time 𝑡(𝑖): 

Calculate the number of individuals at risk just before 𝑡(𝑖): 𝑛𝑖 = 𝑛𝑖−1 − 𝑑𝑖−1. 

Count the number of events at 𝑡(𝑖): 𝑑𝑖 . 

Update 𝑆(𝑡(𝑖)): 

𝑆̂(𝑡(𝑖)) = 𝑆̂(𝑡(𝑖−1)) × (1 −
𝑑𝑖

𝑛𝑖
)               

(10) 

Survival function at 𝑡: 

If 𝑡 < 𝑡(1), 𝑆̂(𝑡) = 1. 

If 𝑡 ≥ 𝑡(𝑘), 𝑆̂(𝑡) = 0. 

For 𝑡(𝑖) < 𝑡 ≤ 𝑡(𝑖+1), 𝑆̂(𝑡) = 𝑆̂(𝑡(𝑖)). 

 
3.6 SEMI-PARAMETRIC METHODS  

3.6.1 Cox Proportional Hazard  

The non-parametric methods are not useful for controlling the covariates and it requires categorical 

predictors. Therefore, multivariate approaches are used when we have several prognostic variables. 

The most widely applicable and broadly implemented multivariate method in the survival analysis 

is the regression model of the Cox proportional hazards. In the year 1972 Cox showed the first light 

to the Cox model [19], The explanatory variables and the response variables are combined. As any 

form can be adopted by the disturbance of the baseline, the nature of the model is semi-parametric 

[20].  

The mathematical equation of the Cox model is:  

ℎ(𝑡) = exp{ℎ0 (𝑡) + 𝑏1𝑥1 + 𝑏 2𝑥2 + ⋯ + 𝑏 𝑝𝑥𝑝}                      
(11) 
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3.6.2 Testing the Proportional Hazards Assumption  

The assumption of proportional hazards (PH) function is the finest technique in the Cox model. This 

model helps clarify the idea that multiplicative effect of each covariate in the hazards function is 

constant over time [21]. Quite often the assumption of PH is substantially important.  

 
3.7 ESTIMATION OF UNKNOWN PARAMETERS IN BOTH PARAMETRIC AND SEMI-

PARAMETRIC REGRESSION MODELS 

To demonstrate how to determine the estimates of the unknown parameters in both parametric and 

semi-parametric regression models we used the most common model in survival analysis, the Cox-

PH model. The main objective in fitting the Cox proportional hazard model is to come up with 

estimates of the regression parameters (β s). Assuming that there are no tied event times, [19]. 

3.7.1 Cox Proportional Hazards Model 

The Cox-PH model is a semi-parametric model that relates the time until an event occurs to one or 

more predictor variables. The hazard function ℎ(𝑡|𝑋) in the Cox model is given by [17, 19]: 

ℎ(𝑡|𝑋) = ℎ0(𝑡)exp(𝑋⊤𝛽).  ℎ(𝑡|𝑋) is the hazard function at time 𝑡 given the covariates 𝑋. - ℎ0(𝑡) is the 
baseline hazard function, which is unspecified and depends only on time 𝑡. - 𝑋 is the vector of 

covariates. - 𝛽 is the vector of regression parameters to be estimated. 

3.7.2 Estimation of Regression Parameters (βs) 

To estimate the regression parameters 𝛽, [19] proposed maximizing the partial likelihood. The 
partial likelihood focuses on the ordering of events rather than their exact timing, allowing for the 

estimation of 𝛽 without specifying ℎ0(𝑡). 

3.7.3 Partial Likelihood Function 

Given a sample of 𝑛 individuals with observed event times 𝑡1, 𝑡2, … , 𝑡𝑛 and corresponding covariate 

vectors 𝑋1, 𝑋2, … , 𝑋𝑛, the partial likelihood function 𝐿(𝛽) is: 

𝐿(𝛽) = ∏ [
exp(𝑋𝑖

⊤𝛽)

∑ exp𝑗∈𝑅(𝑡𝑖) (𝑋𝑗
⊤𝛽)

]

𝛿𝑖𝑛

𝑖=1

 

 
where:  𝛿𝑖  is an indicator variable that is 1 if the event is observed for individual 𝑖, and 0 if the data 

is censored. - 𝑅(𝑡𝑖) is the risk set at time 𝑡𝑖, consisting of individuals who are still at risk just before 

time 𝑡𝑖. 

The log partial likelihood function is: 
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ℓ(𝛽) = ∑ 𝛿𝑖
𝑛
𝑖=1 [𝑋𝑖

⊤𝛽 − log (∑ exp𝑗∈𝑅(𝑡𝑖) (𝑋𝑗
⊤𝛽))]              

(12) 
 
where R(ti) = {j : tj ≥ ti}, denotes the risk set at time ti, n represents the number of individuals in the 
data set and m the observed survival times. Only event times contribute their factor to the numerator 

but both the censored and uncensored observations are included in the denominator where the sum 

over the risk set includes all individuals who are still at risk just before time ti. It is easy to work with 

the partial log-likelihood which is given by 

 
3.7.4 Maximizing the Partial Likelihood 

To estimate 𝛽, we maximize the log partial likelihood function ℓ(𝛽). This is typically done using 

numerical optimization techniques, such as the Newton-Raphson method or other iterative 

algorithms. The score function 𝑈(𝛽) and the observed information matrix 𝐼(𝛽) are derived from the 

log partial likelihood: 

𝑈(𝛽) =
∂ℓ(𝛽)

∂𝛽
= ∑ 𝛿𝑖

𝑛
𝑖=1 [𝑋𝑖 −

∑ 𝑋𝑗𝑗∈𝑅(𝑡𝑖) exp(𝑋𝑗
⊤𝛽)

∑ exp𝑗∈𝑅(𝑡𝑖) (𝑋𝑗
⊤𝛽)

]                                                 

(13) 
 
Let βˆ, denote the maximum partial likelihood estimate for β obtained by maximizing the partial 

log-likelihood function (11), the first derivative of l(β) with respect to β is called a vector of efficient 

scores and is given by: 

𝐼(𝛽) = −
∂2ℓ(𝛽)

∂𝛽 ∂𝛽⊤ = ∑ 𝛿𝑖
𝑛
𝑖=1 [

∑ 𝑋𝑗𝑗∈𝑅(𝑡𝑖) 𝑋𝑗
⊤exp(𝑋𝑗

⊤𝛽)

∑ exp𝑗∈𝑅(𝑡𝑖) (𝑋𝑗
⊤𝛽)

− (
∑ 𝑋𝑗𝑗∈𝑅(𝑡𝑖) exp(𝑋𝑗

⊤𝛽)

∑ exp𝑗∈𝑅(𝑡𝑖) (𝑋𝑗
⊤𝛽)

)

2

]             

(14) 
 
Using these, the Newton-Raphson update for 𝛽 is: 

𝛽(𝑘+1) = 𝛽(𝑘) − [𝐼(𝛽(𝑘))]
−1

𝑈(𝛽(𝑘)) 

 

where 𝛽(𝑘) is the estimate at the 𝑘-th iteration. 

To calculate the maximum likelihood estimates βˆ, we solve a nonlinear system U (β) = 0 and we use 

the Newton-Raphson algorithm [22]. The information matrix I (β) is given by the negative of the 

second derivative of l(β). The information matrix 𝐼(𝛽) is given by the negative of the second 

derivative of the log-likelihood function ℓ(𝛽), and the maximum likelihood estimate 𝛽̂ follows an 

asymptotic 𝑝-variate normal distribution. 

Information Matrix 𝑰(𝜷) 

The information matrix 𝐼(𝛽) is defined as: 
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𝐼(𝛽) = −
∂2ℓ(𝛽)

∂𝛽 ∂𝛽⊤                

(15) 

The inverse of the information matrix is a consistent estimate of the covariance matrix of βˆ. It is 

used to construct confidence intervals for the components of β. 

Asymptotic Normality 

For large sample sizes, the maximum likelihood estimate 𝛽̂ is asymptotically normally distributed 

with mean 𝛽 and covariance matrix 𝐼(𝛽)−1. 

𝛽̂ ∼ 𝑁(𝛽, 𝐼(𝛽)−1)                

(16) 

Where: - 𝛽̂ is the maximum likelihood estimate of 𝛽. - 𝛽 is the true parameter vector. - 𝐼(𝛽)−1 is the 
inverse of the information matrix. For large samples, the maximum likelihood estimate βˆ is known 

to follow asymptotic p-variate normal distribution: 

Covariance Matrix of 𝜷̂ 

The covariance matrix of 𝛽̂ is estimated by the inverse of the information matrix: 

Cov(𝛽̂) = 𝐼(𝛽̂)
−1

                

(17) 

 
3.8 LOG RANK TEST 

The log-rank is one commonly used non-parametric test for comparing two or more survival 

distributions of the patients; it is also called Mantel log-rank. Additionally, this method is useful when 

the risk of an event is always greater for one group than another in order to detect a difference 

between groups [18]. 

The calculation of the test is:  

X2(log 𝑟𝑎𝑛𝑘) =
(O1−E1)

E1
+

(O2−E2)

E2
               

(18) 
 
Here, 𝑂1 and 𝑂2 stand for the number of total events that have been observed within the groups of 1 

and 2 respectively. The expected number of events is represented by 𝐸1 and 𝐸2.  

The survdiff function in R implements the log rank test. In our study, this method is useful to detect 

the difference between two groups of tumor - primary and metastasis.  

 
3.9 LIKELIHOOD RATIO AND WALD TESTS 

[13], argues that to test for a simple null hypothesis, one may use the likelihood-based tests. These 

tests include; The Likelihood ratio test, Wald’s test and the Score test. These tests are asymptotically 
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equivalent and they all follow a chi-square distribution with p degrees of freedom. Where p is the 

dimension of the vector of the regression parameters. The Likelihood Ratio Test (LRT) and the Wald 

Test are commonly used to test hypotheses about the regression parameters (𝛽) in the Cox 

Proportional Hazards (Cox-PH) model. 

3.9.1 Likelihood Ratio Test (LRT) 

The Likelihood Ratio Test compares the fit of two nested models: a full model with parameters 𝛽 and 

a reduced model (null model) with parameters 𝛽0, where some of the parameters are constrained to 

zero. 

Calculate the Log Partial Likelihoods: 

 ℓ(𝛽̂): Log partial likelihood of the full model. 

 ℓ(𝛽0̂): Log partial likelihood of the reduced model. 

Compute the Test Statistic: 

LR = 2[ℓ(𝛽̂) − ℓ(𝛽0̂)]                

(19) 

The test statistic follows a chi-squared distribution with degrees of freedom equal to the difference 

in the number of parameters between the full and reduced models. 

Decision Rule: 

Compare the test statistic to the critical value from the chi-squared distribution. 

If LR is greater than the critical value, reject the null hypothesis. 

Wald Test 

The Wald Test assesses the significance of individual coefficients or sets of coefficients in the model. 

Estimate the Coefficients: 

𝛽̂: Estimated coefficients from the model. 

Compute the Variance-Covariance Matrix: 

𝛴̂: Estimated variance-covariance matrix of 𝛽̂. 

Compute the Test Statistic: For testing the null hypothesis 𝐻0: 𝛽𝑗 = 0: 

𝑊 =
𝛽𝑗̂

2

Var(𝛽𝑗̂)
                 

(20) 

For testing multiple coefficients, 𝐻0: 𝛽 = 0: 

𝑊 = 𝛽̂⊤𝛴̂−1𝛽̂ 
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The test statistic follows a chi-squared distribution with degrees of freedom equal to the number of 

parameters being tested. 

Decision Rule: 

Compare the test statistic to the critical value from the chi-squared distribution. If 𝑊 is greater than 

the critical value, reject the null hypothesis. 

Applying LRT and Wald Tests in Cox-PH Model 

Consider a Cox-PH model with two covariates 𝑋1 and 𝑋2: 

ℎ(𝑡|𝑋) = ℎ0(𝑡)exp(𝛽1𝑋1 + 𝛽2𝑋2) 

Likelihood Ratio Test 

Full Model: 

ℎ(𝑡|𝑋) = ℎ0(𝑡)exp(𝛽1𝑋1 + 𝛽2𝑋2) 

Reduced Model: 

ℎ(𝑡|𝑋) = ℎ0(𝑡)exp(𝛽1𝑋1) 

Compute Log Partial Likelihoods: 

ℓ(𝛽̂): Log partial likelihood for the full model. 

ℓ(𝛽0̂): Log partial likelihood for the reduced model. 

Test Statistic: 

LR = 2[ℓ(𝛽̂) − ℓ(𝛽0̂)] 

Compare the test statistic to a chi-squared distribution with 1 degree of freedom (difference in the 

number of parameters). 

Wald Test 

Estimate Coefficients: 

𝛽̂ = (𝛽1̂, 𝛽2̂) 

Variance-Covariance Matrix: 

𝛴̂ = (
Var(𝛽1̂) Cov(𝛽1̂, 𝛽2̂)

Cov(𝛽1̂, 𝛽2̂) Var(𝛽2̂)
) 

Test Statistic: 

𝑊 = 𝛽2̂
2

/Var(𝛽2̂)                

(21) 
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For testing both coefficients: 

𝑊 = (𝛽1̂, 𝛽2̂)
⊤

𝛴̂−1(𝛽1̂, 𝛽2̂) 

Decision Rule: 

Compare 𝑊 to the chi-squared distribution with the appropriate degrees of freedom. 

Reject the null hypothesis if 𝑊 is greater than the critical value. 

These tests help determine whether the covariates significantly contribute to the model, enhancing 

the understanding of the relationship between the predictors and the survival times. 

 
3.10 VARIABLES AND BEST FITTING MODEL SELECTION SCHOENFELD RESIDUALS 

In order to fit the standard cox-proportional hazard model, one has to be aware of one of its main 

assumptions. The model assumes that the hazard of the different strata formed by the levels of the 

covariates are proportional [24]. One can use the Kaplan-Meier plots to test for this assumption, but 

these graphical techniques may be inadequate in cases where the violation of the proportional 

hazard assumption is marginal. [25], presents the Goodness of fit (GOF) testing approach. This 

approach gives test statistics and a p-value for assessing the proportional hazard assumption. This 

test enables a researcher to make an objective decision than when using the graphical method. A 

number of tests have been presented in literature but for this research we used the one discussed by 

[26], Schoenfeld residuals are further discussed by [27]. The idea behind this statistical test is that if 

the PH assumption holds for a particular covariate, then the Schoenfeld residuals for that covariate 

will not be related to the survival time was discuss by many authors like [28, 29, 30 and 31] 

respectively. 

 
3.11 AKAIKE INFORMATION CRITERIA 

According to [32], Akaike Information Criterion in the Cox Proportional Hazards Model. The Akaike 

Information Criterion (AIC) is a measure used to compare the goodness of fit of statistical models 
while penalizing for the number of estimated parameters to prevent overfitting. It is widely used in 

model selection. For a given model, the AIC is calculated as follows: 

AIC = −2ℓ(𝛽̂) + 2𝑘                 

(22) 

 

where: - ℓ(𝛽̂) is the log-likelihood of the model at its maximum likelihood estimates. - 𝑘 is the number 

of estimated parameters in the model. 

Application in the Cox Proportional Hazards Model 

In the context of the Cox Proportional Hazards model, the AIC is used to compare different Cox 

models with varying numbers of covariates or different functional forms of the covariates. For a Cox-

PH model, the AIC can be expressed as: 
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AIC = −2ℓ(𝛽̂) + 2𝑝          

where: - ℓ(𝛽̂) is the log partial likelihood of the Cox model evaluated at the estimated parameters 𝛽̂. 

- 𝑝 is the number of covariates (or parameters) in the model. 

Model Comparison 

As the measure of GOF of a model defined with parameters estimated by the maximum likelihood 

method. The value of the AIC will always increase if an unnecessary variable is included in the model. 

This therefore implies that the smaller the AIC the better the model. To compare different models 

using AIC: - Fit each model to the data. - Compute the AIC for each model.  Select the model with the 

lowest AIC value, indicating the best trade-off between goodness of fit and model complexity. 

4 RESULTS AND DISCUSSION  

This research investigates the influence of standard clinical prognostic features on the survival time 

of lung cancer patients. Particularly it seeks independent variable patterns to determine the survival 

times and identify the correlations among the variables of interest. For this goal, the Cox model 

performed well, which identified covariates associated with survival. The result of each method was 

performed by statistical package in R, which was used to analyze the data. After applying the Kaplan–

Meier (K-M) method to the RP data, the results are tabulated in Table 1, as shown below. 
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Table 1: Calculation for the K-M Estimate of the Survival Function.   
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Time n. risk n. event Survival Std. error Lower  
95% CI  

Upper  
95% CI 

5 228 1 0.9956 0.00438 0.9871 1.000 
11 227 3 0.9825 0.00869 0.9656 1.000 
12 224 1 0.9781 0.00970 0.9592 0.997 
13 223 2 0.9693 0.01142 0.9472 0.992 
15 221 1 0.9649 0.01219 0.9413 0.989 
26 220 1 0.9605 0.01290 0.9356 0.986 
30 219 1 0.9561 0.01356 0.9299 0.983 
31 218 1 0.9518 0.01419 0.9243 0.980 
53 217 2 0.943 0.01536 0.9134 0.974 
54 215 1 0.9386 0.01590 0.9079 0.970 
59 214 1 0.9342 0.01642 0.9026 0.967 
60 213 2 0.9254 0.01740 0.8920 0.960 
61 211 1 0.9211 0.01786 0.8867 0.957 
62 210 1 0.9167 0.01830 0.8815 0.953 
65 209 2 0.9079 0.01915 0.8711 0.946 
71 207 1 0.9035 0.01955 0.8660 0.943 
79 206 1 0.8991 0.01995 0.8609 0.939 
81 205 2 0.8904 0.02069 0.8507 0.932 
88 203 2 0.8816 0.02140 0.8406 0.925 
92 201 1 0.8772 0.02174 0.8356 0.921 
93 199 1 0.8728 0.02207 0.8306 0.917 
95 198 2 0.864 0.02271 0.8206 0.910 

105 196 1 0.8596 0.02302 0.8156 0.906 
107 194 2 0.8507 0.02362 0.8056 0.898 
110 192 1 0.8463 0.02391 0.8007 0.894 
116 191 1 0.8418 0.02419 0.7957 0.891 
118 190 1 0.8374 0.02446 0.7908 0.887 
122 189 1 0.833 0.02473 0.7859 0.883 
131 188 1 0.8285 0.02500 0.7810 0.879 
132 187 2 0.8197 0.02550 0.7712 0.871 
135 185 1 0.8153 0.02575 0.7663 0.867 
142 184 1 0.8108 0.02598 0.7615 0.863 
144 183 1 0.8064 0.02622 0.7566 0.859 
145 182 2 0.7975 0.02667 0.7469 0.852 
180 180 1 0.7931 0.02688 0.7421 0.848 
153 179 1 0.7887 0.02710 0.7373 0.844 
156 178 2 0.7798 0.02751 0.7277 0.836 
163 176 3 0.7665 0.02809 0.7134 0.824 
166 173 2 0.7577 0.02845 0.7039 0.816 
167 171 1 0.7532 0.02863 0.6991 0.811 
170 170 1 0.7488 0.02880 0.6944 0.807 
175 167 1 0.7443 0.02898 0.6896 0.803 
176 165 1 0.7398 0.02915 0.6848 0.799 
177 164 1 0.7353 0.02932 0.6800 0.795 
179 162 2 0.7262 0.02965 0.6704 0.787 
180 160 1 0.7217 0.02981 0.6655 0.783 
181 159 2 0.7126 0.03012 0.6559 0.774 
182 157 1 0.7081 0.03027 0.6511 0.770 
183 156 1 0.7035 0.03041 0.6464 0.766 
186 154 1 0.6989 0.03056 0.6416 0.761 
189 152 1 0.6943 0.03070 0.6367 0.757 
194 149 1 0.6897 0.03085 0.6318 0.753 
197 147 1 0.6850 0.03099 0.6269 0.749 
199 145 1 0.6803 0.03113 0.6219 0.744 
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201 144 2 0.6708 0.03141 0.6120 0.735 
202 142 1 0.6661 0.03154 0.6071 0.731 
207 139 1 0.6613 0.03168 0.6020 0.726 
208 138 1 0.6565 0.03181 0.5970 0.722 
210 137 1 0.6517 0.03194 0.5920 0.717 
212 135 1 0.6469 0.03206 0.5870 0.713 
218 134 1 0.6421 0.03218 0.5820 0.708 
222 132 1 0.6372 0.03231 0.5769 0.704 
223 130 1 0.6323 0.03243 0.5718 0.699 
226 126 1 0.6273 0.03256 0.5666 0.694 
229 125 1 0.6223 0.03268 0.5614 0.690 
230 124 1 0.6172 0.03280 0.5562 0.685 
239 121 2 0.6070 0.03304 0.5456 0.675 
245 117 1 0.6019 0.03316 0.5402 0.670 
246 116 1 0.5967 0.03328 0.5349 0.666 
267 112 1 0.5913 0.03341 0.5294 0.661 
268 111 1 0.5860 0.03353 0.5239 0.656 
269 110 1 0.5807 0.03364 0.5184 0.651 
270 108 1 0.5753 0.03376 0.5128 0.645 
283 104 1 0.5698 0.03388 0.5071 0.640 
284 103 1 0.5642 0.03400 0.5014 0.635 
285 101 2 0.5531 0.03424 0.4899 0.624 
286 99 1 0.5475 0.03434 0.4841 0.619 
288 98 1 0.5419 0.03444 0.4784 0.614 
291 97 1 0.5363 0.03454 0.4727 0.608 
293 94 1 0.5306 0.03464 0.4669 0.603 
301 91 1 0.5248 0.03475 0.4609 0.597 
303 89 1 0.5189 0.03485 0.4549 0.592 
305 87 1 0.5129 0.03496 0.4488 0.586 
306 86 1 0.5070 0.03506 0.4427 0.581 
310 85 2 0.4950 0.03523 0.4306 0.569 
320 82 1 0.4890 0.03532 0.4244 0.563 
329 81 1 0.4830 0.03539 0.4183 0.558 
337 79 1 0.4768 0.03547 0.4121 0.552 
340 78 1 0.4707 0.03554 0.4060 0.546 
345 77 1 0.4646 0.03560 0.3998 0.540 
348 76 1 0.4585 0.03565 0.3937 0.534 
350 75 1 0.4524 0.03569 0.3876 0.528 
351 74 1 0.4463 0.03573 0.3815 0.522 
353 73 2 0.4340 0.03578 0.3693 0.510 
361 70 1 0.4278 0.03581 0.03581 0.504 
363 69 2 0.4154 0.03583 0.3508 0.492 
364 67 1 0.4092 0.03582 0.3447 0.486 
371 65 2 0.3966 0.03581 0.3323 0.473 
387 60 1 0.3900 0.03582 0.3258 0.467 
390 59 1 0.3834 0.03582 0.3193 0.460 
394 58 1 0.3768 0.03580 0.3128 0.454 
426 55 1 0.3700 0.03580 0.3060 0.447 
428 54 1 0.3631 0.03579 0.2993 0.440 
429 53 1 0.3563 0.03576 0.2926 0.434 
433 52 1 0.3494 0.03573 0.2860 0.427 
442 51 1 0.3426 0.03568 0.2793 0.420 
444 50 1 0.3357 0.03561 0.2727 0.413 
450 48 1 0.3287 0.03555 0.2659 0.406 
455 47 1 0.3217 0.03548 0.2592 0.399 
457 46 1 0.3147 0.03539 0.2525 0.392 
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460 44 1 0.3076 0.03530 0.2456 0.385 
473 43 1 0.3004 0.03520 0.2388 0.378 
477 42 1 0.2933 0.03508 0.2320 0.371 
519 39 1 0.2857 0.03498 0.2248 0.363 
520 38 1 0.2782 0.03485 0.2177 0.356 
524 37 2 0.2632 0.03455 0.2035 0.340 
533 34 1 0.2554 0.03439 0.1550 0.333 
550 32 1 0.2475 0.03423 0.1475 0.325 
558 30 1 0.2392 0.03407 0.1570 0.316 
567 28 1 0.2307 0.03391 0.1550 0.308 
574 27 1 0.2221 0.03371 0.1650 0.299 
583 26 1 0.2136 0.03348 0.1571 0.290 
613 24 1 0.2047 0.03325 0.1489 0.281 
624 23 1 0.1958 0.03297 0.1407 0.272 
641 22 1 0.1869 0.03265 0.1327 0.263 
643 21 1 0.1780 0.03229 0.1247 0.254 
654 20 1 0.1691 0.03188 0.1169 0.245 
655 19 1 0.1602 0.03142 0.1091 0.235 
687 8 1 0.1513 0.03090 0.1014 0.226 
689 17 1 0.1424 0.03034 0.0938 0.216 
705 6 1 0.1335 0.02972 0.0863 0.207 
707 15 1 0.1246 0.02904 0.0789 0.197 
728 14 1 0.1157 0.02830 0.0716 0.187 
731 13 1 0.1068 0.02749 0.0645 0.177 
735 12 1 0.0979 0.02660 0.0575 0.167 
765 10 1 0.0881 0.02568 0.0498 0.156 
791 9 1 0.0783 0.02462 0.0423 0.145 
814 7 1 0.0671 0.02351 0.0338 0.133 
883 4 1 0.0503 0.02285 0.0207 0.123 
11 227 3 0.7798 0.02751 0.7277 0.836 
12 224 1 0.7665 0.02809 0.7134 0.824 
13 223 2 0.7577 0.02845 0.7039 0.816 
15 221 1 0.7532 0.02863 0.6991 0.811 
26 220 1 0.7488 0.02880 0.6944 0.807 
30 219 1 0.7443 0.02898 0.6896 0.803 
31 218 1 0.7398 0.02915 0.6848 0.799 
53 217 2 0.7353 0.02932 0.6800 0.795 
54 215 1 0.7262 0.02965 0.6704 0.787 
59 214 1 0.7217 0.02981 0.6655 0.783 
60 213 2 0.7126 0.03012 0.6559 0.774 
61 211 1 0.7081 0.03027 0.6511 0.770 
62 210 1 0.7035 0.03041 0.6464 0.766 
65 209 2 0.6989 0.03056 0.6416 0.761 
71 207 1 0.6943 0.03070 0.6367 0.757 
79 206 1 0.6897 0.03085 0.6318 0.753 
81 205 2 0.6850 0.03099 0.6269 0.749 
88 203 2 0.6803 0.03113 0.6219 0.744 
92 201 1 0.6708 0.03141 0.6120 0.735 
93 199 1 0.6661 0.03154 0.6071 0.731 
95 198 2 0.6613 0.03168 0.6020 0.726 

105 196 1 0.6565 0.03181 0.5970 0.722 
107 194 2 0.6517 0.03194 0.5920 0.717 
110 192 1 0.6469 0.03206 0.5870 0.713 
116 191 1 0.6421 0.03218 0.5820 0.708 
118 190 1 0.6372 0.03231 0.5769 0.704 
122 189 1 0.6323 0.03243 0.5718 0.699 
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131 188 1 0.6273 0.03256 0.5666 0.694 
132 187 2 0.6223 0.03268 0.5614 0.690 
135 185 1 0.6172 0.03280 0.5562 0.685 
142 184 1 0.6070 0.03304 0.5456 0.675 
144 183 1 0.6019 0.03316 0.5402 0.670 
145 182 2 0.5967 0.03328 0.5349 0.666 
147 180 1 0.5913 0.03341 0.5294 0.661 
153 179 1 0.5860 0.03353 0.5239 0.656 
156 178 2 0.5807 0.03364 0.5184 0.651 
163 176 3 0.5753 0.03376 0.5128 0.645 
166 173 2 0.5698 0.03388 0.5071 0.640 
167 171 1 0.5642 0.03400 0.5014 0.635 
170 170 1 0.5531 0.03424 0.4899 0.624 
175 167 1 0.5475 0.03434 0.4841 0.619 
176 165 1 0.5419 0.03444 0.4784 0.614 
177 164 1 0.5363 0.03454 0.4727 0.608 
179 162 2 0.5306 0.03464 0.4669 0.603 
180 160 1 0.5248 0.03475 0.4609 0.597 
181 59 2 0.5189 0.03485 0.4549 0.592 
182 157 1 0.5129 0.03496 0.4488 0.586 
183 156 1 0.5070 0.03506 0.4427 0.581 
186 154 1 0.4950 0.03523 0.4306 0.569 
189 152 1 0.4890 0.03532 0.4244 0.563 
194 149 1 0.4830 0.03539 0.4183 0.558 
197 147 1 0.4768 0.03547 0.4121 0.552 
199 145 1 0.4707 0.03554 0.4060 0.546 
201 144 2 0.4646 0.03560 0.3998 0.540 
202 142 1 0.4585 0.03565 0.3937 0.534 
207 139 1 0.4524 0.03569 0.3876 0.528 
208 138 1 0.4463 0.03573 0.3815 0.522 
210 137 1 0.4340 0.03578 0.3693 0.510 
212 135 1 0.4278 0.03581 0.3631 0.504 
218 134 1 0.4154 0.03583 0.3508 0.492 
222 132 1 0.4092 0.03582 0.3447 0.486 
223 130 1 0.3966 0.03581 0.3323 0.473 
226 126 1 0.3900 0.03582 0.3258 0.467 
229 125 1 0.3834 0.03582 0.3193 0.460 
230 124 1 0.3768 0.03580 0.3128 0.454 
239 121 2 0.3700 0.03580 0.3060 0.447 
245 117 1 0.3631 0.03579 0.2993 0.440 
246 116 1 0.3563 0.03576 0.2926 0.434 
267 112 1 0.3494 0.03573 0.2860 0.427 
268 111 1 0.3426 0.03568 0.2793 0.420 
269 110 1 0.3357 0.03561 0.2727 0.413 
270 108 1 0.3287 0.03555 0.2659 0.406 
283 104 1 0.3217 0.03548 0.2592 0.399 
284 103 1 0.3147 0.03539 0.2525 0.392 
285 101 2 0.3076 0.03530 0.2456 0.385 
286 99 1 0.3004 0.03520 0.2388 0.378 
288 98 1 0.2933 0.03508 0.2320 0.371 
291 97 1 0.2857 0.03498 0.2248 0.363 
293 94 1 0.2782 0.03485 0.2177 0.356 
301 91 1 0.2632 0.03455 0.2035 0.340 
303 89 1 0.2554 0.03439 0.1962 0.333 
305 87 1 0.2475 0.03423 0.1887 0.325 
306 86 1 0.2392 0.03407 0.1810 0.316 
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310 85 2 0.2307 0.03391 0.1729 0.308 
320 82 1 0.2221 0.03371 0.1650 0.299 
329 81 1 0.2136 0.03348 0.1571 0.290 
337 79 1 0.2047 0.03325 0.1489 0.281 
340 78 1 0.1958 0.03297 0.1407 0.272 
345 77 1 0.1869 0.03265 0.1327 0.263 
348 76 1 0.1780 0.03229 0.1247 0.254 
350 75 1 0.1691 0.03188 0.1169 0.245 
351 74 1 0.1602 0.03142 0.1091 0.235 
353 73 2 0.1513 0.03090 0.1014 0.226 
361 70 1 0.1424 0.03034 0.0938 0.216 
363 69 2 0.1335 0.02972 0.0863 0.207 
364 67 1 0.1246 0.02904 0.0789 0.197 
371 65 2 0.1157 0.02830 0.0716 0.187 
387 60 1 0.1068 0.02749 0.0645 0.177 
390 59 1 0.0979 0.02660 0.0575 0.167 
394 58 1 0.0881 0.02568 0.0498 0.156 
426 55 1 0.0783 0.02462 0.0423 0.145 
428 54 1 0.0671 0.02351 0.0338 0.133 
429 53 1 0.0503 0.02285 0.0207 0.123 
433 52 1 0.7798 0.02751 0.7277 0.836 
442 51 1 0.7665 0.02809 0.7134 0.824 
444 50 1 0.7577 0.02845 0.7039 0.816 
450 48 1 0.7532 0.02863 0.6991 0.811 
455 47 1 0.7488 0.02880 0.6944 0.807 
457 46 1 0.7443 0.02898 0.6896 0.803 
460 44 1 0.7398 0.02915 0.6848 0.799 
473 43 1 0.7353 0.02932 0.6800 0.795 
477 42 1 0.7262 0.02965 0.6704 0.787 
519 39 1 0.7217 0.02981 0.6655 0.783 
520 38 1 0.7126 0.03012 0.6559 0.774 
524 37 2 0.7081 0.03027 0.6511 0.770 
533 34 1 0.7035 0.03041 0.6464 0.766 
550 32 1 0.6989 0.03056 0.6416 0.761 
558 30 1 0.6943 0.03070 0.6367 0.757 
567 28 1 0.6897 0.03085 0.6318 0.753 
574 27 1 0.6850 0.03099 0.6269 0.749 
583 26 1 0.6803 0.03113 0.6219 0.744 
613 24 1 0.6708 0.03141 0.6120 0.735 
624 23 1 0.6661 0.03154 0.6071 0.731 
641 22 1 0.6613 0.03168 0.6020 0.726 
643 21 1 0.6565 0.03181 0.5970 0.722 
654 20 1 0.6517 0.03194 0.5920 0.717 
655 19 1 0.6469 0.03206 0.5870 0.713 
687 18 1 0.6421 0.03218 0.5820 0.708 
689 17 1 0.6372 0.03231 0.5769 0.704 
705 16 1 0.6323 0.03243 0.5718 0.699 
707 15 1 0.6273 0.03256 0.5666 0.694 
728 14 1 0.6223 0.03268 0.5614 0.690 
731 13 1 0.6172 0.03280 0.5562 0.685 
735 12 1 0.6070 0.03304 0.5456 0.675 
765 10 1 0.6019 0.03316 0.5402 0.670 
791 9 1 0.5967 0.03328 0.5349 0.666 
814 7 1 0.5913 0.03341 0.5294 0.661 

 

KEY: 
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Time = Survival time of patients 

n.risk = Number of risk 

n.event = Number of events occurred 

Survival = Survival Probability 

Std. Error= Standard Error of Estimates 

Lower 95%Cl = Lower 95 percent Confidence interval 

Upper 95%Cl = Upper 95 percent Confidence interval   

 
Here, we are interested in “time” and “status” as they play an important role in the analysis. Time 

represents the survival time of patients. Since patients survive, we will consider their status as dead 

or non-dead (censored).  

4.1 SURVIVAL TIMES OF THE PATIENTS.  

Here, the x-axis specifies “Number of days” and the y-axis specifies the “probability of survival “. The 

dashed lines are upper confidence interval and lower confidence interval. We also have the 

confidence interval which shows the margin of error expected i.e in days of surviving 200 days, upper 

confidence interval reaches 0.76 or 76% and then goes down to 0.60 or 60%.  Table 1, presents the 

K-M Estimate of The Survival Function of the 95% confidence intervals from Table 2, fitting the 

univariate cox-proportional hazard model. The variables that were found significant by using the 

likelihood ratio test at 0.05 level of significance. 

Table 2: Cox Fit Model  

 

coef 

exp 

(coef) 
se(coef) 

coef 

lower 

95% 

coef 

upper 

95% 

exp(coef) 

lower 

95% 

exp(coef) 

upper 

95% 

z p 
-

log2(p) 

age 0.01 1.01 0.01 -0.01 0.03 0.99 1.03 0.92 0.36 1.48 

sex -0.55 0.58 0.20 -0.94 -0.16 0.39 0.85 -2.74 0.01 7.36 

ph.ecog 0.73 2.08 0.22 0.30 1.17 1.35 3.23 3.29 <0.005 9.95 

ph.karno 0.02 1.02 0.01 0.00 0.04 1.00 1.05 2.00 0.05 4.45 

pat.karno -0.01 0.99 0.01 -0.03 0.00 0.97 1.00 -1.54 0.12 3.02 

meal.cal 0.00 1.00 0.00 -0.00 0.00 1.00 1.00 0.13 0.90 0.16 

wt.loss -0.01 0.99 0.01 -0.03 0.00 0.97 1.00 -1.84 0.07 3.94 

Concordance 0.65 

Partial AIC 1011.50 

log-likelihood ratio 
test 

28.33 on 7 df 

-log2(p) of ll-ratio test 12.35 

Interpretation of the Summary Table 2: 
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There are 168 observations 

There were 121 deaths which occurred (events observed) 

coef-> gives the result of the model coefficients 

In case of Cox-ph models, the model coefficients can be measures without measuring the baseline 

hazard function i.e., h(t0)h(t0). In general terms, the baseline hazard function is unspecified. 

exp(coef) -> The hazard ratio 

As a con of the Cox-PH model, we cannot estimate the survival. If we are not getting an estimate of 

the intercept, then we cannot in turn measure the hazard, which again means we cannot measure 

the survival function. But we can measure the HR. Interpretation of the HR: Considering the sex 

column, at a given instance of time, someone who has a sex is male, is 0.58 times as likely to die as 

someone who is not male, adjusting for mismatch level.  In terms of %, it can be interpreted as (1-

HR) % i.e. here it would be (1-0.58) % = 42%. 

se(coef) -> The Standard Error in the observation of the coefficients 

coef lower 95% and coef upper 95% -> The 95% confidence interval, which suggests that we are 

95% confident that the true value of model coefficients is within this interval. 

exp(coef) lower 95% and exp(coef) upper 95% -> The 95% confidence interval, which suggests that 

we are 95% confident that the true value of HR is within this interval. 

z-score -> value of wald test obtained as coefse(coef)coefse(coef) 

Concordance -> Goodness of fit for survival analysis, which is the fraction or percentage of the pairs 

of observations which are concordant. (Basically, how well the model is performing with respect to 

the actual scenario). Higher the value of Concordance, better is the fit. 

AIC -> The Akaike information criterion (AIC) is an estimator of out-of-sample prediction error and 

thereby relative quality of statistical models for a given set of data. AIC estimates the relative amount 

of information lost by a given model: the less information a model loses, the higher the quality of that 

model. 

Statistically significant values: From the summary table above, we can see the pp values for the 

different attributes. 

Statistically Significant: A column will be regarded as statistically significant when the p-value is < 

0.05. In this case, we can see the attributes, "sex" and "ph.ecog" have pp-values less than 0.05. We 

can also see attributes like age having a HR of 1.01, which suggests there is only 1% increase in risk 

factor for a higher age group. In general terms, it can be said that there is no significant difference 

between different age groups.  

Inference: From this it can be understood while grouping the data during analysis, "sex" and 

"ph.ecog" should be the attributes on which we focus more. Here, we can see that the pp-value for 

"sex" is 0.01 and the HR = 0.58. This indicates, a strong relationship between the patients' sex and 

the decreased risk of death. In general terms, considering the other covariates to be constant, a 
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female (sex=2) patient has a higher chance of survival compared to a male patient. Again, for the 

attribute "ph.ecog", the pp-value is <0.005 and the HR is 2.08.This indicates a strong relationship 

between the ph.ecog value and the increased risk of death in a patient. In general terms, considering 

the other covariates to be constant, a higher value of "ph.ecog" is associated with more risk in 

survival. In this case, a patient with higher ph.ecog value has about 109% higher risk of death. 

5 COMPARISON OF THE DIFFERENT GROUPS OF THE ATTRIBUTES USING THE KAPLAN 
MEIER CURVE 

 

Figure.1:  Survival Probability of Males and Females 

 

Figure 2: Survival Probability of the Different Age Groups 

From Figure 2 above, it can be inferred that subjects who are older than 70 years have a 

comparatively lower chances of survival compared to subjects younger than 70 years. 
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Figure 3: Distribution of the Different Weight Loss 

 
Figure 4: Survival Probability According to the Weight Loss 

From Figure 4 above, it can be inferred that subjects having above average weight loss have lower 

chances of survival. 
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Figure 5: Distribution of Physician Karnofsky Scores 

A ph.karno score of >= 80 will consider all patients who are able to carry on normally activity without 

special care. People with less than 80 are considered actually ill with people having > 40 scores as 

really sick. 

Considering this, the two groups are made as: 

People with <= 80 pat.karno score 

People with > 80 pat.karno score 

 

Figure 6: Survival Probability of Subjects 

From the above Figure 6, it can be seen that the subject 28 has the highest chances of survival and 

subject 27 has the lowest chances of survival. Looking into the ph.ecog values in the table above, it 

can be seen that subject 28 has a low ph.ecog value (1.0) compared to subject 27 (3.0). This concords 

with the fact that higher the ph.ecog value lesser are the chances of survival. 
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Table 3: Estimate Coefficients of the Lung Cancer Covariates  

coef exp(coef) se(coef)   z Pr(>|z|) 
inst -3.037e-02 9.701e-01 1.312e-02 -2.315 0.020619 
age 1.281e-02 1.013e+00 1.194e-02 1.073 0.283403     
sex -5.666e-01 5.674e-01 2.014e-01 -2.814 0.004890 

ph.ecog     9.074e-01   2.478e+00   2.386e-01 3.803 0.000143 
ph. karno    2.658e-02 1.027e+00 1.163e-02 2.286 0.022231    
pat. karno -1.091e-02 9.891e-01 8.141e-03 -1.340 0.180160     
meal.cal    2.602e-06 1.000e+00 2.677e-04 0.010 0.992244     
wt.loss    -1.671e-02   9.834e-01   7.911e-03 -2.112 0.034647 

 
Table 4: Lung Cancer Patient Using the Cox PH Model.  

coef exp(coef) exp(-coef) lower .95 upper .95 
inst 0.9701      1.0308     0.9455     0.9954 
age 1.0129     0.9873     0.9895     1.0369 
sex 0.5674      1.7623     0.3824    0.8420 

ph.ecog     2.4778      0.4036     1.5523     3.9552 
ph. karno    1.0269      0.9738     1.0038     1.0506 
pat. karno 0.9891      1.0110     0.9735     1.0051 
meal.cal    1.0000      1.0000     0.9995     1.0005 
wt.loss    0.9834      1.0169     0.9683     0.9988 

 
Concordance   = 0.648  (se = 0.03 ) 
Likelihood ratio test  = 33.7  on 8 df,   p=5e-05 
Wald test                             = 31.72  on 8 df,   p=1e-04 
Score (logrank) test   = 32.51  on 8 df,   p=8e-05 
 
In the result, there are two tables: In Table 3, the second column presents the regression coefficient. 

The sign of the coefficients is an important issue to consider since a positive sign means the hazard 

ratio for this variable is higher, while the negative sign will decrease the hazard risk (risk of death). 
The column z in Table 3 records the ratio of each regression coefficient to its standard error; a wald 

statistic is asymptotically standard normal under the hypothesis that the corresponding coefficient 

is zero. Finally, p-value shows the significance of the explanatory variable. In Table 4, the 

asymptotically equivalent tests of the omnibus null hypothesis that all of the coefficients are zero are 

likelihood ratio, wald score, chi-square statistic at bottom of the output. We can conclude that in cox 

model, if the coefficient is negative the hazard will decrease, but if the coefficient is positive the 

hazard will increase. The plot of survival curves based on the cox model and Kaplan-Meier Estimates 

for the model is presented in Figure 1 to Figure 7 respectively. The estimated distribution of survival 

times for cox model is illustrated below by using survefit function graph (function to calculate 

survival time).  It is illustrated by the estimate survival function. 

The exp(coef) column contains eβ1eβ1 (see background section above for more info). This is 

the hazard ratio – the multiplicative effect of that variable on the hazard rate (for each unit increase 

in that variable). 

https://shariq-mohammed.github.io/files/cbsa2019/1-intro-to-survival.html#background
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For a categorical variable like sex, going from male (baseline) to female results in approximately 

~40% reduction in hazard. 

We could also flip the sign on the coef column, and take exp (0.531), which can be interpreted as: 

• Males have a 1.71.7-fold increase in hazard, or that 

• Males die at approximately 1.7×1.7× the rate per unit time as females (females die 

at 0.588×0.588× the rate per unit time as males). 

Note, 

• HR=1HR=1: No effect 

• HR>1HR>1: Increase in hazard 

• HR<1HR<1: Decrease in hazard 

There is a p-value on the sex term, and a p-value on the overall model. 

That 0.001110.00111 p-value is really close to the p=0.00131p=0.00131 p-value we saw on the 

Kaplan-Meier plot. 

 

Figure 7: The Cox proportional hazard (PH) with error bars shows 95% confidence intervals.   

The important step after fitting the model for Cox is to evaluate the adequacy of the fitted model. As 

we mention in section 3, the methods above, the model that checks the analysis is based on residuals. 

In the analysis for the cox model four major criteria of residuals have been described, they are the 

Cox Snell residual, the deviance residual, martingale residual and the Schoenfeld residual. 

5.1 INTERPRETATION OF FIGURES 

From the above Figures 1 to Figure 7 it can be inferred that males have a comparatively lower 

chances of survival compared to females. The construction of a table is a necessary first step in order 

to analyze the K-M estimate, which requires three elements to function. These elements are serial 

time (survival time by month), status at serial time (1= death, 0=censored), and group (1 = male and 

2= female). An Excel spreadsheet was used to build the table, beginning with the shortest times for 

each group and sorted by ascending serial time, which is shown in Table 1 above. The initial table is 

preparation for K-M analysis to be used by statistical program R [28]. The plot of survival curves is 
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an important part of survival analysis for each group of interest. However, the comparison between 

two groups is represented by log rank test. The plot Figure 1 to Figure 7 for the K-M estimate of the 

survival function plays the role of a step function rather a smooth curve, which is between two times 

(times at adjacent deaths and the interval only decrease at each death). In the curve in the survival 

duration for the interval is represented by the lengths of the horizontal lines along the X-axis of serial 

times.  Moreover, the cumulative probability of surviving a given time is seen on the Y-axis. In 

addition, the vertical distances between horizontals are important because they illustrate the change 

in cumulative probability. When the event of interest occurs, the interval is terminated. Some 

subjects are censored (patients did not die during the follow up) and they are shown as vertical bar 

marks in the graph; these do not terminate the interval. The figure shows the median of survival time 

and the survival rate. Presently, we will look at the censored subject as shown in the curve. The line 

of the group 1 curve ends with censored subject as seen in the plot. That provides us with a warning 

in terms of interpreting anything beyond this point, because the subjects might have the event 

(death) a few hours later.  In contrast, the line of group 2 has no subjects left and the curve drops to 

zero after the seventeen intervals.   

Table 5: The Log-Likelihoods and Akaike Information Criterion (AIC)  

Distribution  Loglikelihood  K  C  AIC  

Kaplan Meire  -256.5  14  1  589.0159  

Cox model  -253.5  14  2  585.0454  
 
We compared by using statistical criteria (Maximum likelihood (ML) test and AIC). According to 

these criteria, with the AIC (the smaller AIC is better) and higher log likelihood value. The Figure 1 

and Figure 2 present Kaplan-Meier curves that show how the risk of death at the prevalence of age 

is distributed across the categories of a given covariates. However, it is not possible to include all the 

Kaplan-Meier plots in this thesis for all the covariates included in the study but by fitting a univariate 

Cox proportional hazard model, the hazard ratios have enough information to give about the 

distribution of the hazard on a given covariate. 

 
5.2 DISCUSSION OF RESULTS 

Several statistical models have been suggested for analyzing special types of data, which is referred 

to as censored data in the survival analysis literature. Non-parametric, semi-parametric, and 

parametric survival models are mainly used in many clinical trials. These models direct the form of 

the conditional hazard function for a given set of variables of the survival time.   

The Cox proportional hazards model makes several assumptions. Thus, it is important to assess 

whether a fitted Cox regression model adequately describes the data. 

Here, we discuss three types of diagnostics for the Cox model: 

• Detecting non-linearity in relationship between the log-hazard and the covariates. 

• Examining influential observations (or outliers). 
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• Testing the proportional hazards assumption. 

The Kaplan-Meier method gives very good estimations of survival probabilities. The pattern of this 

method in assuming on censoring is independent of the survival time as shown in Figure 7. Each 

group of tumors has a pattern independent of the survival time [28, 30]. The present study has 

demonstrated that the patients with a primary tumor have a lesser risk than those with metastatic 

considering the latter have the spread of cancer cells in the body. Therefore, their survival time will 

be decreased.  The results have provided curve of K-M and the table of the survival time which may 

be useful in comparing the survival time of each group and checking the censored data. The survival 

time for almost 10 years is 0 for metastatic tumors while the survival time for those with primary 

tumors is 0.56 which is evidence of survival. The K-M graph displays the cumulative survival function 

on a linear scale by tumor (Figure 7). The survival curve of primary tumor patients was lower than 

that of metastatic tumor patients, which means that primary have a higher probability of surviving 

(not experiencing an event) [31].  Table 2 presented the calculations from the log-rank test to show 

that there is significant evidence of difference in survival times for groups (primary, and metastatic) 

since the p-value is less than 0.05. That means there is no significant relation between the survival 

times of each group of tumors. The most popular method of examining the effect of explanatory 

variables on survival is the Cox PH model [25]. This model requires the assumption of proportional 

hazards between strata formed by the combinations of levels of the different explanatory variables 

[26, 27]. Hence, we found the model that only includes the four significant variables, which was 

chosen with p-value and AIC criteria. Additionally, we can conclude that the Cox model was 

performed to evaluate the joint prognostic significance factors. The proportional hazards (PH) 

assumption can be checked using statistical tests and graphical diagnostics based on the scaled 

Schoenfeld residuals. In principle, the Schoenfeld residuals are independent of time. A plot that 

shows a non-random pattern against time is evidence of violation of the PH assumption [28, 29]. 

6 CONCLUSIONS 

Survival analysis in lung cancer studies in Nigeria provides valuable insights into the factors 

influencing prognosis and treatment outcomes in this population. These studies underscore the need 

for comprehensive approaches addressing socioeconomic disparities, access to healthcare, and the 

role of ethnicity and genetics in lung cancer survival. Further research is warranted to improve early 

detection, treatment strategies, and support systems for lung cancer patients in Nigeria. 

7 RECOMMENDATIONS  

The community should be educated to appreciate modern health care and influenced to abandon, or 

at least modify some of their harmful traditional practices. Vital basic services should be made 

available and accessible to members of the communities. The government should carry out an in-

depth study on the effect of parent’s education on infant to health and survival. The research study 

recommends that a greater focus along the lung cancer care pathway in Nigeria, with emphases on 

improving access to early diagnosis at early age. The study suggests that the Ministry of Health and 
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Social Services should draft up the country’s first national policy on lung cancer diagnosis and 

management, because at the moment there is none. The medical health record of the Specialist 

Hospital Damaturu, should enhance their record system, hence making available of relevant 

information on maternal mortality, so that subsequent researcher will collect more information 

(data) than the one used in this research work. A doctor should try to reduce the value of ph.ecog in 

patients by providing more relevant medicines. The recommendations of this study on improving 

uptake of screening and promoting information dissemination on lung cancer should also go a long 

way in significantly improving the efficient and effective health management of lung cancer at all 

stages. 
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