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ABSTRACT 

Shape preservation and interpolation are a fundamental process in scientific visualization for 
graphical presentation of data. The known data represents only a sample and may not be 
sufficient to let one visualize the entire entity accurately. Therefore, a sufficiently smooth 
univariate or bivariate function that interpolates or approximates these data preserving the 
same characteristic features should be constructed. There are some special characteristic 
features in the data that are most often used in shape preserving interpolation such as positivity, 
monotonicity and convexity. At the beginning of the previous study, a number of the positivity 
scheme have been proposed as univariate positivity-preserving interpolants, for example, 
quadratic spline [1], cubic spline, quartic spline, quintic spline, rational function. The positivity-
preserving interpolation could be achieved by inserting one or two extra knots where the shape 
of the curves is not preserved, or by modifying the given derivative values to ensure that the 
condition acquired are satisfied. Other than that, positivity-preserving could be achieved by 
introducing the weight functions of the rational spline as a free shape parameter that is used to 
generate the desired curves as required. This paper presents the construction of a C1 rational 
interpolant which is positive everywhere when given data are positive. A local positivity 
preservation scheme is developed using rational cubic Ball basis functions, which involves 
weights as free parameters. Sufficient conditions are derived on Ball ordinates to ensure 
generated surface comprising of triangular patches is always positive. Each triangular patch of 
the interpolating surface is represented by a convex combination of three adjoining triangular 
patches. Gradients at data sites are calculated and modified (if necessary). The values of weights 
(free parameters) may also be changed to generate a positive surface. The weights (free 
parameters) provide extra freedom to users for them to modify the shape of surface as desired. 
Graphical examples are illustrated.  

Keywords: Positivity preserving, Rational cubic Ball, Triangular surface, Weights (free 
parameters). 

1 INTRODUCTION 

Shape preserving interpolation is an important area for graphical presentation of data. The problems 
of shape preserving interpolation have been overviewed by several authors. In many interpolation 
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problems, it is essential that interpolant conserves some inherited shape features of the data, such as 
positivity, monotonicity, and convexity. In this work, our concern is to preserve the positivity of data.  

Some work ([1], [2], [3], [4], [5], [6], [7]) on positivity preservation in surface have been published in 
recent year. Although most of them have solved the problems of non-rational interpolation surface, 
very few authors have considered the rational of scattered data interpolation, see for details ([4], 
[5]). These previous effort ([4], [5]) are motivated by an earlier work of the second author, Piah et. al 
[1] are derived the sufficient conditions on Bézier points. The derivative estimations at the data 
points are stated to be consistent with these conditions in each triangle to guarantee preservation of 
positivity. In [2], where sufficient conditions for the non-negativity of a cubic Bézier triangle were 
gained and used as lower bounds on the Bézier ordinates. They described a local scheme for range 
restricted C1 interpolation of scattered data. The main difference between this work and that of  [1] 
is the way in which the Bézier ordinates are constrained. Compared to this study, [1] offered more 
relaxed sufficient conditions that are easier to compute. An approach similar to [2] is adopted in [3], 
where they subdivided each triangle in the triangulated domain into three mini triangles and the 
interpolating surface on each mini triangle is a cubic Bézier triangular patch. In ([1], [2], [3]) 
positivity preserving conditions were derived either on derivatives at the data points and then 
modified if necessary to ensure that these conditions are gratified. Since all these schemes are local, 
they will work if the data are given without the derivatives. [4] is interested with positivity 
preserving triangle-based interpolation of scattered data using a C1 continuity and local side-vertex 
method that is applicable to data both with and without derivatives. They used rational function with 
parameters to preserve the positive shape of irregular surface data. Positivity is accomplished by 
deriving simple sufficient data dependent constraints on these free parameters. [5] derived the 
positivity preserving conditions for rational cubic Bernstein-Bézier function with weights (free 
parameters). In contrast to ([1], [2], [3]), if the Bézier ordinates do not fulfill the designated lower 
bounds, then these are modified by the weights (free parameters). In 2014, Hussain et al. [6] 
continued their work on the rational quartic Bernstein-Bézier interpolation scheme for positive 
scattered data. This scheme has 15 Bézier ordinates and 15 weight functions compared to the 
previous scheme in [5]. Due to the high number of weight functions in this scheme, it gives advantage 
to the user by providing degrees of freedom for refinement of the surface shape, if required. There 
are three free parameters (weight functions at each vertex of triangle) in [6], while the remaining 
parameter are constrained by these free parameters. This contrasts with [5] where all the weight 
functions are defined as a free shape parameter to enhance the resulting shape of surface and 
preserve the shape of positive data. Both developed schemes in [5] and [6] are local with   continuity 
and applicable for data accompanied with derivatives or not. [7] used quartic triangular basis 
initiated by [8] which only requires ten control points to construct one triangular patch. In this study, 
they show that the proposed scheme for positivity-preserving scattered data interpolation is 
significant used in visualizing large and irregular scattered data sets. [9] have proposed the 
construction of scattered data interpolation scheme based on rational quartic triangular patches with 
C1 continuity. They also tested the proposed scheme by using 36, 65, and 100 data points that 
uniformly (and irregularly) with three free parameters for shape modification. 

This paper is concerned with C1 positivity preserving interpolation of scattered data using rational 
cubic Ball triangular patch. Sufficient conditions are imposed on Ball ordinates to ensure generated 
surface comprising of triangular patches is always positive. The rational function possesses weights 
as free parameters for each triangular patch. Positivity is accomplished by imposing a lower bound 
on Ball ordinates, then same as [5], these are modified by the values of weights (free parameters) to 
ensure that surfaces consisting of cubic Ball triangular patches and satisfy C1 continuity conditions. 
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These free parameters provide the advantage to the designer to refine the shape of surfaces without 
modifying the data. 

This paper is arranged as follows. In Section 2, we derived sufficient positivity condition on the Ball 
ordinates to ensure positivity for a rational cubic Ball triangular patch. The summary of the surface 
construction process is given in Section 3, while some numerical examples are presented to show the 
performance of the method in Section 4. Finally, the conclusion of this work is discussed in Section 5. 

2 SUFFICIENT POSITIVITY CONDITIONS FOR A RATIONAL CUBIC BALL TRIANGULAR PATCH  

Consider T  be the triangle on the xy-plane with vertices 1V , 2V , 3V  and barycentric coordinates u ,

v  and w  with respect to the vertices 1V , 2V , 3V  are 1, 0, 0 , 0,1, 0  and 0, 0,1  respectively. Any 

point V  on the triangle can be expressed as  

1 2 3,uV vV wVV
.
 1u v w  and , , 0.u v w  

 
A rational cubic Ball triangular patch W  on T  is defined as 

, ,
, ,

, ,
a

b

W u v w
u v w

W u v w
W .                                                                                                                                       (1)   

where 
2 2 2 2 2

3,0,0 3,0,0 0,3,0 0,3,0 0,0,3 0,0,3 2,1,0 2,1,0 2,0,1 2,0,1
2 2 2 2

1,2,0 1,2,0 0,2,1 0,2,1 1,0,2 1,0,2 0,1,2 0,1,2

1,1,1 1,1,1

, , 2 2

                 2 2 2 2

       6

aW u v w u b v b w b u v b u w b

uv b v w b uw b vw b

uvw b

                 (2)     

2 2 2 2 2 2 2
3,0,0 0,3,0 0,0,3 2,1,0 2,0,1 1,2,0 0,2,1

2 2
1,0,2 0,1,2 1,1,1

, , 2 2 2 2

                 2 2 6
bW u v w u v w u v u w uv v w

uw vw uvw         

(3) 

Let , ,i j k  is the weight functions attached with , ,i j kb  denoting Ball ordinates of W . Note that W  

interpolated the Ball ordinates 3,0,0b , 0,3,0b , 0,0,3b  at the vertices 1V , 2V , 3V  of T respectively. The 

rest Ball ordinates , ,i j kb  are referred as a boundary ball ordinates for i j k  and 1,1,1b  is referred 

as the inner Ball ordinate of the cubic Ball triangle when ,  3i j k i j k  (see Figure 1). 

From (1),  it can be easily observed that , , 0u v wW  if , , 0aW u v w  and , , 0bW u v w . 

 

We assume that 3,0,0b A , 0,3,0b B , 0,0,3b C  and , , 0A B C  are strictly positive and we derive 

sufficient conditions on the remaining ordinates of rational cubic Ball functions determined in (1) to 
preserve the shape of positive data. Our approach is to find the lower bounds of the remaining Ball 

ordinates, so that , , 0u v wW . We also assume all the boundaries and inner Ball ordinates, , ,i j kb  

have the same value 0r (where 0r ), i.e. 

2,1,0 1,2,0 2,0,1 1,0,2 0,2,1 0,1,2 1,1,1b b b b b b b r                                                                             (4) 
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From (3), , , 0bW u v w , where , , 0u v w   if we set the following values to the weight functions,
                                     

        

3,0,0 0,3,0 0,0,3

2,1,0 1,2,0 2,0,1 1,0,2 0,2,1 0,1,2 1,1,1

,  ,  a b c
                                                          (5)  

where , , , 0.a b c  Since , ,bW u v w  is always positive, hence we only consider , ,aW u v w  to 

ensure that , , 0u v wW . From (2), we know that positivity of , ,aW u v w depends upon the Ball 

ordinates , ,i j kb . By taking relation 
2

1u v w , 1 , ,W u v w  is rewritten as  

2 2 2 2 2 2

2 2 2

, , 1

              
aW u v w u aA v bB w cC r u v w

u aA r v bB r w cC r r
                           (6)  

From (6) clearly that when 0,  , , 0.ar W u v w  As r
 
increase, , ,aW u v w

 
decreases. We are 

concerned to find the value 0r r
 
when the minimum value of , ,aW u v w  equal to zero. The 

derivative of aW  
in (6) with respect to u , v  and w

 
are given by,  

2 ,  2 ,  2 .a a aW W W
u aA r v bB r w cC r

u v w
                                                           (7) 

 

 

 

 

 

 

 

 

 

 

Figure 1 : Ball ordinates for , ,u v wW . 

Assume that a , b , c ,  and t  are fixed. At the minimum value of , ,aW u v w
 
we know that:  

0a aW W

u v
 and 0a aW W

u w
. (8) 

By substituting (7) into (8), we obtain 
1

u bB r

v aA r
 and 

u cC r

w aA r
. 
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Hence,  : :
3

1 1 1
: : .u v w

aA r bB r cC r
       

Since, we have obtained:  

1

1 1 1

1

1 1 1

1

1 1 1

aA ru

aA r bB r cC r

bB rv

aA r bB r cC r

cC rw

aA r bB r cC r

                                                                                                               (9) 

Substituting u , v and w  from (9) into (6), we obtain the minimum values of , , ,aW u v w  

1
( , , )

1 1 1aW u v w r

aA r bB r cC r

                                           (10) 

We choose a value 0r r  so that this minimum value of aW  
being zero. From (10) and 0,r

 
we 

know that, , , 0aW u v w
 
when 

1 1 1
1

1 1 1
aA bB cC

r r r

                                                            (11)
 

Put 
1

s
r

, 0s . Therefore, if s increase, then r  decreases. Thus, the left-hand side of (10) can be 

rewritten as 
                 

3

1 1 1

1 1 1

G s
saA sbB scC                                                            (12) 

If A , B  and C
 
are strictly positive, then 0

0

1
s

r
 is the solution of 1.G s

 
The first and second 

derivative of G
 
in (12) with respect to s are given by, 
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2 2 2

2 2 22 2 2

2 3 3 3

1

1 1 1

2

1 1 1

aA bB cC
G s

saA sbB scC

a A b B c C
G s

saA sbB scC

                                      (13)
 

 

Since , , 0A B C , , , , 0a b c  and 0r , so from (13) it is easy to show that for 0s , 0G s  

and 0G s . From above, clearly that G s
 
is a convex function, thus it must have a local 

minimum. So let max , ,
aA bB cC

M  and min , ,
aA bB cC

N . It is observed that 

3 3
( )

1 1
G s

Ms Ns
.
 
We have  

2
1G

M
 and 

2
1G

M
.                                                                       (14)

From (14), the roots of (12) would lie in the interval 
2 2

,
M N

. Figure 2 shows the form of G s , 

0s
 
and also shown relative locations of 

2

M
,
2

N
 and 0s . The value 0s  can be find by using the 

method false-position [10]. This value can be solved with estimate for the root would be the value of 

s  for which the line joining 
2

M
 and 

2

N
 has the value 1. 

 

 

Figure 2 : Function G s  for 0s  
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This iterative scheme is simple than calculating the roots of the cubic expression as done in paper 
[2]. All this discussion is summarized as below: 
 

Proposition 1. Consider the rational cubic Ball triangular patch , ,u v wW  with 

 3,0,0 0,3,0, ,b A b B  0,0,3 ,b C  and , , 0A B C . If 2,1,0 1,2,0 2,0,1 1,0,2 0,2,1 0,1,2 1,1,1 0, , , , , ,b b b b b b b r , 

where 0
0

1
r

s
 is the unique solution of (12) and 1G s  then , , 0aW u v w ,  , , 0u v w , 

1u v w . 
 

Note that, if any of the values of ,  A B  or  C  are zero,  0r  is assigned the value zero for that triangle. 

Remark 1. It is important to observe that the weight functions (free parameters) are used to refine the 
shape of surface. 

3 RESULTS AND DISCUSSION CONSTRUCTION POSITIVITY-PRESERVING INTERPOLATING 
SURFACE  

In this section, we discuss the construction of the positivity preserving interpolation surface by using 

rational cubic Ball triangular patch. Given a positive scattered data  , , 1, ,i ix y i N , we describe 

the construction of a C1 positivity preserving function ( , )F x y  with , , 1, ,i i iF x y z i N . We 

solve the problem following these three steps: 
 
3.1 Model and Data Triangulation 

Let D be the convex hull of , : 1, ,i i iV x y i N . We use Delaunay triangulation [11] to 

triangulate D where the data points are arranged at the vertices , 1,2, ,iV i N  of the triangles. 

3.2 Derivative Estimation 

Estimation of first order partial derivative, i.e. xF  and yF  at each vertex ,i i iV x y  in the triangulated 

domain D for surface F, is obtained by using the method proposed in [12]. These partial derivatives 

are used to find derivative in the direction of an edge of the triangle. Let 1 2 3VVV  be the given 

triangle whose edges are  , 1,2,3ie i  opposite to the vertices  , 1,2,3iV i  respectively. For each 

triangular patch W as in (1), the derivative in the direction of the triangle edge 3e  and 2e  at 1V  [13]  

is given by   

1 2 1 1 2 1 1
3

1 1 3 1 1 3 1
3

.

x y

x y

V x x F V y y F V
e

V x x F V y y F V
e

W

W
                                                  (15) 
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By considering (15), the directional derivative along edges 1e , 3e  at 2V  and along edges 1e , 2e  at 3V  

are defined in similar way.  
 

3.3 Calculation of Boundary Ball Ordinates 

From the given data together with the estimated derivatives values at ,i ix y  are used to assign 

initial values to all the Ball ordinates , ,i j kb  except for 111b . For example, we would have: 

3,0,0 1b F V , 
3,0,0

2,1,0 1 1
2,1,0 32

b F V V
e

W
, 

3,0,0
2,0,1 1 1

2,0,1 22
b F V V

e

W
            (16) 

Similarly, by considering the directional derivatives along the edges 1e , 3e  at 2V  and along the edges 

1e , 2e  at 3V , we obtain 

0,3,0 2b F V ,  
0,3,0

0,2,1 2 2
0,2,1 12

b F V V
e

W
,  

0,3,0
1,2,0 2 2

1,2,0 32
b F V V

e

W
          (17) 

0,0,3 3b F V , 
0,0,3

1,0,2 3 3
1,0,2 22

b F V V
e

W
,  

0,0,3
0,1,2 3 3

0,1,2 212
b F V V

e

W
.       (18) 

However, the initial estimate for each edge ordinate may not satisfy the positivity condition for W 
developed in Proposition 1. If they are not fulfilled, then the ordinates are modified by increasing the 
values of the free parameters  for any values of the free parameters a , b  and c . In such a way, the 
derived positivity conditions are satisfied: i.e., so that, for example, 

 and 
3,0,0 3,0,0

2,1,0 1 1 0 2,0,1 1 1 0
2,1,0 3 2,0,1 2

.
2 2

b F V V r b F V V r
e e

W W
 

Having adjusted these derivatives, if necessary, the Ball ordinates are recalculated using the formulae 
above. The free parameters  are local to each triangle, so that any changing value of parameters 
would not affect the C1 continuity at vertices. 
 
3.4 Calculation of Inner Ball Ordinates 

Next, the inner Ball ordinated for each triangle remains to be calculated to ensure C1 continuity across 
boundaries and to preserve positivity. We use similar methods in [10] where the calculation of inner 
ordinates is determined by local scheme proceeds as follows: 

(i) We determine  111, 1,2, 3b , so that the C1 condition on the along a triangle edge boundary is 

satisfied and a local patch , 1,2,3W  is defined by replacing 111b  in (1) with 111b . 

(ii) Convex combination is then used to blend these three local patches , 1,2,3W ,  so that 

conditions on all sides of the triangle are satisfied.   

From the given data together with the estimated derivatives values at ,i ix y  are used to assign 

initial values to all the Ball ordinates. 
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Figure 3 : Inward normal direction to the edges of triangle T 

 

Let 1 1 2 3T VVV  and 2 1 2 3T UU U  be two adjacent cubic Ball triangular patches with a common 

boundary curve. Assume that,  , 1,2,3i in  be the barycentric inward vectors to the edges 2 3VV ,  

3 1VV , 1 2VV . Let ie  denoted as the side opposite the vertex iV  from 1iV  to 1iV  (where indices are 

always taken modulo 3) as shown in Figure 3 [11] which are given by 

1 1 1 2 2 2 3 3 31, 1, ,  ,1, 1 ,  1, ,1h h h h h hn n n .                                            (19) 

where  

3 1 1 2 2 3
1 2 32 2 2

1 2 3

, , .
e e e e e e

h h h
e e e

 

If 1 2 3( , , )d  is a barycentric vector, the directional derivative of rational cubic Ball surface W  

with respect to d  is given by 

1 2 3, ,u v w
u v w

W W W W

d
                    (20) 

Hence, by using Equations (1), (19) and  (20) we can define the normal derivative of  local scheme 

W  at edge 1 ( 0, 1)e u v w  along 1n  is 
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1 1
1

4 4 3 3 2 2 2 2 2
1 1 1 1 1 1 1

2 3 3 4 4
1 1 1 1

22 2 2 2
0,3,0 0,2,1 0,1,2 0,0,3

0, , 1 1

2 4 2 4 2 2 2

4 2 4 2

2 2

v w h h
u v w

Av B v w C v w D v w E v w F v w G vw

H v w I vw J vw K w

v v w vw w

W W W W

n

          (21)     

where 

1 0,3,0 1,2,0 0,3,0 1,2,0 1 0,2,1 0,3,0 0,2,1

1 0,2,1 1,2,0 1,2,0 0,2,1

1 0,3,0 1,1,1 0,3,0 1,1,1 1 0,1,2 0,3,0 0,1,2

1 1,1,1 0,2,1 1,1,1 0,2,1 1,2,0 0,1,2 1,2,0 0,1,2 1 0,1,2

,

,

3 2 2 ,

3

A b b h b b

B b b

C b b h b b

D b b b b h b b

  

0,2,1 0,1,2 0,2,1

1 1 0,0,3 0,3,0 0,0,3 0,3,0

1 0,1,2 0,3,0 0,3,0 0,1,2 1,0,2 0,3,0 1,0,2 0,3,0 1,2,0 0,0,3 1,2,0 0,0,3

1 0,0,3 0,2,1 0,0,3 0,2,1 0,1,2 0,3,0 0,1,2 0,3,0

1 0,0,3 0,3

,

,

,

E h b b

F b b b b b b

h b b b b

G

  

,0 0,0,3 0,3,0 1 0,0,3 0,3,0

1 1,1,1 0,1,2 1,1,1 0,1,2 0,1,2 0,2,1 0,1,2 0,2,1 1,0,2 0,2,1 1,0,2 0,2,1

1 0,1,2 0,2,1 0,1,2 0,2,1

1 0,0,3 0,0,3 0,2,1 0,2,1 1,1,1 0,0,3 1,1,1 1 0

,

3

,

2 3 2

b b h b b

H b b b b b b

h b b

I b b b b h b ,0,3 0,2,1 0,2,1

1 1,0,2 0,1,2 1,0,2 0,1,2

1 0,0,3 0,0,3 0,1,2 0,1,2 1,0,2 0,0,3 1,0,2 1 0,0,3 0,1,2 0,1,2

2 ,

,

.

b

J b b

K b b b b h b b
 

By substituting barycentric coordinates 0,1, 0  on 2V , 0, 0,1  on 3V  and 0, 0.5, 0.5  between 

2 3VV  into (21), we get        

1
2

1
0,3,0

2
0,1, 0

AW

n
,               (22) 

1
2

1
0,0,3

2
0, 0,1

KW

n
,               (23) 
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1 1 1 1 1 1 1 1 1 1 1

2
1

0,3,0 0,2,1 0,1,2 0,0,3

2 2 2
0, 0.5, 0.5 .

A B C D E F G H I J KW

n
       (24) 

From Equations (22) – (24),  this inward normal derivative varies linearly along the edge in order to 

ensure C1 continuity on 1e . This is true when the following relation is satisfied: 

1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2

0,3,0 0,2,1 0,1,2 0,0,3 0,3,0 0,0,3

2 2 2
.

A B C D E F G H I J K A K                 (25) 

Hence, the value of 1
1,1,1b  from (25) can be determined as 

2 1 1
1 1 1,2,0 1,2,0 1,0,2 1,0,2 2 0,3,0 0,3,0 3 0,2,1 0,2,1

0,3,0 0,0,3

4 0,1,2 0,1,2 5 0,0,3 0,0,31
1,1,1

1 1,1,1

1

2

3

A K
b b b b

b b
b    (26) 

where 

1 0,3,0 0,2,1 0,1,2 0,0,3

2 0,1,2 1,0,2 1,2,0 0,3,0 1,1,1 1 0,2,1 0,1,2 0,0,3

3 0,1,2 1,0,2 1,2,0 0,0,3 1,1,1 1 0,0,3 0,1,2 0,3,0

4 0,0,3 1,0,2 1,2,0 1,1,1 0,2,1

,

2 3 3 4 ,

2 3 3 2 ,

3

h

h

0,3,0 1 0,0,3 0,2,1 0,3,0

5 1,0,2 1,2,0 1,1,1 0,1,2 0,2,1 0,3,0 1 0,1,2 0,2,1 0,3,0

2 3 ,

3 2 2 3 4 .

h

h

 

 

Similarly, 2
111b  and 3

111b  are defined by the same way for local schemes 2W  and 3W . If an inner Ball 

point  111, 1,2, 3b  fails to satisfy the positivity condition, it is modified according to Proposition 1 

by changing the value of free parameter 111 . The value 111  is obtained by considering the minimum 

value for which, 1,2, 3  that would guarantee satisfaction of the positivity conditions for all 

triangles.  
 

3.5 C1 Continuity Across Patch Boundaries 

Consider two adjacent rational cubic Ball triangular patches with the same boundary curve along the 

common edge of the domain triangles. Let 1 1 2 3T VVV  and 2 1 2 3T UU U be two adjacent domain 

triangles with 2 2V U  and 3 3V U . Figure 4 shows two rational cubic Ball triangular patches, 

1 , ,u v wW  and  2 , ,u v wW , joined at the common boundary curve 1 20, , 0, ,v w v wW W   

where 0u . 
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Figure 4 : Two adjoining domain triangles 

 

Suppose that two rational cubic Ball triangular patches 1 , ,u v wW  and 2 , ,u v wW  on 1T  and 2T  

have weights , ,i j k  and , ,i j k  attached with Ball ordinates , ,i j kb  and , ,i j ka , respectively, as shown in 

Figure 4. The condition for the C1 continuity along the common boundary of two adjacent Ball patches 

should be expressed in terms of constraints on the control points. We use similar method as in  [12] 

to obtain the  conditions for smooth joining of these surface patches. The idea is to calculate three 

vectors that are tangent to the surface at the common boundary curve. Therefore, for two Ball patches 

to achieve C1 continuously along the common edge 2 3  ( 0)VV u  we require 

 

and  

                                                 1 20, , 0, ,
l m

D v w D v wd dW W  

where ld  and md  are the barycentric vectors of a direction d  with respect to 1 2 3VVV  and 

1 2 3UU U , respectively. These yields 

1 20, , 0, ,v w v wW W
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1,0,2 1,0,2 1,0,2 0,0,3 0,0,3 0,1,2 0,1,2
1,0,2

1,1,1 1,1,1 1,1,1 0,1,2 0,1,2 0,2,1 0,2,1
1,1,1

1,2,0 1,2,0 1,2,0 0,2,1 0,2,1 0,3,0 0,3,0
1,2,0

1
   ,

1
   ,

1
   ,

a u b v b w b

a u b v b w b

a u b v b w b

                         (27) 

and   

1,0,2 1,0,2 0,0,3 0,1,2

1,1,1 1,1,1 0,1,2 0,2,1

1,2,0 1,2,0 0,2,1 0,3,0

   ,

   ,

   ,

u v w

u v w

u v w

                            (28) 

where ,  u v  and w  are the barycentric coordinates of 1U  with respect to 1 2,  V V  and 3V , i.e., 

1 1 2 3.U uV vV wV  

  

3.6 Interpolating Triangular Surface 

The interpolating surface W  on triangle T is defined as a convex combination of all the three patches 

 , 1,2,3,W   such that sufficient conditions on all sides of the triangles are satisfied as below:  

     1 1 2 2 3 3T c c cW W W W  

with  

  
    

2 2 2 2 2 2

1 2 32 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
, ,

v w u w u v
c c c

v w u v u w v w u v u w v w u v u w
 

where u ,  v  and w  are the barycentric coordinates. 

4 NUMERICAL EXAMPLE AND DISCUSSION 

In this section, we would construct a positivity preserving interpolating scheme developed in Section 
2 through several numerical examples are presented. Let  ,a b  and c  denote the free parameters of 

Ball ordinates at vertices 1V , 2V , 3V  and  refer to as the free parameters at the other boundary 

Ball ordinates. Here, we test with the various values of free parameters that is 0 , , , 1a b c  in 

order to generate an interpolating surface.  We illustrate the effect of free parameters, , ,a b c  and  

on the shape of a surface, graphically. When all free parameters are set as equal to 1,  from Equation 

(1), we obtain a  non-rational cubic Ball surface. 
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Example 4.1: 36 points samples is generated by the following function were given in Table A.1 
(Appendix A). 

2 2

1
1

, exp 20.25 0.5 0.5
3

F x y x y ,  , 0,1 0,1x y
 

This function 1 ,F x y  is taken from [16]. We generate the positive data points in the domain 

0,1 0,1 . The triangulation of the domain is illustrated in Figure 5 (a). The linear interpolant to 

the data is shown in Figure 5 (b). As a comparison, Figure 6 (a) shows the C1 interpolating surface 
generated without applying the positivity conditions, while Figure 6 (b) presents xz -view of 6 (a). 
We observe that interpolating surface does not preserve the positive surface. Figure 7 (a) – 7 (d) are 
produced by using a C1 positivity preserving rational cubic Ball triangular patch. This scheme 
generates an interpolating C1 triangular surface by assigning four different values to free parameters, 
, ,a b c  and .  By satisfying Proposition 1 in Equation (29), the positivity is preserved. 

 

      

Figure 5 : (a) Delaunay triangulation of domain for 1( , )F x y  (b) Linear interpolant for data 

 

 

       

Figure 6 : (a) Interpolating surface without positivity conditions (b) xz -view 
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(a) 0.2a b c  and 0.5  

 

(b) 0.4a b c  and 0.6  

 

(c) 0.6a b c  and 0.8  
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(d) 0.8a b c  and 0.9  

 

Figure 7 : Positivity preserving surface using rational cubic Ball interpolation for 1( , )F x y  with different values 

of free parameters. 

 

Example 4.2:  The function  comprises 36 data points sampled from data set taken from  [17]  is given 

in Table A.2 (Appendix A). 

 

 

 

2 2
2

2 2

1.0 ( ) 0.5

2( ) 0.5 ( ) 0.0

, ,cos 4 ( 1.5) ( 0.5) 1 1
( 1.5) ( 0.5)

2 16
0

if y x

y x if y x

F x y x y
if x y

otherwise

 

The positive data points are generated from the above positive function with the domain as 

, 0,2 0,1x y . Example 4.2 shows similar behavior as in Example 4.1. Figure 8 (a) shows the 

triangulation of the domain and the linear interpolant to the data is shown in Figure 8 (b). Figure 9 

(a) gives an interpolating surface that has negative value. It can be seen from xz -view as shown in 

Figure 9 (b). To overcome these flaws, the surfaces in Figure 10 (a) – 10 (d) are generated by the 

proposed positivity scheme with four different values of free parameters, , ,a b c  and  to preserve 

the positivity of data everywhere.    
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Figure 9 : (a) Interpolating surface without positivity conditions (b) xz -view 

 

  

(a) 0.2a b c  and 0.5  

  

Figure 8 : (a) Delaunay triangulation of domain for 2( , )F x y  (b) Linear interpolant for data 
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(b) 0.4a b c  and 0.6  

  

(c) 0.6a b c  and 0.8   

  

(d) 0.8a b c  and 0.9  

 

Figure 10 : Positivity preserving surface using rational cubic Ball interpolation for 2( , )F x y  with different 

values of free parameters. 
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The result of the experiment is tested by choosing the values of free parameter within interval 0 to 1 

to ensure that surface comprising of triangular patch is always positive. From the Figures 6 and 9 are 

illustrate different parameter’s values in the free parameters at vertex , ,a b c  and at boundary . 

These surfaces satisfy the positivity of interpolating function when given positive data. Figure 7 (c) – 

7 (d) and Figure 10 (c) – 10 (d) show a smoother surface compared to Figure 7 (a) – 7 (b) and Figure 

10 (a) – 10 (b), respectively. A positivity preserving surface of rational cubic Ball can be obtained. 

5 CONCLUSION 

A C1 rational cubic Ball triangular patch that involves weights (free parameters) has been constructed 

in this paper to preserve the positivity of triangular surface. The given examples suggest that the 

proposed interpolating scheme produces smooth graphical results and preserves the shape of 

positive data. In this study, we tested various values of free parameters, , ,a b c  and  on the regions 

of the surface. The selection of these values parameters is dependent on designer's choice for the 

refinement of positive surface as desired. Here, we conclude that the proposed scheme has 

advantages compared to existing scheme such as [1] and [3] as the proposed scheme involved the 

weight functions (free parameters). In any triangular patch if the Ball ordinates do not satisfy the 

derived conditions of positivity, then they can be modified by changing the free parameters to assure 

the positivity of triangular patches is achieved. The shape violations are found and the positivity 

preserving interpolants are also achieved. In the future, we would try to extend this study to optimize 

the weights (free parameters) of the surface by using optimization method to find the best values of 

the weights. 

ACKNOWLEDGEMENT 

The authors would like to extend their gratitude to the Institut Matematik Kejuruteraan, Universiti 
Malaysia Perlis for supporting this research. The authors are grateful to the anonymous referee for 
checking the details and for helpful comments that improved this paper. 

REFERENCES 

[1] A. R. M. Piah, T. N. T. Goodman, and K. Unsworth, “Positivity-Preserving Scattered Data,” in 
Proceedings of the 11th IMA Mathematics of Surfaces Conference,  vol. 3604, no. Springer, Berlin, 
pp. 336–349, 2005. 

[2] E. S. Chan and B. H. Ong, “Range restricted scattered data interpolation using convex 
combination of cubic Bezier triangles,”. Comput. Appl. Math., vol. 136, pp. 135–147, 2001. 

[3]        V. Kong, B. Ong, and K. Saw, “Range Restricted Interpolation Using Cubic Bézier Triangles,”  

Proc. WSCG, Plzen, Czech Republic, Feb. 2–6, 2004. Union Agency–Science Press, 2004. [Online]. 

Available:http://eprints.usm.my/6904/1/Range_restricted_interpolation_using_cubic_bezie 

r_triangles.pdf 



Siti Jasmida Jamil et al./ C1 Rational Cubic Ball Triangular Patch for Positivity Preserving… 

149 

 
[4] M. Z. Hussain and M. Hussain, “C1 Positive Scattered Data Interpolation,” Comput. Math. with 

Appl., vol. 59, no. 1, pp. 457–467, Jan. 2010. Jan. 2010, doi: 10.1016/j.camwa.2009.06.019. 

[5] M. Z. Hussain and M. Hussain, “C1 positivity preserving scattered data interpolation using 
rational Bernstein-Bézier triangular patch,” J. Appl. Math. Comput., vol. 35, no. 1–2, pp. 281–
293, Nov. 2011, doi: 10.1007/s12190-009-0356-0. 

[6] M. Hussain, M. Z. Hussain, and M. Buttar, “C1 positive Bernstein-Bézier rational quartic 

interpolation,” International Journal of Mathematical Models and Methods in Applied Sciences, 

vol. 8, no. 1, 2014. 

[7] S. A. A. Karim, A. Saaban and V. T. Nguyen, “Scattered Data Interpolation Using Quartic 

Triangular Patch for Shape-Preserving Interpolation and Comparison with Mesh-Free 

Methods,” Symmetry, vol. 12, no. 1071, 2020. 

[8] Y. Zhu and X. Han, “A Class of -Berstein- Bézier Basis Functions Over Triangular Domain,” 

App. Math. Comput., no. 220, pp. 446–454, 2013. 

[9] N. N. C. Draman, S. A. A. Karim and I. Hashim, “Scattered Data Interpolation Using Rational 

Quartic Triangular Patches with Three Parameters,” IEEE Access, 8, 44239–44262, 2020. 

[10] S. D. Conte and de B. Carl, Elementary Numerical Analysis. McGraw-Hill, Tokyo, 1972. 

[11] T. P. Fang and L. A. Piegl, “Algorithm for Delaunay triangulation and convex-hull computation 
using a sparse matrix,” Comput. Des., vol. 24, no. 8, pp. 425–436, 1992. 

[12] T. N. T. Goodman, “Local Derivative Estimation for Scattered Data Interpolation,” Appl. Math. 
Comput., vol. 68, pp. 41–50, 1995. 

[13] T. N. T. Goodman and H. B. Said, “A C1 triangular interpolant suitable for scattered data 
interpolation,” Communications in Applied Numerical Methods, vol. 7, no. October 1990, pp. 
479–485, 1991. 

[14] L. Chang and H. Said, “A C2 triangular patch for the interpolation of functional scattered data,” 

Computer-Aided Design, vol. 29, no. 6, pp. 407–412, Jun. 1997, doi: 10.1016/S0010-

4485(96)00068-1. 

[15] D. Salomon, Curve and Surfaces for Computer Graphics. New York: Springer United State., 2006. 

[16] R. J. Renka and R. O. N. Brown, “Algorithm 792 : Accuracy Tests of ACM Algorithms for 
Interpolation of Scattered Data in the Plane,” ACM Transactions on Mathematical Software, vol. 
25, no. 1, pp. 78–94, 1999. 

[17] P. Lancaster and P. K. Salkauskas, Curve and Surface Fitting: An Introduction. Academic Press, 
NewYork, 1986, p. 150.  



Applied Mathematics and Computational Intelligence 
Volume 12, No. 2, Aug 2023 [130-150] 

 

150 

APPENDIX 

Table A.1: Positive surface data set of 36 points 

x  y  1 ,F x y  x  y  1 ,F x y  

0 0 0 0.8000 0.8500 0.00450 
0.5000 0 0.0021 0.8500 0.6500 0.0177 

1 0 0 1 0.5000 0.0021 
0.1500 0.1500 0.0023 1 1 0 
0.7000 0.1500 0.0124 0.5000 1 0.0021 
0.5000 0.2000 0.0539 0.1000 0.8000 0.0021 
0.2500 0.3000 0.0418 0 1 0 
0.4000 0.3000 0.1211 0.2500 0 0.0006 
0.7500 0.4000 0.0768 0.7500 0 0.0006 
0.8500 0.2500 0.0079 0.2500 1 0.0006 
0.5500 0.4500 0.3012 0 0.2500 0.0006 

0 0.5000 0.0021 0.7500 1 0.0006 
0.2000 0.450 0.0512 0 0.7500 0.0006 
0.4500 0.550 0.3012 1 0.2500 0.0006 
0.6000 0.650 0.1726 1 0.7500 0.0006 
0.2500 0.700 0.0418 0.1900 0.1900 0.0068 
0.4000 0.8000 0.0434 0.3200 0.7500 0.0488 
0.6500 0.7500 0.0596 0.7900 0.4600 0.0588 

 

Table A.2: Positive surface data set of 36 points 

x  y  2 ,F x y  x  y  2 ,F x y  

0 0 0 1.4000 0.3000 0.0272 
0.2000 0.2000 0 1.7500 0.4500 0 
0.5000 0.2000 0 1.2000 0.4500 0 
0.4000 0.4000 0 1.4500 0.5000 0.9045 
0.7500 0.3500 0 1.6000 0.3000 0.02729 

0 0.5000 1 1.2500 0.7000 0 
0.2500 0.5000 0.5000 1.4000 0.8000 0 
0.2500 0.7500 1 1.6500 0.7500 0 
0.5500 0.7500 0.4000 2 1 0 
0.7000 0.6000 0 1.2500 0 0 
0.5000 1 1 1.7000 0 0 

0 1 1 1.2500 1 0 
0.3500 0 0 1.7000 1 0 
0.8000 0 0 2 0.3500 0 
0.1000 0.8500 1 2 0.7000 0 

0 0.2500 0.5000 1.0500 0.2000 0 
0.8000 1 0.4000 1 0.5000 0 

2 0 0 0.9500 0.8000 0 

 


