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ABSTRACT

Hill Cipher’s System and its modifications are still practiced mainly in sending a secret
message involving images. One drawback that the recipient of the message is trying to
overcome is to get the decryption key from the cipher text to plain text during the decryption
process. Previous studies have proven that using self-invertible keys can reduce the complexity
to obtain this key. This paper generates a self-invertible matrix based on Integer-Entry Matrix
with all Integer Eigenvalues (IMIE). Subsequently, we executed it into Cipher Polygraphic
Polyfunction Cryptosystem and observed the effect. We noticed that when the self-invertible
key was employed during even-th transformations, the system became vulnerable to adversary
attacks due to recurrence results. It is unnecessary to alter the original message through
odd-th transformations, as this process only retrieves the original message.
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1 INTRODUCTION

Cryptography is the study of securing data by converting it into an unreadable form known as
cipher text via an encryption process that can be classified into two categories, known as symmetric
cipher and asymmetric cipher. It is a process for storing and transmitting data in a way only
the designated receiver may access to achieve the information security goals of secrecy, integrity,
authentication and nonrepudiation. Applied Mathematics, Computer Science, Physics, Electrical
Engineering and Communication Science are all incorporated into modern cryptography. Nowadays,
number theory, algebra and probability are the three branches of Mathematics most frequently
employed in cryptography. Modern computing systems now place a high priority on information
security. There is no doubt that most of the data and other sensitive information will be regularly
fabricated, changed and formatted by system attackers if security precautions are not taken. Some
current cryptographic algorithms that can protect information, data or communications include
the Advanced Encryption Standard (AES), Data Encryption Standard (DES), Gosudarstvennyi
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Standard (GOST), and Rivest–Shamir–Adleman (RSA) algorithms.

Cryptography encompasses two primary classifications: symmetric and asymmetric keys cryptog-
raphy. Symmetric key further divides into classical and modern cryptography. In the realm of
classical cryptography, we encounter transposition cipher and substitution cipher. On the other
hand, modern cryptography comprises stream cipher and block cipher. Symmetric key cryptography
employs a shared secret key for both plaintext encryption and ciphertext decryption. While the keys
may be identical, a simple transformation process might be required to transition between them.
Hill Cipher, a renowned symmetric key scheme, is a linear transformation acting on a message
space consisting of m-dimensional vectors of integers [1]. A plaintext string, comprising characters
from an alphabet of order m, is rewritten as a vector over Zm using a natural correspondence [2].

According to [3], in the Hill Cipher method, the numerical representation of plaintext is often
structured as a matrix P with d rows. Here, d is an arbitrary positive integer chosen for the purpose.
To encrypt the plaintext, a key matrix K is selected, and the resulting ciphertext C is obtained
through the following process:

C ≡ KP (mod N)

where N is a positive integer. To decrypt the ciphertext and convert the resulting matrix back into
a string using the same alphabet, the decryption process is performed as follows:

P ≡ K−1C (mod N)

where K−1 is the inverse of K in modulo N .

In the realm of Hill Cipher cryptography, employing involutory matrices as secret keys can signifi-
cantly simplify the decryption process. An involutory matrix is a square matrix with the unique
property that its inverse is equivalent to the matrix itself. This characteristic eliminates the require-
ment to find the inverse of the key matrix during decryption. The process of obtaining the inverse
key matrix in invertible cases can be challenging, often involving elementary row operations and
the concept of modular multiplicative inverse within modular arithmetic. By leveraging involutory
matrices, we can streamline the Hill Cipher encryption and decryption procedures [4, 5]. [6] have
unfolded some methods of generating any dimension of the self-invertible matrix to be used in Hill
Cipher. These techniques were implemented in modified Hill Cipher system such as in [7–16].

[11] proposed a two-stage Hill Cipher, including selecting square blocks to manipulate a self-invertible
matrix. The objective of this proposition was to regulate the amount of encryption of pixel changing
rate. To achieve this, the researchers employed the Latin Square Image Cipher method to create a
basic block of self-invertible matrix. They further compared the encryption information between
two-stage and four-stage Hill Cipher techniques to improve the camera’s intelligence and expand
the scope of applicable fields. By doing so, they aimed to enhance the efficiency and versatility of
their encryption approach in image processing applications.

Cipher Polygraphic Polyfunction presented in [13] is a modification of the Hill Cipher technique in
modern cryptography. It was built on the system using three symbols or letters and more than one
transformation of the original message. The modular arithmetic of a key matrix plays an important
role in the encryption and decryption processes. A crucial aspect of the encryption process is to get
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the inverse matrix for self-invertible matrices. [12] found some solutions for L3
2×2 ≡ A2×2 (mod N),

where the self invertible marix can be generated by L2×2 via Type 1 method [6]. To enhance the
security of Cipher Tetragraphic Trifunction (CTetraTri), some patterns of L2×2 as generator key
should be avoided before implementing CTetraTri since they are easily attacked by a third party.
Meanwhile, [13] also faced the same effects on Cipher Hexagraphic Polyfunction (CHexaPoly) when
they implemented a self-invertible encryption key for each transformation. This key is generated by
L3×3 using Type 2 method [6] where L2

3x3 ≡ A3×3 (mod N).

Furthermore, [14] gave some solution of L2
2×2 ≡ A2×2 (mod N) and generated suitable self-invertible

matrices from L2×2 through Type 2 method [6]. This reduced the complexity of finding the
decryption key in CTriPoly.

Although the Hill Cipher algorithm is one of the symmetric methods that provide a simple structure
and quick computations, it has a low level of security since the transmitter and receiver must use
and exchange the same private key through insecure channels. Thus, [15] proposed the combination
of Elliptical Curve Cryptography over a binary field and Hill Cipher as a new grayscale image
encryption method. The self-invertible matrix implemented using the Type 1 method [6] in this
research expedites the decryption process for grayscale images with a resolution of 128× 128. This
is achieved by removing the need to calculate the inverse of the key matrix, resulting in a robust
key that thwarts attackers and offers enhanced security, as the key need not be shared with others.

[16] introduced a novel image encryption method incorporating a three-dimensional conservative
system characterized by hyperbolic functions. The dynamical properties of the proposed system are
analysed through Lyapunov exponents and bifurcation diagrams. A 4×4 self-invertible matrix-based
Type 1 [6] is designed using a modified Diffie-Hellman key exchange protocol to generate the key
matrix K. The image encryption approach consists of three primary stages. In the first stage, the
proposed three-dimensional system utilizes the original image to generate three sequences, two of
which are employed for confusion and diffusion processes. The second stage involves pixel position
alteration to introduce confusion. Lastly, in the third stage, the 4× 4 sub-blocks of the confused
image are encrypted by multiplying them with K. Simulation results demonstrate that the proposed
image encryption scheme exhibits a high level of security and resistance against statistical analysis,
noise, and various attacks.

The highlights of the above study focus on using self-invertible keys to reduce the complexity
to obtain inverse keys and improve the security system in Hill Cipher and its extension. In this
paper, we re-used the Type 3 method proposed by [6] to generate these keys. An issue that arises
pertains to the identification of specific characteristics inherent to diagonal matrices that render
them non-singular and meet the prerequisites for self-invertible matrices (A4×4) prior to utilizing
matrix A as the encryption key within the Cipher Polygraphic Polyfunction.

The organization of this paper is as follows. Section 1 describes the implementation of the self-
invertible matrix in Hill cipher and its variant with some advantages. In Section 2, the preliminaries
of this study are presented. Meanwhile, Section 3 compares the number of invertible and self-
invertible matrices in modulo a prime number. This was followed by a discussion on generating
a self-invertible matrix based on Integer-Entry Matrix with All Integer Eigenvalues (IMIE). The
effect of using this new self-invertible as an encryption key in Cipher Polygraphic Polyfunction is

15



Yunos et al./Self-Invertible Key on Cipher Polygraphic Polyfunction with Eigen Matrix based IMIE

discussed in Section 4. The concluding section contains a summary of the paper.

2 PRELIMINARIES

The following are some notations to be considered in this paper:

Plaintext is the ordinary message delivered to the receiver [17]. P refers to the corresponding
number in the plaintext, such as A = 0, B = 1, C = 2,..., Z = 25. The plaintext would be arranged
in matrix form Pi×j . For example, the corresponding number sequence of plaintext O P T I M I Z
A T I O N is 14 15 19 08 12 08 25 00 19 08 14 13, which are arranged by matrix 4 by 3 given by

P4×3 =


14 15 19
08 12 08
25 00 19
08 14 13


Ciphertext is the encrypted message sent to the recipient [18]. C

(t)
i×j is an equivalent numbers sequence

with ciphertext based on ith row and jth column matrix at t - transformation for t = 1, 2, 3, . . . . Let

C
(1)
i×j = Ci×j [12, 13]. For example, the corresponding number of ciphertext P Q R S T U produced

by the third transformation is 15 16 17 18 19 20 arranged by a matrix having 2 rows and 3 columns

given by C
(3)
2×3 =

[
15 16 17
18 19 20

]
.

Encryption refers to the process of implementing transformations on plaintext, to generate an
altered version called ciphertext. This process is carried out following a specific encryption algorithm
and making use of a chosen key. The resultant ciphertext maintains confidentiality and security,
primarily when transmitted or stored in insecure environments. Encryption key Ai×i is arranged
based on matrix ith row and ith column while A−1

i×i is the inverse matrix for Ai×i such that |Ai×i| ≠ 0
[12, 13]. In contrast, decryption is the procedure that enables the conversion of ciphertext back into
its original form, known as plaintext. This process necessitates the use of a decryption algorithm
and the corresponding key. Unlike encryption, which may employ a public key to encrypt plaintext
into ciphertext, decryption requires a secret key to perform the reverse operation, transforming the
ciphertext into the original plaintext.

The cryptosystem that we will focus on in this research is constructed based on Cipher Polygraphic
Polyfunction as follows:

Theorem 1. [13] Let Cipher Polygraphic Polyfunction Transformation be defined as:

C
(t)
i×j ≡ At

i×iPi×j (mod N)

where t ∈ Z+ and Ai×i act as an encryption key. Assume that the determinant for Ai×i is not zero
and gcd(|Ai×i|, N) = 1. Then, Pi×j have a unique solution and the decryption algorithm is given
as follows:

Pi×j ≡ (A−1
i×i)

tC
(t)
i×j (mod N)

where the decryption key A−1
i×i is the inverse matrix of Ai×i.
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Remark:

1. For the decryption process, the determinant of Ai×i must be non-zero to assure that A has an
inverse. There is a possibility that Ai×i is self-invertible. This ensures the plaintext is unique
with condition gcd(|Ai×i|, N) = 1.

2. If i = 3, i = 4, i = 5, and i = 6, then the above system is denoted as Cipher Trigraphic Poly-
function (CTriPoly), Cipher Tetragraphic Polyfunction (CTetraPoly), Cipher Pentagraphic
Polyfunction (CPentaPoly) and Cipher Hexagraphic Polyfunction (CHexaPoly), respectively.
If Ai×i ≡ A−1

i×i (mod N), then Ai×i is considered self-invertible matrix, where A−1
i×i represents

an inverse of Ai×i (mod N) [12], [13].

3. N is not necessarily a prime number.

4. An i×i matrix A is diagonalizable if there is an invertible i×i matrix B such that D = B−1AB
is a diagonal matrix. The matrix B is said to be diagonalized A.

3 GENERATION OF SELF-INVERTIBLE MATRIX

The following theorems can compare the total number of invertible and self-invertible matrix.

Theorem 2. [2], [19] The number of d× d invertible matrices over ZN for a prime N is

|GL(d,ZN )| =
d−1∏
i=0

(Nd −N i).

Theorem 3. [2] For a d× d integer matrix X, the number of solutions of X2 ≡ I (mod Na+1) for
an odd prime is given by

T (d,Nα+1) =

d∑
t=0

(
gd

gtgd−t
N2t(d−t)a

)
where α ≥ 0 and gt is given by

gt = N t2
t∏

i=1

(1–N−i) =

t−1∏
i=1

(N t–N i),

for 0 < t ≤ d and g0 = 1.

Example 1. We obtained the number of 4× 4 invertible matrices for Z13 by using |GL(4,Z13)| =∏3
i=0(13

4 − 13i) = 610296923230525440. Meanwhile, the number of self-invertible matrices can be

found by T (4, 13) =

4∑
t=0

(
g4

gtg4−t

)
= 898990432 with gt = 13t

2 ∏t
i=1(1− 13−i).

Since the self-invertible can be manipulated to reduce computation time for the decryption process,
in this section, we want to find a way to generate such a matrix before implementing it in a Cipher
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Polygraphic Polyfunction cryptosystem. We begin with choosing such a matrix which is IMIE
defined as follows:

Definition 1. [20] A matrix A is an IMIE if it is an integer-entry matrix with (all) integer
eigenvalues. In other words, the polynomial of A factors completely over Z.

[20] introduced a simple method to construct such a matrix from a predetermined set of eigenvectors.
Concisely, to construct A = BDB−1 which is IMIE, where D is a diagonal matrix whose diagonal
entries are the eigenvalues of A while the column of matrix B that is an invertible matrix form
as the basis of eigenvectors for A. According to the following theorem, matrix B (with a specific
determinant) and its inverse can be found from the outer product of two vectors.

Theorem 4. [20] Given two i-vectors −→u , −→v ∈ Zi with −→u · −→v = β, B = I +−→u−→v T has determinant
B = 1 + β. In addition, if β ̸= −1, then B−1 = I − 1

1+β
−→u−→v T , where −→u−→v T is the i × i outer

product of matrix and −→v T is the transpose of the vector −→v .

Based on Theorem 4, it has produces two corollaries which are:

Corollary 1. [20] Given two i-vectors −→u ,−→v ∈ Zi with −→u ·−→v = −2, the matrix B−1 = B = I+−→u−→v T

is integral and involuntary, where B = B−1.

Corollary 2. [21] Given two i-vectors −→u ,−→v ∈ Zi which are orthogonal, the matrix B = I +−→u−→v T

has det(B) = 1 and its inverse B−1 = I −−→u−→v T .

However, in this paper, we only focus on Corollary 2 to produce an eigenmatrix A, which is IMIE
when δ = det(B) = 1. This follows from the idea obtained from the following theorem:

Theorem 5. [20] Let B be an i× i integer matrix with determinant δ not equal to 0. Let D be
a diagonal matrix whose diagonal entries are all integers that are mutually congruent modulo δ.
Then, A = BDB−1 is an integer matrix.

Concisely, let B ∈ GLi(Z) and D = (λ1, ..., λi) with eigenvalues λj ∈ Z. If λ1 ≡ λ2 ≡ λ3 ≡ ... ≡ λi

mod δ, then BDB−1 is a diagonalizable IMIE. This implies that λj = ±1 because δ = 1. Now, we
proceed with the following algorithm to generate a matrix, A. Steps 1 until 3 will guide us to find
matrix B and its inverse using Corollary 2. Meanwhile, the last step is to find the eigenmatrix, A,
by applying Theorem 5. Hence, such matrix is self-invertible since A−1 = (BDB−1)−1 = A (refer
Type 3 in Appendix).

Algorithm 1.

1. Choose vectors −→u and −→v that are orthogonal where the inner product of −→u and −→v are equal
to 0.

2. Compute matrix B by B = I +−→u−→v T .

3. Compute its inverse by B−1 = I −−→u−→v T .

4. Generate self -invertible matrix (A) using A ≡ BDB−1(mod N) .
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Example 2. Let −→u ≡


9
3
1
3

 and −→v ≡


2
4
7
5

 be two vectors in modulo 26.

The self-invertible matrix A can be found through the following steps:

Step 1
The inner product of −→u and −→v is 0. Therefore, they are orthogonal.

Step 2
Compute the outer product as follows:

−→u−→v T ≡


9
3
1
3

 [
2 4 7 5

]
≡


9(2) 9(4) 9(7) 9(5)
3(2) 3(4) 3(7) 3(5)
1(2) 1(4) 1(7) 1(5)
3(2) 3(4) 3(7) 3(5)

 ≡


18 10 11 19
6 12 21 15
2 4 7 5
6 12 21 15

 (mod 26).

Next, we compute B = I +−→u−→v T , which yields:

B ≡


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+


18 10 11 19
6 12 21 15
2 4 7 5
6 12 21 15

 ≡


19 10 11 19
6 13 21 15
2 4 8 5
6 12 21 16

 (mod 26)

where |B| = 1.

Step 3
Find B−1 = In −−→u−→v T as follows:

B−1 ≡


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−


18 10 11 19
6 12 21 15
2 4 7 5
6 12 21 15

 ≡


9 16 15 7
20 15 5 11
24 22 20 21
20 14 5 12

 (mod 26).

Step 4

Since we have obtained that |B| = 1, then λ = ±1 yields D ≡


1 0 0 0
0 25 0 0
0 0 25 0
0 0 0 1

 (mod 26).

Evaluate an eigenmatrix which is self-invertible as follows:

A ≡ BDB−1 ≡


15 0 4 0
2 3 20 22
22 0 11 0
2 2 20 23

 (mod 26).
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4 THE EFFECT OF SELF-INVERTIBLE MATRIX ON CIPHER POLYGRAPHIC
POLYFUNCTION

In this section, the implementation of a self-invertible matrix of Ai×i will be discussed which has
been generated in Section 3 on Cipher Polygraphic Polyfunction system (refer to Theorem 1). This
system considers a self-invertible Ai×i (mod N) as a decryption key. The following example is to
show the process of encryption and decryption.

Example 3. Consider “ACCOUNTABILITIES” as plaintext and rewrite its corresponding numbers

as P4×4 ≡


0 2 2 14
20 13 19 0
1 8 11 8
19 8 4 18

 (mod 26). We choose the self-invertible matrix generated in Example

2 as the secret key. Since (|A4×4|, 26) = 1, then P4×4 has a unique solution. The encryption process

of P4×4 to C
(3)
4×4 is shown as follows:

The first transformation encryption of P4×4 to C
(1)
4×4 is given by

C
(1)
4×4 ≡ A4×4P4×4 ≡


15 0 4 0
2 3 20 22
22 0 11 0
2 2 20 23




0 2 2 14
20 13 19 0
1 8 11 8
19 8 4 18

 ≡


4 10 22 8
4 15 5 12
11 2 9 6
3 10 16 4

 (mod 26).

The second transformation encryption of C
(1)
4×4 to C

(2)
4×4 is

C
(2)
4×4 ≡ A4×4C

(1)
4×4 ≡


15 0 4 0
2 3 20 22
22 0 11 0
2 2 20 23




4 10 22 8
4 15 5 12
11 2 9 6
3 10 16 4

 ≡


0 2 2 14
20 13 19 0
1 8 11 8
19 8 4 18

 (mod 26).

The third transformation encryption of C
(2)
4×4 to C

(3)
4×4 is

C
(3)
4×4 ≡ A4×4C

(2)
4×4 ≡


15 0 4 0
2 3 20 22
22 0 11 0
2 2 20 23




0 2 2 14
20 13 19 0
1 8 11 8
19 8 4 18

 ≡


4 10 22 8
4 15 5 12
11 2 9 6
3 10 16 4

 (mod 26).

Hence, the secret message we acquired through this encryption process is “EKWIEPFMLCJG
DKQE”.

For the decryption process, we focus on obtaining back the original plaintext that is “ACCOUNT-
ABILITIES”. First and foremost, we need the inverse of secret key A4×4, which is A−1

4×4, to undergo
the process of decryption. The decryption key will remain the same as the encryption key due to
the secret key is self-invertible.

The first transformation decryption of C
(3)
4×4 to C

(2)
4×4 is given by

C
(2)
4×4 ≡ A4×4C

(3)
4×4 ≡


15 0 4 0
2 3 20 22
22 0 11 0
2 2 20 23




4 10 22 8
4 15 5 12
11 2 9 6
3 10 16 4

 ≡


0 2 2 14
20 13 19 0
1 8 11 8
19 8 4 18

 (mod 26).
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The second transformation decryption of C
(2)
4×4 to C

(1)
4×4 is given by

C
(1)
4×4 ≡ A4×4C

(2)
4×4 ≡


15 0 4 0
2 3 20 22
22 0 11 0
2 2 20 23




0 2 2 14
20 13 19 0
1 8 11 8
19 8 4 18

 ≡


4 10 22 8
4 15 5 12
11 2 9 6
3 10 16 4

 (mod 26).

The third transformation decryption of C
(1)
4×4 to P4×4 is

P4×4 ≡ A4×4C
(1)
4×4 ≡


15 0 4 0
2 3 20 22
22 0 11 0
2 2 20 23




4 10 22 8
4 15 5 12
11 2 9 6
3 10 16 4

 ≡


0 2 2 14
20 13 19 0
1 8 11 8
19 8 4 18

 (mod 26).

Finally, we obtained the original plaintext after the decryption process.

In the encryption algorithm provided as an example, the outcome of the second transformation
closely resembles the plaintext. On the other hand, the result obtained from the third transformation
is identical to the first transformation. Generally, for n ∈ Z+, we obtain

C2n
i×j ≡ A2n

i×iPi×j ≡ (A2
i×i)

nPi×j ≡ InPi×j ≡ Pi×j (mod N) (1)

whereas

C2n+1
i×j ≡ A2n+1

i×i Pi×j ≡ Ai×i(A
2
i×i)

nPi×j ≡ Ai×iI
nPi×j ≡ Ai×iPi×j ≡ C

(1)
i×j (mod N). (2)

Consequently, the outcome of odd-th and even-th transformations will generate the secret message
and plaintext, respectively. In simpler terms, when the encryption key is self-invertible, the sender
of the original message should transmit the message only up to the second transformation. With
the specific property of the product of two column vectors u and v from the beginning of Algorithm
1, the third parties can analyze the ciphertext even though they do not know the decryption keys.
To acquire the precise plaintext values, one must test a combination of u and v for a total of NN

times. Despite this, achieving such speed can be accomplished through the use of an appropriate
algorithm and a high-performance computer.

5 CONCLUSION

In conclusion, we are able to find the self-invertible matrix based on IMIE using Algorithm 1. It
was also successfully implemented into the Cipher Polygraphic Polyfunction cryptosystem. Upon
observing the use of a self-invertible key during the even-th transformation, we found that the
system became vulnerable to attacks by adversaries, leading to a recurrence outcome. Unfortunately,
it is unnecessary to encrypt the original message through odd-th transformations, as this process
will only get back the original one. Since the self-invertible key is suitable for use as it reduces the
complexity for finding the encryption key, our study can further expand using different self-invertible
keys for each transformation.
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APPENDIX

In this section, we recall three methods for generating a self-invertible matrix A that was presented
in [6] as follows:

Let A =


a11 a12 · · · a1i
a21 a22 · · · a2i
...

...
...

...
ai1 ai2 · · · aii

 be an i× i matrix partitioned to A =

[
A11 A12

A21 A22

]
. For i an

even, A11, A12, A21 and A22 are matrices with order i
2 × i

2 . This can be simplified to the solution

A =

[
A11 k(I −A11)

1
k (I −A11) −A11

]
where k ∈ Z and (k, N) = 1. We name this kind of method as

Type 1.

They also proposed another method for generating A for any i, but considered A11 as [a11] is a

1× 1 matrix, A12 =
[
a12 a13 · · · a1i

]
is a 1× (i− 1) matrix, A21 =


a21
a31
· · ·
ai1

 is a (i− 1)× 1

matrix, A22 =


a22 a23 · · · a2i
a32 a33 · · · a3i
· · · · · · · · · · · ·
ai2 ai3 · · · aii

 is a (i− 1)× (i− 1) matrix.

Since A is self-invertible, it satisfies A2 = I. Therefore

A12A21 = 1−A2
11 = 1− a211, (3)

and

A12(a11I +A22) = 0. (4)

Also, a11 = −(one of the eigenvalues of A22 other than 1). Since A21A12 is a singular matrix having
the rank 1 and

A21A12 = I −A2
22, (5)

then A22 must have eigenvalues ±1. It can also be proved that the consistent solution obtained for
matrix A21 and A12 by solving (5) term by term will also satisfy (3). General steps for generating
A are given as follows:

Algorithm 2.

1. Select A22, a non-singular (i− 1)×(i− 1) matrix which has (i− 2) number of eigenvalue of
either +1 or −1 or both. The method for calculating an eigenvalue from |λI −A22| = 0 can
be referred to in [22].

2. Determine the other eigenvalue λ of A22.
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3. Set a11 = −λ.

4. Obtain the consistent solution of all elements of A21 and A12 by using (5).

5. Formulate the matrix A.

We name this technique as Type 2.

The third method, namely Type 3, is represented as follows:

Let A and B be invertible matrices such that A = BDB−1, in which D is a diagonal matrix where

the diagonal elements consist of eigenvalues. If D =


λ1 0 0 0 . . 0
0 λ2 0 0 . . 0
. . . . . . .
. . . . . . .
0 0 0 0 . . λi

 with eigenvalues

λi = ±1 then D = D−1, subsequently A is self-invertible.
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