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ABSTRACT

The research explores several imputation techniques, namely left, right, midpoint and random
imputations for the MLE of the Weibull regression model with covariate for uncensored,
right, and interval-censored data. A simulation study is conducted to obtain the parameter
estimates of the model with different imputation techniques, sample sizes, and censoring
proportions and its performance are evaluated using bias, standard error (SE), and root mean
square error (RMSE). The simulation result indicates that midpoint imputation technique
outperformed other techniques based on the lowest RMSE values. Finally, the model was
fitted to diabetic nephropathy data using selected imputation techniques. The result concluded
that the Weibull regression model may provide a good fit to the data and that the covariate,
gender has a significant effect on the survival time of patient kidneys.

Keywords: covariate, imputation techniques, right-censored, interval-censored, Weibull.

1 INTRODUCTION

Survival analysis, as Smith et al. [1] describe, is all about studying the time between starting an
observation and an event happening. Lee and Wang [2] point out that in survival analysis, we
measure how long it takes for a particular event to occur, which is a key part of this field. Initially,
survival analysis focused on predicting how long things or individuals would last and comparing
survival experiences between different groups. Researchers typically use two statistical methods,
parametric and non-parametric, to analyze this kind of data. Dealing with missing data is a common
challenge in research, and researchers employ techniques, such as imputation, to estimate values
that are missing from their datasets, as emphasized by Schafer and Graham [3]. Lai et al. [4] stated
that the Weibull distribution is the best lifetime distribution model and describes observed failures
of many phenomena and components .

The Weibull distribution plays a central role in survival analysis. When it comes to estimating its
parameters, the most common and straightforward method is Maximum Likelihood Estimation
(MLE). Cohen [5] provided valuable insights into using MLE for the Weibull Distribution, covering
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scenarios involving both censored and complete data. Researchers like Stone and Van [6] have under-
lined MLE as the preferred method for estimating Weibull Distribution parameters. In a study by
Odell et al. [7], MLE’s superiority became evident, particularly in the context of the Weibull-based
accelerated failure time regression model, especially with larger sample sizes, and when dealing
with left or interval-censored data. Guure et al. [8] reinforced the reliability of MLE, especially
when estimating scale parameters. Strapasson [9] conducted a comprehensive study comparing
different techniques for estimating Weibull Distribution and Weibull Regression Model parameters,
including midpoint, lower, and upper limit imputations. Salahaddin [10] found that using the rank
regression method is a highly effective way to estimate Weibull Distribution parameters, especially
when working with time series wind data. Zhang [11] provided guidance on fitting the Weibull
Regression Model using R software. Zyoud et al. [12] conducted an analysis of the parametric Cox
model with partly interval-censored data, employing various imputation techniques to handle the
challenges posed by missing data. Lai and Arasan [13] focused on estimating Log-Logistic Model
parameters using MLE, emphasizing the importance of achieving the lowest Standard Error (SE)
and Root Mean Square Error (RMSE) values for optimal parameter estimates. Khairunnisa et
al. [14] applied the Weibull regression model with MLE to analyze factors affecting the survival
and recovery rates of Covid-19 patients, underscoring the significance of comorbidities. Kiani and
Arasan [15] analyzed the Gompertz model with fixed and time-dependent covariates, revealing a
decrease in bias, SE, and RMSE values with increasing study period, attendance probability, and
sample size.

The Weibull regression model hasn’t received as much attention when it comes to dealing with
right-censoring and interval-censoring. Most previous research has primarily focused on partial
interval-censoring. Additionally, it’s unclear which methods work best for estimating the model’s
parameters in these scenarios. While some studies have used imputation techniques for partly
censored data, they haven’t specifically examined how effective these techniques are for interval-
censored data. For example, Alharpy and Ibrahim [16] used multiple imputation techniques for data
that’s partly interval-censored and follows the Weibull distribution. Similarly, Saeed and Elfaky
[17] conducted research on the Parametric Weibull Model using imputation techniques for partly
censored data. To fill this research gap, our study aims to explore the Weibull Regression Model’s
applicability to situations involving both right-censoring and interval-censoring. We will investigate
the effectiveness of imputation techniques in handling such data.

This research aims to achieve three main objectives. Firstly, incorporation of a covariate into
the Weibull regression model with uncensored, right and interval censored data, and obtain its
maximum likelihood estimation (MLE) via simulation study at various sample sizes, n and censoring
proportions, cp using bias, standard error (SE) and root mean square error (RMSE). Secondly, the
performance of four imputation techniques (midpoint, random, right, and left) will be compared
for dealing with uncensored, right and interval censored data at different sample sizes, censoring
proportions, and right censoring proportions. The best imputation technique will be identified
based on the RMSE. Lastly, the Weibull regression model will be fitted to real-life right and interval
censored data with covariate, and the model’s performance will be evaluated using the chosen
imputation technique. The results of this research will contribute to a better understanding of the
Weibull regression model with censored data and its applications in real-world situations.

116



Applied Mathematics and Computational Intelligence
Volume 13, No. 3, 2024 [115 – 142]

2 METHODOLOGY

2.1 The Weibull Regression Model

The Probability Density Function (PDF), f(t), survivorship function, S(t) and the Cumulative
Distribution Function (CDF), F (T ) of Weibull regression model can be expressed as Equation (1)
to (5) stated below :

f(t) =
1

σ
e

y−µ
σ

−exp(
y − µ

σ
)

(1)

where µ = −lnλ and σ = 1
γ ; λ is scale parameter and γ is shape parameter;y = ln t; µ = β0 + β1x1

and xi0 = 1, in which it incorporates the effect of single covariate on survival time, where

If z = y−β′x
σ ,

f(z) =
1

σ
ez−exp(z) (2)

S(z) = e−exp(z) (3)

where −∞ < z < ∞

F (z) = 1− S(z) = 1− e−exp(z). (4)

The lifetime, ti can be simulated via the inverse transform technique as shown below,

ti = (− ln(1− ui))
σ × eβ

′x (5)

where random variable U is uniformly distributed in (0,1)

2.2 Maximum Likelihood Estimation

Suppose that the data is categorized into censored and uncensored for i = 1, 2, . . . ., n observations.
The variables si and t̃i are defined as follows,

si =

{
1, for ti uncensored ,

0, for ti censored.
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and,

t̃i =



tLi+tRi
2 , for midpoint imputation ,

Ui(tL, tR), for random imputation

tRi, for right imputation,

tLi, for left imputation,

ti, otherwise.

The likelihood function is given by,

l(β) =

n∏
i=1

([f(t̃i, β, xi)]
si × [S(ti, β, xi)]

1−si),

where the f(t, β, xi) and S(t, β, xi) represents the probability density function and survivorship
function of the Weibull regression model. The log-likelihood function is as Equation (6),

L(β, σ) = ln (

n∏
i=1

([f(t̃i, β, xi)]
si ,×[S(ti, β, xi)]

1−si)),

=

n∑
i=1

(si(− lnσ + z̃i − exp(z̃i) + exp(zi))− exp(zi)) (6)

where zi =
y−β′xi

σ .

The first derivative with respect to βj is given as Equation (7),

∂(βj , σ)

∂βj
=

n∑
i=1

(
xij
σ

(si(1 + ez̃i − ezi) + ezi)) (7)

where, j = 0, 1, ... and xi0 = 1.

The first derivative with respect to σ is given as Equation (8),

∂(βj , σ)

∂σ
=

n∑
i=1

(
si
σ
(1− z̃i + z̃ie

z̃i − zie
zi) +

zie
zi

σ
). (8)

Newton-Raphson iterative metohd procedures are used to solve the non-linear equations.The
covariance matrix of maximum likelihood estimators are approximated using the Fisher’s information
matrix (Sccott, [18]).
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2.3 Log-Rank Test

The log-rank test is done to test the difference in survival between two or more independent groups.
The survival curves are first estimated for each groups first and then compared statistically using
the log-rank test. The log-rank test can be approximated using the chi-square test statistic, which
is given in Equation (9).

χ2(LR) =
(
∑r

j=1 d1j − e21j∑r
j=1 v1j

∼ χ2(1) (9)

where
e1j =

n1jdj
nj

v1j =
n1jn2jdj(nj−dj)

n2
j (nj−1)

2.4 Wald Confidence Interval

Point estimate is used to construct an interval with a certain confidence interval or probability the
interval will contain the true parameter value. The confidence interval contains a range of values
restricted by an upper and lower limit for the population parameter.

The maximum likelihood estimator for vector of parameters and the loglikelihood function of
the θ is denoted by θ̂ and l((θ)). θ̂ is asymptotically normally distributed with mean θ and covari-
ance matrix I−1(θ), where I−1(θ) is the Fisher information matrix evaluated at the true value of

the θ (Cox & Hinkley, 1974). The (
ˆ

var(ˆ)θ) is the (j, j)th element of I−1(θ)). We will approximate
I(θ) with observe information matrix i(θ). The (j, j)th element of i−1(θ) is the estimate of var(θ̂j).
Thus, the formula above is given in Equation (10).

θj = θ̂j ± z1−α
2

√
i−1( ˆθjj). (10)

3 SIMULATION STUDY

Simulation study is known as computer experiments that use pseudo-random sampling to create
data (Maria, [19]) . In this research, a simulation study was carried out to assess the performance
of parameter estimates of the Weibull regression model. The simulation was conducted with R
software in different combinations of sample sizes and censoring proportions with 1000 replications.
The sample sizes were n = 20, 40, 60, 80 and 100. Right censored were fixed at approximately 10%
and 20%, while the interval-censored is approximated to 0%, 5%, 10%, 15%, 20%, and 25%. There
is also a simulation done for 0% censoring proportion which consists of 0% right censoring and
0% interval censoring. Initial values of 1.088, -0.006, and 0.090 were chosen as the parameters for
β0, β1, and σ respectively. These parameters were actually chosen from a study that identifies the
parameter estimates for the Weibull regression model using the HIV data.

A sequence of random numbers from the uniform distribution, U(0, 1) is simulated. The co-
variate, x is generated using a standard normal distribution. These ui and xi were used to generate
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failure times, t2 using the inverse transform method. Censoring time, c2 was generated from the
exponential distribution to obtain censored lifetimes. t2 and c2 were compared, and the minimum
was chosen to be the ti which is the final failure time. The censoring indicator, ci is obtained when
t2 is less than c2 which will return 1 and 0 if otherwise. This indicates that, if t2 is less than c2, it
is uncensored, and if it is otherwise, then it is censored.

The interval chosen for the simulation study was 0 to 4 months, 4 to 8 months, 8 to 12 months,
12 to 16 months, 16 to 20 months, and 20 to 24 months. We also generate p from the Bernoulli
distribution to obtain interval-censored observations. To obtain data that consists of uncensored,
right-censored, and interval-censored data, we use the following indicator. The observation will be
uncensored if c = 1 and p = 0, interval-censored if c = 1 and p = 1, and finally right-censored if
c = 0 and p = 0 or c = 0 and p = 1. If the observation failure time, t is greater than 24 months,
then the observation will automatically become right censored. The R code for the simulation study
was shown in the Appendix.

If the observation is interval-censored, the imputed time will be used instead of the observed
time. Left imputation time, tL, and right imputation time, tR can be obtained from the interval
where we will choose the left endpoint for tL and right endpoint for tR. For example, if the
observation fall between 4 to 8 months, it’s tL will be 4 and tR will be 8. For midpoint imputation,
tMid, we will take the average of tL and tR. The value for random imputation, tRandom is
obtained by generating random value using Uniform Distribution, u(tL, tR).

The parameter estimates for β0, β1, and σ were obtained using the maximum likelihood esti-
mation with imputation, which consists of left, right, midpoint, and random imputation. The
values of root mean square error (RMSE) were calculated to compare the performance of parameter
estimates at different sample sizes, for different censoring proportions, and for different imputation
techniques as well.

Root Mean Square Error (RMSE) is the expected value of the square of the difference between the
estimator and the true parameter. Better performance of parameter estimates can be considered
when the RMSE is small. The formula of RMSE can be calculated as per the formula given in
Equation (11).

RMSE =

√
Bias(θ̂)2 + SE(θ̂)2 (11)

where Bias(θ̂) = E(θ̂)− θ and SE(θ̂) =

√∑
θ̂i

2−
∑

θ̂i
2

N
N−1 .

3.1 Results and Discussion

The root mean square error (RMSE) values of parameter estimates will be compared across different
sample sizes, censoring proportions, and right-censored proportions (rcp). Tables 1 and 2 display
the RMSE results for β̂0 estimates using various imputation techniques (midpoint, random, right,
and left) at 10% and 20% rcp, and these results are further visualized in Figures 1 and 2.
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The RMSE for left imputation is notably larger than other methods. To ensure clear comparisons,
the midpoint, random, and right imputation techniques are graphed together for different sample
sizes while the left imputation technique is separately graphed with varying sample sizes. This
separation is due to the left imputation’s erratic behavior, resulting in significantly larger values
compared to other techniques. It’s important to note that all figures in this chapter follow the same
plotting style as Figure 1.

Tables 3 and 4 display root mean square error values for β̂1 estimates at varying sample sizes and
censoring proportions. These values are calculated using different imputation techniques, including
midpoint, random, right, and left, with rcp at 10% and 20%. The corresponding analyses are
presented in Figures 3 and 4.

Tables 5 and 6 show root mean square error values for σ̂ estimates under different sample sizes,
censoring proportions, and imputation techniques (midpoint, random, right, and left) with rcp set
at 10% and 20%. Figures 5 and 6 provide a visual representation of these results

Table 1 : Root Mean Square Error of β̂0 for different imputation techniques when rcp = 10%

n CP(%) Imputation Techniques
Midpoint Random Right Left

20 10 0.023265 0.023265 0.023265 0.023265
15 0.036666 0.039840 0.067687 0.467256
20 0.049688 0.051762 0.101997 0.860986
25 0.051304 0.051839 0.102874 0.898541
30 0.056434 0.058530 0.112329 1.039923
35 0.057481 0.059276 0.114913 1.089045

40 10 0.015540 0.015540 0.015540 0.015540
15 0.041465 0.038641 0.097548 0.792383
20 0.055461 0.051927 0.124129 1.214502
25 0.064028 0.055874 0.137141 1.584922
30 0.049440 0.046242 0.113198 0.943159
35 0.076626 0.066682 0.155292 2.138894

60 10 0.013278 0.013278 0.013278 0.013278
15 0.017829 0.018346 0.038355 0.115052
20 0.024088 0.024072 0.064299 0.238725
25 0.029158 0.026285 0.075864 0.264653
30 0.045763 0.039578 0.109621 0.926966
35 0.047310 0.041670 0.111933 1.009733

80 10 0.011458 0.011458 0.011458 0.011458
15 0.022639 0.021689 0.061306 0.183470
20 0.024770 0.023113 0.067392 0.147127
25 0.036529 0.031744 0.093817 0.506495
30 0.042349 0.034791 0.108342 0.490999
35 0.049516 0.039311 0.123337 0.688577

100 10 0.010001 0.010001 0.010001 0.010001
15 0.022411 0.020671 0.062900 0.118171
20 0.030793 0.026759 0.085531 0.272705
25 0.032192 0.027792 0.088336 0.305988
30 0.045466 0.036851 0.113285 0.667625
35 0.055169 0.042662 0.131587 1.035322
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(a) n=20 (b) n=40

(c) n=60 (d) n=80

(e) n=100 (f) Left Imputation for n=20, 40, 60, 80, 100

Figure 1 : RMSE of β̂0 at n = 20, 40, 60, 80, 100 when rcp = 10%.
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Table 2 : Root Mean Square Error of β̂0 for different imputation techniques when rcp = 20%

n CP(%) Imputation Techniques
Midpoint Random Right Left

20 20 0.028220 0.028220 0.028220 0.028220
25 0.040827 0.043033 0.081865 0.706017
30 0.045304 0.046258 0.092289 0.716387
35 0.048934 0.050131 0.098851 0.790845
40 0.054842 0.053762 0.109649 0.939213
45 0.055127 0.053989 0.110665 0.946278

40 20 0.016488 0.016488 0.016488 0.016488
25 0.029421 0.028700 0.073442 0.306330
30 0.030140 0.029849 0.073971 0.315526
35 0.036538 0.034201 0.088974 0.420535
40 0.036065 0.033442 0.088203 0.419782
45 0.050099 0.043308 0.117905 0.709074

60 20 0.013637 0.013637 0.013637 0.013637
25 0.021893 0.022268 0.051626 0.170377
30 0.024886 0.024161 0.066090 0.217069
35 0.032819 0.029051 0.085800 0.302740
40 0.034664 0.030688 0.089302 0.393485
45 0.045949 0.038317 0.113995 0.493728

80 20 0.011878 0.011878 0.011878 0.011878
25 0.020865 0.020350 0.054834 0.199266
30 0.028580 0.024681 0.079056 0.195099
35 0.033485 0.029160 0.088283 0.260439
40 0.044414 0.034450 0.113489 0.411963
45 0.058523 0.045592 0.137947 0.958640

100 20 0.010357 0.010357 0.010357 0.010357
25 0.013733 0.013994 0.032876 0.078030
30 0.020382 0.019474 0.058644 0.162151
35 0.028855 0.024515 0.081129 0.231814
40 0.047098 0.037178 0.116566 0.737179
45 0.047265 0.036251 0.120512 0.414955
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(a) n=20 (b) n=40

(c) n=60 (d) n=80

(e) n=100 (f) Left Imputation for n=20, 40, 60, 80, 100

Figure 2 : RMSE of β̂0 at n = 20, 40, 60, 80, 100 when rcp = 20%.
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Table 3 : Root Mean Square Error of β̂1 for different imputation techniques when rcp = 10%

n CP(%) Imputation Techniques
Midpoint Random Right Left

20 10 0.023771 0.023771 0.023771 0.023771
15 0.029306 0.035762 0.049155 0.479243
20 0.034800 0.043477 0.054414 1.037234
25 0.036455 0.043435 0.055397 1.114783
30 0.035954 0.047266 0.056075 1.219540
35 0.038042 0.049052 0.057489 1.185579

40 10 0.015336 0.015336 0.015336 0.015336
15 0.019769 0.024618 0.034491 0.509276
20 0.023513 0.030159 0.035080 0.801801
25 0.026003 0.031801 0.034787 0.923060
30 0.023481 0.028728 0.035164 0.643641
35 0.027571 0.035979 0.032048 1.135075

60 10 0.013108 0.013108 0.013108 0.013108
15 0.014184 0.015802 0.028372 0.085742
20 0.015049 0.017678 0.027934 0.186075
25 0.016528 0.019633 0.031127 0.283278
30 0.017868 0.021556 0.026205 0.443372
35 0.017901 0.022162 0.026957 0.477932

80 10 0.011382 0.011382 0.011382 0.011382
15 0.012539 0.014255 0.023551 0.144676
20 0.013284 0.015658 0.024238 0.181290
25 0.014433 0.017685 0.024510 0.312459
30 0.016226 0.019647 0.024597 0.427711
35 0.016705 0.021308 0.024022 0.508635

100 10 0.009834 0.009834 0.009834 0.009834
15 0.011461 0.013580 0.022755 0.141416
20 0.012291 0.014701 0.021801 0.239265
25 0.012627 0.015027 0.021612 0.250376
30 0.014314 0.017698 0.020343 0.370032
35 0.015164 0.018072 0.020350 0.478557
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(a) n=20 (b) n=40

(c) n=60 (d) n=80

(e) n=100 (f) Left Imputation for n=20, 40, 60, 80, 100

Figure 3 : RMSE of β̂1 at n = 20, 40, 60, 80, 100 when rcp = 10%.
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Table 4 : Root Mean Square Error of β̂1 for different imputation techniques when rcp = 20%

n CP(%) Imputation Techniques
Midpoint Random Right Left

20 20 0.029535 0.029535 0.029535 0.029535
25 0.030869 0.037102 0.050623 0.694886
30 0.035643 0.042466 0.055670 0.948134
35 0.036506 0.044577 0.054927 1.034325
40 0.037825 0.047476 0.058991 1.160445
45 0.037888 0.048006 0.059065 1.177668

40 20 0.016503 0.016503 0.016503 0.016503
25 0.021485 0.025039 0.038258 0.36940
30 0.021292 0.024868 0.037654 0.367451
35 0.022429 0.027726 0.038180 0.560624
40 0.022499 0.027535 0.038361 0.549789
35 0.025397 0.030817 0.036295 0.831870

60 20 0.013629 0.013629 0.013629 0.013629
25 0.015536 0.017997 0.029182 0.150926
30 0.016003 0.020749 0.029993 0.238335
35 0.017084 0.020129 0.030510 0.332034
40 0.018052 0.021705 0.030927 0.388232
45 0.017869 0.023836 0.029399 0.561630

80 20 0.011951 0.011951 0.011951 0.011951
25 0.013147 0.015397 0.025753 0.153061
30 0.013660 0.016381 0.024606 0.232286
35 0.014050 0.016979 0.025599 0.284361
40 0.016179 0.020093 0.024262 0.488222
45 0.016814 0.021716 0.022603 0.629927

100 20 0.010356 0.010356 0.010356 0.010356
25 0.011193 0.012414 0.021729 0.054464
30 0.011457 0.013387 0.023060 0.138863
35 0.012537 0.015578 0.023601 0.247609
40 0.014522 0.017610 0.021063 0.394549
45 0.014879 0.017990 0.021932 0.474685
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(a) n=20 (b) n=40

(c) n=60 (d) n=80

(e) n=100 (f) Left Imputation for n=20, 40, 60, 80, 100

Figure 4 : RMSE of β̂1 at n = 20, 40, 60, 80, 100 when rcp = 20%.
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Table 5 : Root Mean Square Error of σ̂ for different imputation techniques when rcp = 10%

n CP(%) Imputation Techniques
Midpoint Random Right Left

20 10 0.017586 0.017586 0.017586 0.017586
15 0.024425 0.080929 0.054360 2.982548
20 0.036139 0.132376 0.064816 4.830288
25 0.036072 0.128277 0.064745 4.890446
30 0.040018 0.143183 0.066557 5.431131
35 0.040697 0.151801 0.066754 5.580538

40 10 0.011767 0.011767 0.011767 0.011767
15 0.036483 0.107961 0.071724 4.612888
20 0.047358 0.149283 0.074422 6.128125
25 0.053173 0.165766 0.074697 6.881151
30 0.042100 0.134817 0.073561 5.463443
35 0.061744 0.195741 0.073824 7.920065

60 10 0.009654 0.009654 0.009654 0.009654
15 0.013359 0.034595 0.043186 1.285930
20 0.021974 0.063976 0.062114 2.707797
25 0.026040 0.076136 0.065503 3.237399
30 0.041570 0.123256 0.075969 5.270100
35 0.017901 0.126075 0.076176 5.417171

80 10 0.008430 0.008430 0.008430 0.008430
15 0.021280 0.061474 0.062994 2.550239
20 0.022981 0.067628 0.064800 2.800593
25 0.034303 0.100708 0.073692 4.330900
30 0.040233 0.119835 0.075304 5.075757
35 0.046781 0.138901 0.076345 5.932943

100 10 0.007684 0.007684 0.007684 0.007684
15 0.021322 0.060726 0.063390 2.557964
20 0.030365 0.086445 0.071572 3.790339
25 0.031601 0.090860 0.072430 3.939698
30 0.043287 0.123463 0.077369 5.417524
35 0.051540 0.148417 0.077556 6.478165
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(a) n=20 (b) n=40

(c) n=60 (d) n=80

(e) n=100 (f) Left Imputation for n=20, 40, 60, 80, 100

Figure 5 : RMSE of σ̂ at n = 20, 40, 60, 80, 100 when rcp = 10%.
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Table 6 : Root Mean Square Error of σ̂ for different imputation techniques when rcp = 20%

n CP(%) Imputation Techniques
Midpoint Random Right Left

20 20 0.020688 0.020688 0.020688 0.020688
25 0.030126 0.101284 0.060564 3.783700
30 0.032484 0.109077 0.061753 4.272115
35 0.034653 0.130648 0.063888 4.687632
40 0.038664 0.135751 0.064256 5.233033
45 0.038932 0.138718 0.064101 5.279228

40 20 0.012670 0.012670 0.012670 0.012670
25 0.024630 0.079784 0.060612 3.073102
30 0.025449 0.081795 0.061611 3.121097
35 0.031606 0.097412 0.067235 3.962946
40 0.030985 0.098357 0.066320 3.914184
45 0.042667 0.132331 0.072544 5.604269

60 20 0.009942 0.009942 0.009942 0.009942
25 0.017608 0.052135 0.054750 1.982828
30 0.022010 0.065476 0.061404 2.679788
35 0.029587 0.089215 0.068929 3.754236
40 0.030908 0.092862 0.070006 3.937432
45 0.042366 0.125458 0.074529 5.380565

80 20 0.008625 0.008625 0.008625 0.008625
25 0.017958 0.051568 0.057111 2.095049
30 0.027435 0.079708 0.068631 3.399555
35 0.031531 0.093271 0.071775 3.940929
40 0.041840 0.122384 0.075678 5.318627
45 0.053552 0.157789 0.076417 6.804488

100 20 0.008028 0.008028 0.008028 0.008028
25 0.011015 0.028557 0.042638 1.069301
30 0.019259 0.054868 0.060525 2.285490
35 0.027874 0.078908 0.069453 3.461618
40 0.044863 0.126961 0.077451 5.601950
45 0.045425 0.130883 0.076802 5.731358
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(a) n=20 (b) n=40

(c) n=60 (d) n=80

(e) n=100 (f) Left Imputation for n=20, 40, 60, 80, 100

Figure 6 : RMSE of σ̂ at n = 20, 40, 60, 80, 100 when rcp = 20%.

It can be observed that the values of root mean square error of β̂0, β̂1 and for σ̂ increases when the
censoring proportion increases almost all the times except at some censoring proportions where
there is a slight decrease in the values.

When the rcp = 10%, for of β̂0, the random imputation records the lowest root mean square
error values followed by the midpoint and right imputation techniques. The midpoint imputation
technique records the lowest root mean square error value for β̂1 and σ̂. For β̂1, the random
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imputation technique records the second lowest root mean square error value, followed by the right
imputation technique, meanwhile right imputation technique records the second lowest root mean
square error values for σ̂. The left imputation technique gives the largest root mean square error
values for all the parameter estimates.

The rcp = 20% exhibit almost a similar pattern as rcp = 10% and gives the same conclusions
for the imputation techniques. The value of the root mean square error is higher in rcp = 10%
compared to 20% when the censoring proportion is the same. The rcp value is approximated at
10% and 20% respectively. The remaining censoring proportion value is from the interval-censored
proportion value, icp. This indicates that when the censoring proportion has the same value for
different combinations of rcp and icp, the value of the root mean square is lower when the rcp is
approximated at 20% compared to 10%. Thus, it can concluded that a higher rcp value gives a
lower root mean square error value.

The conclusion of the best imputation techniques was chosen based on the lowest value of the
root mean square error (RMSE) for the different imputation techniques. This is because, lower
RMSE values yields a more accurate and efficient estimates for β̂0, β̂1 and for σ̂. Thus, from the
simulation study, there are two imputation techniques that gives lowest RMSE values which is
random imputation technique and midpoint imputation technique. Random imputation technique
gives the lowest root mean square error value when it comes to β̂0 while the midpoint imputation
technique gives the lowest root mean square error value for β̂1 and σ̂. Thus, the midpoint imputation
technique is chosen as the best imputation technique as it yields the lowest RMSE for most of the
parameters. Thus, these technique will be used for real data analysis in the next chapter.

4 REAL DATA ANALYSIS

In this study, real data of diabetic nephropathy were fitted to the Weibull distribution model. This
data was obtained from Steno Memorial Hospital in Denmark, which describes the survival time for
Type I diabetes patients to develop Diabetic Nephropathy (DN). Diabetic Nephropathy is a sign of
kidney failure for the diabetes patient.

According to Mayo Clinic [20], diabetic nephropathy is a serious complication of Type I and
Type II diabetes. About 1 in 3 people with diabetes in the United States have diabetic nephropathy.
This disease damages blood vessels and cells in the kidneys, leading to the loss of kidney function.
High blood pressure caused by poorly controlled diabetes further damages the kidney and may
progress to end-stage kidney disease. Treatment options for end-stage diabetic nephropathy include
dialysis or a kidney transplant. To delay or prevent the disease, it is important to maintain a
healthy lifestyle, manage diabetes and high blood pressure, and seek early treatment.

The data consist of 731 patients on survival times in months and all the patients have devel-
oped Diabetic Nephropathy by the end of the study. The data consist of 454 males and 277
females where the gender of the patient indicates 0 if the patient is male and 1 if the patient
is female. The data consist of uncensored and interval censored only where the censoring indi-
cator, ci is 1 if the data is uncensored and 0 if the data is interval-censored. This shows that
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the data consists of 138 patients out of 731 patients or 18.87% of the data is interval censored.
There are two survival times shown in the data, which are tleft, which indicates the left endpoint
of the survival time, and tright, which indicates the right endpoint of the survival time when
the patient is interval-censored. If the patient is uncensored, the tleft and tright values are the
same. The data was futher modified to obtain right-censored, interval-censored, and uncensored data.

Both, real data and modified real data are analyzed to determine whether there is a significant
effect on the gender of the survival time of the patients.

4.1 Preliminaries

The results shown in the preliminaries were done by using Midpoint Imputation technique.

The non-parametric Kaplan-Meier Survival curve for diabetic nephropathy data was plotted.
The Weibull distribution model was fitted to the diabetic nephropathy data and the survival curve
was then plotted on the same graph.

Figure 7 : Survival Curve.

From Figure 7, it can be observed that the ˆS(t) Weibull is close to the Kaplan-Meier Survival Curve.
This indicates that the Weibull Model may provide a good fit for the Diabetic Nephropathy data.

Descriptive statistics, which are mean, standard error of the mean, standard deviation, and
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mean for survival times are analyzed.

Table 7 : Descriptive Statistics of Survival Times

n Mean Std.Error Std.Dev Median

731 16.6990 0.2311 6.2492 16

Table 7 shows the overall descriptive statistics for the survival time of patients’ kidneys. The mean
survival time is 16.6990 months, whereas the median survival time is 16 months. The median
survival time is lower than the mean survival time. This means that the survival time is positively
skewed, and this skewness can be clearly seen in the histogram plotted in Figure 8.

Figure 8 : Histogram of Survival Time.

Table 8 : Descriptive Statistics of Survival Time by Gender

Gender n Mean Std.Error Std.Dev Median

Male 454 17.0892 0.2869 6.1135 16

Female 277 16.0596 0.3861 6.4255 15
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Table 8 illustrates descriptive statistics based on the Gender of the patients. The majority of
patients are Males with 454 out of a total of 731 patients. The mean survival time of the male
kidney is 17.0892 months, whereas the mean survival time of the female kidney is 16.0596 months.
The mean survival time of the male kidney is higher than the mean survival time of the female
kidney. This might be due to post-menopausal females having an increased risk of developing
Diabetic Kidney Disease and End-Stage Kidney Disease and glomerular hyperfiltration than women
(Shephard, [21]). On the other hand, the median survival time of the male kidney is 16 which is
higher than the median survival time of the woman kidney which is 15. This shows that the male
kidney survives slightly longer than the female kidney.

Figure 9 illustrates the survival plots based on gender (male and female).

Figure 9 : Survival Plot by Gender.

From Figure 9, it is clearly shown that survival probabilities for both male kidneys and female
kidneys decrease over time. However, the survival probability for male kidneys is slightly higher
than female kidneys because the survival curve of males is above the survival curve of females
almost all the time.
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Figure 10 : Hazard Plot by Gender.

Both male and female kidneys have the same hazard rate pattern as illustrated in Figure 10. Both
hazard rates rise over time, but the hazard rate of the female kidneys is higher than the male
kidneys. This result shows that the failure rate of female kidneys is higher than the male kidneys.

4.2 Non-Parametric Approach

Since the preliminary analysis shows that gender affects survival time, hence, the non-parametric
log-rank test for midpoint imputation will be conducted to check whether gender which acts as a
covariate has a significant effect on survival time. Table 9 show the log-rank test statistics based
on gender (male and female based on midpoint imputation. There is no difference in the survival
difference between male and female if S1(t) = S2(t).

H0 : S1(t) = S2(t)

H1 : S1(t) ̸= S2(t)

χ2(LR) = 6.5 ∼ χ2(1), p = 0.01
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Table 9 : Log-Rank test statistics of Gender based on Midpoint Imputation

Gender n1j d1j eij
(d1) − e1j)

2

e1j

(d1j − e1j)
2

v1j
Male 454 356 384 2.02 6.5

Female 277 237 209 3.70 6.5

The Chi-Square test statistic is 6.5 with 1 degree of freedom and the corresponding p-value
is 0.01. Since the p-value is less than 0.05, we will reject the null hypothesis. Thus, it can be
concluded that there is significant difference in survival times of 2 genders.

4.3 Real Data Analysis with Weibull Regression Model

The real data consist of uncensored and interval-censored observations only.

Based on the diabetic nephropathy data, we conduct the hypothesis testing on the covariate,
β1(gender) to check whether it has a significant effect on the survival times of the patient’s kidney.

H0 : β1 = 0

H1 : β1 ̸= 0

Table 10 : Descriptive statistics of Parameter Estimates using Midpoint Imputation

Est. Std.Error Wald p

Intercept 3.1029 0.0421 73.75 <0.001

Gender -0.0670 0.0284 -2.36 0.018

Log(Scale) -1.0836 0.0290 -37.32 <0.001

Table 10 illustrates the descriptive statistics of the parameter estimates using Midpoint Imputation.
Wald statistics for Gender is -2.36 which falls in the rejection region, which is -1.96 when α = 0.05.
Thus, the null hypothesis is rejected and it can be concluded that Gender is significant in the model.

Table 11 : Wald Confidence Interval

95% Confidence Interval

Intercept (3.0204 , 3.1854)

Gender (-0.1227 , -0.0113)
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Wald test is further carried out to check the significance of gender on survival time. Based
on Table 11, a 95% confidence interval for the parameter of β1 is estimated to fall in the region
between -0.1227 to -0.0113. It can be observed that the zero is not included in the confidence
intervals. Thus, the null hypothesis is rejected and it can be concluded that the gender has a
significant effect on the survival time of patients’ kidneys.

4.4 Modified Real Data Analysis with Weibull Regression Model

The real data is modified, which makes the data consist of uncensored, right-censored and interval-
censored observations.

Table 12 : Descriptive statistics of Parameter Estimates using Midpoint Imputation

Est. Std.Error Wald p

Intercept 3.1216 0.0428 72.96 <0.001

Gender -0.0750 0.0289 -2.59 0.0095

Log(Scale) -1.0668 0.0250 -36.22 <0.001

Table 12 illustrates the descriptive statistics of the parameter estimates using Midpoint Imputation.
Wald statistics for Gender is -2.59 which falls in the rejection region, which is -1.96 when α = 0.05.
Thus, the null hypothesis is rejected and it can be concluded that the gender is significant in the
model.

Table 13 : Wald Confidence Interval

95% Confidence Interval

Intercept (3.0377 , 3.2055)

Gender (-0.1316 , -0.0184)

Wald test is further carried out to check the significance of gender on the survival time. Based
on Table 13, a 95% confidence interval for the parameter of β1 falls in the region between -0.2845
to -0.0587. It can be observed that zero is not included in the confidence intervals. So, the null
hypothesis is rejected, and it can be concluded that gender has a significant effect on the survival
time of patients’ kidneys.
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5 CONCLUSION

In this research, the covariate is incorporated into the Weibull regression model with right and
interval-censored data. The maximum likelihood estimation method is approached to obtain the
parameter estimates. To solve the nonlinear likelihood equation, Newton Raphson’s iterative
procedure was performed. We compare the performance of the parameter estimates at different
sample sizes and censoring proportions using the values of bias, standard error and root mean
square error. Better estimates with lowest root mean square error for all the parameters can be
obtained using midpoint imputation technique at all sample sizes.

Furthermore, in general, the results showed that the parameter estimates for the Weibull re-
gression model with covariate perform best with low censoring proportion level and large sample
size. On the other hand, high censoring proportion and small sample size give higher values of root
mean square error, which indicates that the model is less efficient.

It was discovered that the Weibull regression model provided a good fit for diabetic nephropathy
data. From the preliminary analysis, it can be observed that the survival probability for male
kidneys is slightly higher than the female kidneys. Additionally, it was concluded that gender has a
significant effect on the survival time of patients’ kidneys through non-parametric log-rank, the
Wald test and Wald confidence interval test.

For the analysis of real data analysis and modified real data analysis, we found out that gen-
der has a significant effect on the survival time of patients’ kidneys by obtaining the summary
of the maximum likelihood estimation of the Weibull regression model, the Wald test and Wald
confident interval test as well.
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