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ABSTRACT 

We consider likelihood and Bayesian inference in the stress-strength model using records 
from the Pareto distribution. Confidence intervals, including percentile intervals and 
intervals based on the maximum likelihood estimator are derived. Bayesian credible sets are 
also considered. Simulations are conducted to explore and compare the intervals in terms of 
their length and coverage probability. 

Keywords: confidence interval, Pareto distribution, records, stress-strength reliability 

1 INTRODUCTION 

Record data arise when only data values that are more extreme the current extreme value are 
recorded. This arise in many fields including industrial life testing and sports. More details and 
examples are presented in [1] and [2]. Records were introduced by [3]. He studied some of their 
properties. An account of records and their applications is provided by [4] and [5].  

The density and distribution functions of the one parameter Pareto distribution 𝑃𝑎(𝜃) are as 
follows 

 𝑓(𝑥) =
𝜃

(1+𝑥)𝜃+1 , 𝑥 > 0, 𝜃 > 0, 

 𝐹(𝑥) = 1 −
1

(1+𝑥)𝜃 , 𝑥 > 0, 𝜃 > 0.                   (1) 

Usually, this distribution involves another “scale” parameter. The two – parameter distribution 
has received considerable attention in the literature, see [6]. However, the one – parameter case 
has a simpler mathematical structure which allows for relatively simple solutions to many 
inference problems, classical and Bayesian as well. The one-parameter Lomax distribution has 
been considered by several authors including [7] and [8] for the stress-strength problem.  

Let 𝑋1, 𝑋2, …be an infinite sequence of 𝑖𝑖𝑑 random variables. An observation 𝑋𝑗 is called an upper 

record if its value is greater than all previous observations. That is 𝑋𝑗 > 𝑋𝑖 for every 𝑖 < 𝑗. Our 

interest is in developing inference procedures for 𝑃𝑟(𝑋 < 𝑌).  Several applications and 
motivations for the stress-strength model were presented by [9]. We consider the Pareto case 
with record data. Related problems were considered by [10] and [11] for the generalized 

mailto:a.baklizi@qu.edu.qa


Ayman Baklizi\ Likelihood and Bayesian Intervals in The Stress-Strength Model… 

115 

exponential and the two parameter exponential distributions. More recent work on the stress-
strength model based on records is given by [12], [13], and [14]. In Section 2, we consider 
likelihood inference. In Section 3 we consider Bayesian inference. Bootstrap methods are 
considered in Section 4. A simulation experiment is designed in Section 5. The final section 
concludes the paper.  

2 LIKELIHOOD INFERENCE 

Let 𝑋~𝑃𝑎(𝜃1) and 𝑌~𝑃𝑎(𝜃2) be independent and define 𝑅 = 𝑃𝑟(𝑋 < 𝑌) to be the stress strength 

reliability. It is straightforward to find that 𝑅 =
𝜃1

𝜃1+𝜃2
. We want to estimate 𝑅 based on lower 

records on both variables. Let 𝑟0, … , 𝑟𝑛be the first 𝑛 records from Pa(𝜃1) and let 𝑠0, … , 𝑠𝑚be a 
sequence of independent records from 𝑃𝑎(𝜃2). The likelihood functions are 

𝐿1(𝜃1|𝑟0, … , 𝑟𝑛) = 𝑓(𝑟𝑛) ∏𝑛−1
𝑖=0 𝑓(𝑟𝑖)/(1 − 𝐹(𝑟𝑖)), 

𝐿2(𝜃2|𝑠0, … , 𝑠𝑚) = 𝑔(𝑠𝑚) ∏𝑚−1
𝑖=0 𝑔(𝑠𝑖)/(1 − 𝐺(𝑠𝑖)).                 (2) 

where 𝑓and 𝐹 are the pdf and cdf of 𝑃𝑎(𝜃1) and 𝑔 and 𝐺 are the corresponding functions for 
𝑃𝑎(𝜃2). Substituting in the likelihood functions we obtain, 

𝐿1(𝜃1|𝑟0, … , 𝑟𝑛) =
𝜃1

𝑛

(1+𝑟𝑛)𝜃1+1
∐𝑛−1

𝑖=0 (1 + 𝑟𝑖)−1, 

𝐿2(𝜃2|𝑠0, … , 𝑠𝑚) =
𝜃2

𝑚

(1+𝑠𝑚)𝜃2+1
∐𝑚−1

𝑖=0 (1 + 𝑠𝑖)−1.                 (3) 

The log likelihood functions are given by, 

𝑙1(𝜃1|𝑟0, … , 𝑟𝑛) = 𝑛𝑙𝑛(𝜃1) − (𝜃1 + 1)𝑙𝑛(1 + 𝑟𝑛) + 𝑙𝑛 ∐𝑛−1
𝑖=0 (1 + 𝑟𝑖)−1, 

𝑙2(𝜃2|𝑠0, … , 𝑠𝑛) = 𝑚𝑙𝑛(𝜃2) − (𝜃2 + 1)𝑙𝑛(1 + 𝑠𝑚) + 𝑙𝑛 ∐𝑚−1
𝑖=0 (1 + 𝑠𝑖)−1. 

The MLEs of 𝜃1and 𝜃2 based on the records can be obtained by solving the likelihood equations 

𝑑

𝑑𝜃1
𝑙1(𝜃1) = 𝑛/𝜃1 − 𝑙𝑛(1 + 𝑟𝑛), 

𝑑

𝑑𝜃2
𝑙2(𝜃2) = 𝑚/𝜃2 − 𝑙𝑛(1 + 𝑠𝑚). 

therefore the MLEs are 𝜃1 =
𝑛

𝑙𝑛(1+𝑟𝑛)
,  𝜃2 =

𝑚

𝑙𝑛(1+𝑠𝑚)
. It follows that the MLE of 𝑅 is  

�̂� =
�̂�1

�̂�1+�̂�2
                      (4) 

Consider 𝜃1 =
𝑛

𝑙𝑛(1+𝑟𝑛)
, the pdf of 𝑅𝑛is given by [4] 

𝑓𝑅𝑛
(𝑟𝑛) = 𝑓(𝑟𝑛)[−𝑙𝑛(1 − 𝐹(𝑟𝑛))]

𝑛−1
/(𝑛 − 1)!             =

𝜃1

(1 + 𝑟𝑛)𝜃1+1𝛤(𝑛)
(𝑙𝑛(1 + 𝑟𝑛))

𝑛
, 𝑟𝑛 > 0.  
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Note that 𝑙𝑛(1 + 𝑟𝑛) is distributed as 𝐺𝑎𝑚𝑚𝑎(𝑛, 1/𝜃1). Similarly, 𝑙𝑛(1 + 𝑠𝑚)~𝐺𝑎𝑚𝑚𝑎(𝑚, 1/𝜃2). 
Note that 2𝜃1𝑙𝑛(1 + 𝑟𝑛)~𝜒2𝑛

2  and 2𝜃2𝑙𝑛(1 + 𝑠𝑚)~𝜒2𝑚
2 and they are independent, it follows that      

�̂� =
1

1+�̂�2/�̂�1
~

1

1+𝜃1/𝜃2𝐹2𝑚,2𝑛
 where 𝐹2𝑚,2𝑛 denotes a Snedecor's 𝐹 random variable with (2𝑚, 2𝑛) 

degrees of freedom. Therefore, a (1 − 𝛼)% confidence interval for 𝑅 is  

{(1 + (
1

�̂�
− 1) /𝐹1−𝛼/2,2𝑚,2𝑛)

−1
, (1 + (

1

�̂�
− 1) /𝐹𝛼/2,2𝑚,2𝑛)

−1
}. 

Another confidence interval for 𝑅 can be obtained based on the MLEs. Note that  

√𝑛(𝜃1 − 𝜃1) 𝐷 →  𝑁(0, 𝑣1
2), 

where 𝑣1
2 is the asymptotic variance. The second order derivatives are 

𝑑2

𝑑𝜃1
2 𝑙1(𝜃1) = −𝑛/𝜃1

2 and 

𝑑

𝑑𝜃2
𝑙2(𝜃2) = −𝑚/𝜃2

2, hence 

𝑣1
2 = [−𝐸 (

𝜕2𝑙𝑛𝐿(𝜃|𝑟0,…𝑟𝑛)

𝜕𝜃1
2 )]

−1

=
𝜃1

2

𝑛
, 

√𝑚(𝜃2 − 𝜃2)𝐷 → (0, 𝑣2
2) as 𝑚 → ∞, 

where  

𝑣2
2 = [−𝐸 (

𝜕2𝑙𝑛𝐿(𝜃|𝑠0,…𝑠𝑚)

𝜕𝜃2
2 )]

−1

=
𝜃2

2

𝑚
. 

Let 𝑛 → ∞, 𝑚 → ∞ such that 𝑚/𝑛 → 𝑝 where 0 < 𝑝 < 1, we have 

√𝑛(𝜃2 − 𝜃2) 𝐷 →  𝑁(0, 𝑣2
2/𝑝). 

since 𝑅 =
𝜃1

𝜃1+𝜃2
= ℎ(𝜃1, 𝜃2) say, and �̂� =

�̂�1

�̂�1+�̂�2
= ℎ(𝜃1, 𝜃2) 

√𝑛(�̂� − 𝑅) = √𝑛[ℎ(𝜃1, 𝜃2) − ℎ(𝜃1, 𝜃2)] 𝐷 →  𝑁(0, 𝜂2) 

where 𝜂2 = (
𝜕ℎ(𝜃1,𝜃2)

𝜕𝜃1
)

2
𝑣1

2 + (
𝜕ℎ(𝜃1,𝜃2)

𝜕𝜃2
)

2
𝑣2

2/𝑝, see [15]. An asymptotic (1 − 𝛼)% confidence 

interval for 𝑅 is  

{�̂� − 𝑧1−𝛼/2�̂�, �̂� + 𝑧1−𝛼/2�̂�}                    (5) 

where �̂� is obtained by substituting 𝑚/𝑛 for 𝑝 and the MLEs in 𝜂. 
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3 BAYESIAN INFERENCE  

The conjugate prior distributions for 𝜃1 and 𝜃2 are the following Gamma distributions;  

𝜓1(𝜃1) =
𝛽1

𝛿1𝜃1
𝛿1−1

𝑒−𝛽𝜃1

𝛤(𝛿1)
,   𝜃1 > 0, 

where 𝛽1 and 𝛿1 are the parameters of the prior distribution of 𝜃1 and 

𝜓2(𝜃2) =
𝛽2

𝛿2𝜃2
𝛿2−1

𝑒−𝛽2𝜃2

𝛤(𝛿2)
,   𝜃2 > 0, 

where 𝛽2 and 𝛿2 are parameters of the prior distribution of 𝜃2, see [16]. It can be shown that the 
posterior distribution of  𝜃1 given 𝑟0, . . . , 𝑟𝑛  is   

𝜋1(𝜃1|𝑟0, . . . , 𝑟𝑛) =
(𝛽1+𝑙𝑛(1+𝑟𝑛))

(𝑛+𝛿1)

𝛤(𝑛+𝛿1)
𝜃1𝑛+𝛿1−1𝑒−𝜃1(𝛽1+𝑙𝑛(1+𝑟𝑛)), 𝜃1 > 0.               (6) 

Similarly the posterior distribution of 𝜃2 is given by  

𝜋1(𝜃2|𝑠0, . . . , 𝑠𝑚) =
(𝛽2+𝑙𝑛(1+𝑠𝑚))

(𝑚+𝛿2)

𝛤(𝑚+𝛿2)
𝜃2𝑚+𝛿2−1𝑒−𝜃2(𝛽2+𝑙𝑛(1+𝑠𝑚)), 𝜃2 > 0, 

that is,  

𝜃1|𝑟0, . . . , 𝑟𝑛~𝐺𝑎𝑚𝑚𝑎   (𝑛 + 𝛿1, (𝛽1 + 𝑙𝑛(1 + 𝑟𝑛))
−1

), 

𝜃2|𝑠0, . . . , 𝑠𝑚~𝐺𝑎𝑚𝑚𝑎   (𝑚 + 𝛿2, (𝛽2 + 𝑙𝑛(1 + 𝑠𝑚))
−1

). 

It follows that  

2(𝛽1 + 𝑙𝑛(1 + 𝑟𝑛))𝜃1|𝑟0, . . . , 𝑟𝑛~𝜒2(𝑛+𝛿1)
2 ,  

2(𝛽2 + 𝑙𝑛(1 + 𝑠𝑚))𝜃2|𝑠0, . . . , 𝑠𝑚~𝜒2(𝑚+𝛿2)
2 . 

Therefore, 
(𝛽2+𝑙𝑛(1+𝑠𝑚))𝜃2/(𝑚+𝛿2)

(𝛽1+𝑙𝑛(1+𝑟𝑛))𝜃1/(𝑛+𝛿1)
|𝑟0, … , 𝑟𝑛, 𝑠0, … , 𝑠𝑚~𝐹2(𝑚+𝛿2),2(𝑛+𝛿1).  

The posterior distribution of 𝑅 is (1 +
(𝑚+𝛿2)/(𝛽2+𝑙𝑛(1+𝑠𝑚))

(𝑛+𝛿1)/(𝛽1+𝑙𝑛(1+𝑟𝑛))
𝑊)

−1

where 𝑊~𝐹2(𝑚+𝛿2),2(𝑛+𝛿1).  The 

Bayes estimator is the mean of this posterior distribution,  

𝑅~ = ∫
1

0
𝑅𝜋(𝑅|𝑟0, . . . , 𝑟𝑛, 𝑠0, . . . , 𝑠𝑚)𝑑𝑅.                  (7) 

This estimator may be approximated numerically. A (1 − 𝛼) probability interval for 𝑅 is, 

(𝐴𝐹1−𝛼/2,2(𝑚+𝛿2),2(𝑛+𝛿1) + 1)
−1

, (𝐴𝐹𝛼/2,2(𝑚+𝛿2),2(𝑛+𝛿1) + 1)
−1

 ,               (8) 
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where 𝐴 =
(𝑚+𝛿2)(𝛽1+𝑙𝑛(1+𝑟𝑛))

(𝑛+𝛿1)(𝛽2+𝑙𝑛(1+𝑠𝑚))
. The Jefferey priors for 𝜃1 and 𝜃2 are proportional to 

1

𝜃1
 and 

1

𝜃2
 

respectively. It can be easily shown that the posterior of 𝑅 is distributed as                                             (1 +

𝑚/𝑙𝑛(1+𝑠𝑚)

𝑛/𝑙𝑛(1+𝑟𝑛)
𝑊)

−1
 where 𝑊~𝐹2𝑚,2𝑛. Therefore a (1 − 𝛼) probability interval for 𝑅 is, 

(
𝑚𝑙𝑛(1+𝑟𝑛)

𝑛𝑙𝑛(1+𝑠𝑚)
𝐹1−𝛼/2,2𝑚,2𝑛 + 1)

−1
, (

𝑚𝑙𝑛(1+𝑟𝑛)

𝑛𝑙𝑛(1+𝑠𝑚)
𝐹𝛼/2,2𝑚,2𝑛 + 1)

−1
.                (9) 

The highest posterior density (HPD) regions is defined as; 

𝐵𝑅(𝜋𝛼) = {𝜃: 𝜋(𝜃|𝑟0, … , 𝑟𝑛, 𝑠0, … , 𝑠𝑛) ≥ 𝜋𝛼},               (10) 

where 𝜋𝛼 is the largest constant such that 𝑃𝑟(𝜃 ∈ 𝐵𝑅(𝜋𝛼)) ≥ 1 − 𝛼. This is often done 

numerically. A simulation algorithm to approximate the bounds of the HPD interval was 
developed by [17]. 

4 BOOTSTRAP INTERVALS 

Bootstrap methods can be used to obtain intervals using resampling with replacement from the 
original data or from the parametric distribution of the data with its parameters replaced by their 
estimates. The bootstrap-t interval and the percentile interval are among the most widely used 
bootstrap intervals, [18,19]. Bootstrap methods were used in a variety of problems recently, see 
[20].   

Let �̂� be the MLE of 𝛿 based on the original sample and let �̂�∗ be the MLE based on the bootstrap 

sample.  Let 𝑧𝛼
∗  be the 𝛼 quantile of  𝑍∗ = (�̂�∗  − �̂�

)

�̂�∗, where �̂�∗ is estimated standard error of �̂�  

based on the bootstrap sample. The bootstrap-t interval for 𝑅 is, 

(�̂� − 𝑧1−𝛼/2
∗ �̂�, �̂� − 𝑧𝛼/2

∗ �̂�),                 (11) 

where �̂� is the estimated standard deviation obtained from the original sample. Another 

bootstrap-t interval is based on the quantiles of 휀∗ = (�̂�∗  − �̂�
)

𝑠𝑑∗ (�̂�∗) where 𝑠𝑑∗(�̂�∗) is the 

estimated standard error of �̂�∗ obtained from a second stage bootstrap sample. The second 
bootstrap-t interval is, 

(�̂� − 휀1−𝛼/2
∗ �̂�, �̂� − 휀𝛼/2

∗ �̂�).                 (12) 

where 휀𝛼
∗  is found using simulation. 

The percentile interval may be described as follows; Let �̂�∗be the estimate of the stress-strength 
probability calculated from the bootstrap sample. The bootstrap distribution of �̂�∗  is obtained by 
resampling from the original distribution and calculating �̂�𝑖

∗, 𝑖 = 1, … , 𝐵, where B is the number 
of bootstrap samples.  The 1 − 𝛼 interval is given by, 

(�̂�−1 (
𝛼

2
) , �̂�−1 (

1−𝛼

2
)).                  (13) 

where �̂�−1(. ) Is the inverse of the estimated bootstrap distribution function. 
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5 A SIMULATION STUDY  

A simulation study is conducted to explore and compare the intervals presented in this paper. In 
the simulation design we used (𝑛, 𝑚) = (5, 5), (5, 10), (5, 15), (10, 10), (10, 15) and (15, 15). We 
used 𝜃1 = 1, 𝑅 =0.1, 0.3, 0.5, 0.7, and 0.9. The confidence level taken is (1 − 𝛼) = 0.95. We used 
2000 replications and calculated the following intervals; 

1) ML: The interval based on the asymptotic normality of the MLE (5). 

2) AHPD: The approximate HPD interval proposed by [17]. 

3) Boot1: The bootstrap-t interval (11). 

4) Boot2: The bootstrap-t interval using bootstrap variance estimate (12). 

5) Perc: The percentile interval (13). 

We estimated the coverage probabilities and expected lengths of the intervals. In bootstrap 
calculations  we used 500 bootstrap replicates. The bootstrap variance estimate is based on 25 
second stage bootstrap samples. We used 1000 Monte Carlo samples from the posterior density 
of 𝑅 to  approximate the endpoints of the HPD interval. The results are given in Table 1.  

Table 1: Estimated Lengths and Coverage Probabilities of the Intervals 

   ML AHPD Boot1 Boot2 Perc 

𝑛 𝑚 𝑅 L CV L CV L CV L CV L CV 

5 5 0.10 0.229 0.910 0.259 0.930 0.267 0.889 0.293 0.877 0.250 0.934 

5 5 0.30 0.485 0.890 0.456 0.922 0.599 0.903 0.576 0.891 0.494 0.915 

5 5 0.50 0.579 0.870 0.496 0.912 0.746 0.863 0.665 0.877 0.569 0.908 

5 5 0.70 0.520 0.871 0.434 0.915 0.700 0.835 0.602 0.867 0.497 0.928 

5 5 0.90 0.263 0.869 0.232 0.930 0.382 0.782 0.331 0.848 0.253 0.954 

5 10 0.10 0.190 0.901 0.238 0.911 0.209 0.889 0.240 0.901 0.211 0.920 

5 10 0.30 0.401 0.898 0.418 0.920 0.475 0.898 0.496 0.909 0.443 0.931 

5 10 0.50 0.462 0.895 0.446 0.919 0.592 0.873 0.588 0.885 0.522 0.937 

5 10 0.70 0.402 0.877 0.372 0.915 0.546 0.823 0.530 0.857 0.451 0.953 

5 10 0.90 0.192 0.865 0.180 0.899 0.280 0.777 0.274 0.817 0.222 0.946 

5 15 0.10 0.183 0.931 0.231 0.897 0.195 0.918 0.226 0.931 0.200 0.939 

5 15 0.30 0.381 0.905 0.404 0.908 0.444 0.896 0.472 0.908 0.425 0.933 

5 15 0.50 0.436 0.885 0.423 0.902 0.546 0.855 0.557 0.870 0.499 0.938 

5 15 0.70 0.374 0.876 0.349 0.898 0.502 0.831 0.503 0.842 0.430 0.943 

5 15 0.90 0.171 0.861 0.162 0.890 0.248 0.772 0.254 0.800 0.206 0.945 
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10 10 0.10 0.162 0.924 0.170 0.923 0.167 0.910 0.180 0.895 0.176 0.935 

10 10 0.30 0.356 0.914 0.333 0.919 0.378 0.909 0.381 0.896 0.380 0.921 

10 10 0.50 0.422 0.911 0.372 0.922 0.462 0.900 0.448 0.903 0.452 0.935 

10 10 0.70 0.365 0.902 0.318 0.932 0.416 0.858 0.395 0.893 0.382 0.944 

10 10 0.90 0.170 0.902 0.152 0.928 0.201 0.817 0.192 0.866 0.173 0.951 

10 15 0.10 0.138 0.927 0.155 0.925 0.142 0.924 0.156 0.915 0.157 0.940 

10 15 0.30 0.307 0.909 0.310 0.915 0.332 0.912 0.345 0.915 0.353 0.929 

10 15 0.50 0.361 0.903 0.345 0.920 0.405 0.891 0.409 0.901 0.422 0.943 

10 15 0.70 0.309 0.892 0.289 0.912 0.361 0.847 0.359 0.876 0.353 0.945 

10 15 0.90 0.143 0.889 0.135 0.916 0.174 0.813 0.174 0.851 0.161 0.950 

15 15 0.10 0.130 0.932 0.131 0.919 0.127 0.916 0.136 0.901 0.141 0.937 

15 15 0.30 0.295 0.931 0.273 0.927 0.296 0.922 0.302 0.913 0.320 0.935 

15 15 0.50 0.349 0.928 0.311 0.930 0.362 0.903 0.358 0.916 0.385 0.941 

15 15 0.70 0.299 0.922 0.263 0.924 0.318 0.871 0.311 0.899 0.323 0.945 

15 15 0.90 0.136 0.910 0.121 0.926 0.149 0.827 0.146 0.871 0.141 0.945 

 

6 DISCUSSION OF RESULTS AND CONCLUSIONS 

As anticipated, the length of the intervals is shorter for extreme values of 𝑅. Larger record 
sequences result in shorter intervals too. The two bootstrap-t intervals appear to be anti-
conservative with the percentile interval being slightly better. The performance of the Bayesian 
interval appears to be similar to that of the percentile interval. It is better than the other intervals 
in the case of unequal sample sizes. Interval based on the MLE have satisfactory performance only 
for large samples with equal sample sizes on both the stress and strength variables. The percentile 
interval is shorter than the Bayesian intervals for middle values of 𝑅 and small sample sizes. For 
larger sample sizes, the percentile is shorter in all cases. 

In conclusion, we recommend the percentile interval when the sample size is small, the percentile 
or Bayesian interval for larger sample sizes and the Bayesian interval for unequal sample sizes. 

This research investigates the interesting stress-strength problem for the one parameter Pareto 
distribution case. Likelihood, bootstrap and Bayesian inference procedures are derived and their 
performance is investigated. We found that the bootstrap can provide viable solutions through 
the percentile interval when the sample size is relatively small. It provides satisfactory solution 
for larger samples through the bootstrap-t interval in addition to Bayesian intervals. On the other 
hand, the likelihood based intervals are not satisfactory and should be avoided unless very large 
samples are available. 
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