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ABSTRACT 

This paper primarily scrutinizes the comparative efficacy of numerical methods, namely the 
Taylor Series and the Runge-Kutta Fehlberg methods, against the exact solution in solving 
mathematical models. These methods exhibit the capacity to handle the non-linearity of the 
Lotka-Volterra competitive model with a high degree of accuracy and reliability. The comparison 
of results obtained from both methods and the exact solution shows that the Runge-Kutta 
Fehlberg method provides a more precise approximation for the model than the Taylor Series 
method. This conclusion is supported by computations carried out using the Mathematica 13.2 
software. The research data involves two species, Paramecium Caudatum and Stylonychia 
Pustulata, derived from Gause's experiment. Both species demonstrate an intraspecific 
interaction, with their populations rising steadily until reaching a constant level. For 
Paramecium Caudatum, the population peaks at 202 cells on the 16th day, while for Stylonychia 
Pustulata, it reaches a maximum of 41 cells on the 8th day. Equilibrium and stability analysis offer 
vital insights into the long-term behavior of the system and its reaction to perturbations. In 
mixed populations, when the carrying capacity of both species is less than the carrying capacity 
of another species divided by the competition coefficient, the species coexist in a stable 
equilibrium. Conversely, if the carrying capacity of one species is less than the carrying capacity 
of the other divided by the competition coefficient, one species may outcompete the other, leading 
to an unstable equilibrium or even extinction of the weaker species. The research thus provides 
valuable insights into the dynamics of competition and survival, with profound implications for 
the fields of ecology, conservation, and environmental management. 
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1 INTRODUCTION 

The Lotka-Volterra competitive model represents interspecific and intraspecific competition among 
species in the same environment, competing over limited resources. The model is a mathematical 
expression of ecological dynamics, reflecting the reality that species' interactions affect population 
growth and resource allocation. In this context, two numerical methods, the Taylor Series Method 
and the Runge-Kutta-Fehlberg (RKF) Method, are applied to solve the model. The Taylor Series 
Method uses an infinite sum of function derivatives to approximate solutions, allowing for the direct 
evaluation of solution's accuracy through approximation and application of initial or boundary 
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conditions. The RKF Method adapts step sizes based on calculation truncation errors, achieving 
similar accuracy to the Taylor Series without the need for higher derivative calculations. Both 
methods offer solutions where analytical ones may not be available or too challenging to derive. 

In the existing literature, various numerical methods have been employed to solve the Lotka-Volterra 

competitive model, which provides a fundamental representation of population growth and decline 

[1]. [2] used the Differential Transformation Method (DTM) to solve the single species Lotka-Volterra 

equation. The DTM, compared to other methods like the variational iteration and Adomian 

decomposition method, is powerful for nonlinear equations. [3] employed the modified Lotka-

Volterra model to stimulate value creation between upstream and downstream energy firms. This 

study broadened the application of the model beyond traditional ecological interactions. The study 

by [4] developed perturbation-iteration algorithms for first-order differential equation systems, 

providing approximations of Lotka-Volterra system solutions without the need for a small parameter 

assumption. 

The accuracy of these solutions improved as the number of terms in the Taylor series expansion 

increased. [5] utilized numerical methods such as the Euler Method, Taylor Series Method, and 

Runge-Kutta Method to understand the effect of interspecific competition, with the Runge-Kutta 

method providing the most accurate approximation of the orbit's behavior. [6] compared the 

solutions obtained using the RKF and Laplace Adomian Decomposition Method (LADM) on the Lotka-

Volterra model. The RKF method was found to be more accurate and reliable for solving differential 

equation models in population dynamics. [7] applied a moving mesh finite difference technique to a 

PDE system of the Lotka-Volterra competition model, proving the method's robustness and stability 

over a wide range of parameter values. [8] proposed an improved Taylor collocation method to solve 

the nonlinear delay differential equations of the Lotka-Volterra prey-predator model. This method 

demonstrated significant accuracy and reliability. [9] introduced a high-order method combining a 

fourth-order compact finite difference method with an implicit-explicit Runge Kutta scheme to solve 

the one-dimensional Lotka-Volterra-diffusion problem. The results confirmed the validity and 

effectiveness of the proposed method. [10] argued that the RKF method is more reliable and efficient 

in solving the Lotka-Volterra predator-prey model than the LADM method. [11] compared the RKF 

and 4-stage Runge-Kutta method for the Predator-Prey-Scavenger Model. They found the RKF45 
method provided a better approximative solution. [12] developed a unique finite-difference 

technique to achieve periodic numerical solutions, proving to be dynamically consistent with the 

differential equations. Finally, [13] used two straightforward, reliable methods to study the effects of 

a predator-prey model on animal populations during the mating period, demonstrating the broad 

applicability and effectiveness of numerical methods in modeling ecological interactions. 

This research aims to compare these methods' efficacy in solving the Lotka-Volterra competitive 

model and discern which one yields the best results. The study centers on employing numerical 

methods such as the Taylor Series Method and RKF to unravel mathematical models like the Lotka-

Volterra competitive model. The researchers will develop a Lotka-Volterra competitive model to 

observe intraspecific interactions and establish an exact solution using sample data. The focus will 

be on determining the stability and equilibrium, investigating whether the species will achieve a 

stable equilibrium or undergo competitive exclusion. This research will utilize sample data from 

Gause's experiment involving Paramecium Caudatum and Stylonychia Pustulata [14]. 
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2 METHODOLOGY 

The data used in this research is from Gause’s experiment on two species which are Paramecium 
Caudatum (P. Caudatum) and Stylonychia Pustulata (S. Pustulata). The logistic equation of both 
species is used to find the exact solution and will be compared to numerical methods, such as Taylor 
Series and Runge-Kutta Fehlberg methods. The Taylor series is a mathematical tool for representing 
a function as an infinite sum of terms, with each term derived by differentiating the function at a 
specified point. It provides a way to approximate a function using its derivatives at a given point. The 
RKF method is a numerical method used for solving ordinary differential equations (ODEs). A more 
accurate numerical approximation of the ODE solution can be obtained by iteratively applying the 
RKF method with smaller step sizes. 

2.1 Exact Solution 

The logistic equation from the Lotka-Volterra model is used to model the growth of an isolated 
population: 

𝑑𝑦

𝑑𝑥
= 𝑟𝑦 (1 −

𝑦

𝐾
) ( 1 ) 

where 𝑦(𝑥) is the mean density (in individuals per 0.5𝑐𝑚3) at the time 𝑥 (in days), 𝑟 is the 
instantaneous rate of increase (births/deaths), and 𝐾 is the carrying capacity per 0.5𝑐𝑚3. Assume 
constant 𝐾 and 𝑟 linear density dependence, no time lags, migration, age structure, or limited 
resources. 

By solving the equation (1), the solution for the initial condition can be obtained, which gives: 

𝑦 =
𝐾

1 +
1
2 𝑒

−𝑟𝑥(𝐾 − 2)
 ( 2 ) 

To be able use the equation (2), the good fit value of 𝑟 and 𝐾 can be obtained by using curve fitting. 

The fit is reasonable for: 

P. Caudatum in isolation where 𝑟 = 0.66 and 𝐾 = 202.6: 

 

Figure 1: Curve fitting for growth of P. Caudatum in isolation. 
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S. Pustulata in isolation where 𝑟 = 0.89 and 𝐾 = 41.7: 

 

Figure 2: Curve fitting for growth of S. Pustulata in isolation. 

Based on Figures 1 and 2, P. Caudatum produces a population of 202.6 in an isolated case while S. 

Pustulata only produces a population of 41.7. S. Pustulata consumes 1 41.7 = 0.02398⁄  food, while P. 

Caudatum 1 202.6 = 0.00494⁄  food in a single unit. In other words, S. Pustulata consumes 4.85 times 

as much food per unit as P. Caudatum [0.02398 0.00494 = 4.85⁄ ] and P. Caudatum consumes just 

1 4.85 = 0.206⁄  times as much food per unit as S. Pustulata. These factors can make it recalculate the 

volume of one species into its equal in terms of the volume consumed by another species of food. 

2.2 Taylor Series Method 

In order to use the Taylor Series method, one must first determine the derivatives of 𝑦(𝑥). The 

solution 𝑦(𝑥) is a function of 𝑥 differentiating the formula 𝑦′(𝑥) = 𝑓(𝑥, 𝑦(𝑥)) with respect to 𝑥 to 

obtain 𝑦′′(𝑥). 

𝑑1 = 𝑦′(𝑥) = 𝑟𝑦 (1 −
𝑦

𝐾
) 

𝑑2 = 𝑦′′(𝑥) =
𝑑

𝑑𝑦
[𝑟𝑦 (1 −

𝑦

𝐾
)] 

( 3 ) 

Next, the value of 𝑑1 and 𝑑2 can be obtained by substituting the initial value of 𝑦 into the equation 

(3). Then, the value of the next 𝑦 can be obtained by substituting the value of 𝑑1 and 𝑑2 into the 

equation (4) below: 

𝑦𝑘+1 = 𝑦𝑘 + 𝑑1ℎ +
𝑑2ℎ

2

2!
 ( 4 ) 

The step will be repeated to obtain a better approximation. 

2.3 Runge-Kutta Fehlberg (RKF) Method 

The fourth-order Runge-Kutta (RK4) technique is one of the most well-known constant-step 

procedures. The Runge-Kutta technique can approximate a Taylor Series approximation with 

reasonable accuracy without the requirement for higher derivative computations. To some extent, 

this technique may be seen as the basis upon which other techniques are built [10]. 
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Consider the initial value problem: 

𝑦′(𝑥) = 𝑓(𝑥, 𝑦(𝑥)) 

𝑦(𝑥0) = 𝑦0 
( 5 ) 

The RKF is one way to try to resolve this problem. The problem is solving the initial value problem in 

the above equation using the Runge-Kutta methods of order 4 and order 5. 

First, the definitions are: 

𝑘1 = ℎ𝑓(𝑥𝑖 , 𝑦𝑖) 

𝑘2 = ℎ𝑓 (𝑥𝑖 +
1

4
ℎ, 𝑦𝑖 +

1

4
𝑘1) 

𝑘3 = ℎ𝑓 (𝑥𝑖 +
3

8
ℎ, 𝑦𝑖 +

3

32
𝑘1 +

9

32
𝑘2) 

𝑘4 = ℎ𝑓 (𝑥𝑖 +
12

13
ℎ, 𝑦𝑖 +

1932

2197
𝑘1 −

7200

2197
𝑘2 +

7296

2197
𝑘3) 

𝑘5 = ℎ𝑓 (𝑥𝑖 + ℎ, 𝑦𝑖 +
439

216
𝑘1 − 8𝑘2 +

3680

513
𝑘3 −

845

4104
𝑘4) 

𝑘6 = ℎ𝑓 (𝑥𝑖 + ℎ, 𝑦𝑖 −
8

27
𝑘1 + 2𝑘2 −

3544

2565
𝑘3 +

1859

4104
𝑘4 −

11

40
𝑘5) 

( 6 ) 

A better value for the solution is determined using a Runge Kutta method of order 5: 

𝑦𝑖+1 = 𝑦𝑖 +
16

135
𝑘1 +

6656

12825
𝑘3 +

28561

56430
𝑘4 −

9

50
𝑘5 +

2

55
𝑘6 ( 7 ) 

Repeat the method and step to obtain a better approximation. 

2.4 Numerical Methods for Competitive Equation 

Given is the Lotka-Volterra competition model, or is also known as the coupled equation: 

𝑑𝑁1

𝑑𝑡
= 𝑟1𝑁1(𝑡) [

𝐾1 −𝑁1(𝑡) − 𝛽12𝑁2(𝑡)

𝐾1
] 

𝑑𝑁2

𝑑𝑡
= 𝑟2𝑁2(𝑡) [

𝐾2 −𝑁2(𝑡) − 𝛽21𝑁1(𝑡)

𝐾2
] 

( 8 ) 

where 𝑁1 represents the population density (in individual per 0.5𝑐𝑚3) of P. Caudatum and 𝑁2 

represents the population density (in individual per 0.5𝑐𝑚3) of S. Pustulata. The term 𝑟1 represents 

the instantaneous rate of increase of P. Caudatum, meanwhile 𝑟2 represents the instantaneous rate of 

increase of S. Pustulata, and 𝐾1 represents the carrying capacity of P. Caudatum, meanwhile 𝐾2 
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represents the carrying capacity of S. Pustulata. The parameter 𝛽12 represents the per capita effect of 

S. Pustulata on the population growth of P. Caudatum, and 𝛽21 represents the per capita effect of P. 

Caudatum on the population growth of S. Pustulata. 

Since the coupled equation in this case consumes a lot of time if it is solved by using an exact analytical 

solution, the Mathematica 13.2 software is used to solve it numerically. 

3 RESULTS AND DISCUSSION 

This research aims to make a comparison of the numerical methods, such as the Taylor Series method 

and the RKF method with the exact solution. Table 1and 2 show comparison among the Taylor Series, 

RKF and the exact solution for the single species of P. Caudatum and S. Pustulata. 

Table 1: Comparison between numerical methods and the exact solution for P. Caudatum in isolation. 

Day Exact Solution Taylor Series RKF 
Absolute Error 

Taylor Series RKF 

0 2 2 2 0.00E+00 0.00E+00 

1 3.834202799 3.729754000 3.834048532 1.04E-01 1.54E-04 

2 7.289429365 6.914101076 7.288877169 3.75E-01 5.52E-04 

3 13.664618760 12.676901340 13.643218960 9.88E-01 2.14E-02 

4 24.835932870 22.784506310 24.833070650 2.05E+00 2.86E-03 

5 43.112054600 39.544869290 43.107329690 3.57E+00 4.72E-03 

6 69.573450380 64.775957600 69.567234680 4.80E+00 6.22E-03 

7 101.899400600 97.319636080 101.892682100 4.58E+00 6.72E-03 

8 134.103729600 131.129816600 134.097534500 2.97E+00 6.20E-03 

9 160.285751800 158.693316700 160.281150700 1.59E+00 4.60E-03 

10 178.275249000 177.147793600 178.273067500 1.13E+00 2.18E-03 

11 189.253513700 188.206677000 189.253300400 1.05E+00 2.13E-04 

12 195.475079300 194.533011600 195.475753000 9.42E-01 6.74E-04 

13 198.853823600 198.092542800 198.854647100 7.61E-01 8.23E-04 

14 200.646330300 200.084106600 200.647011400 5.62E-01 6.81E-04 

15 201.585516700 201.196259500 201.586000900 3.89E-01 4.84E-04 

16 202.074391400 201.816900000 202.074709400 2.57E-01 3.18E-04 

17 202.327997500 202.163161700 202.328196700 1.65E-01 1.99E-04 
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18 202.459323900 202.356324500 202.459444700 1.03E-01 1.21E-04 

19 202.527267000 202.464075700 202.527338600 6.32E-02 7.16E-05 

20 202.562401300 202.524180800 202.562443100 3.82E-02 4.18E-05 

21 202.580565300 202.557707900 202.580589400 2.29E-02 2.41E-05 

22 202.589954700 202.576409400 202.589968400 1.35E-02 1.37E-05 

23 202.594807900 202.586841100 202.594815700 7.97E-03 7.80E-06 

24 202.597316400 202.592660000 202.597320800 4.66E-03 4.40E-06 

25 202.598613000 202.595905700 202.598615400 2.71E-03 2.40E-06 

 

Table 2: Comparison between numerical methods and the exact solution for S. Pustulata in isolation. 

Day Exact Solution Taylor Series RKF 

Absolute Error 

Taylor Series RKF 

0 2 2 2 0.00E+00 0.00E+00 

1 4.556621749 4.376401238 4.556086590 1.80E-01 5.35E-04 

2 9.591791693 9.088355933 9.590551115 5.03E-01 1.24E-03 

3 17.560433260 17.002044700 17.559118830 5.58E-01 1.31E-03 

4 26.653701240 26.700312850 26.652373320 4.66E-02 1.33E-03 

5 33.852360800 34.180778820 33.851398920 3.28E-01 9.62E-04 

6 38.075305760 38.105488950 38.076203190 3.02E-02 8.97E-04 

7 40.131128890 39.952222080 40.132912200 1.79E-01 1.78E-03 

8 41.041124960 40.834945900 41.042552470 2.06E-01 1.43E-03 

9 41.426885980 41.267294890 41.427749810 1.60E-01 8.64E-04 

10 41.587409570 41.482331370 41.587872840 1.05E-01 4.63E-04 

11 41.653690400 41.590182850 41.653923810 6.35E-02 2.33E-04 

12 41.680970240 41.644512660 41.681083510 3.65E-02 1.13E-04 

13 41.692183220 41.671942570 41.692236830 2.02E-02 5.36E-05 

14 41.696789640 41.685807150 41.696814550 1.10E-02 2.49E-05 

15 41.698681500 41.692819150 41.681083510 5.86E-03 1.76E-02 

16 41.699458580 41.696366500 41.699463750 3.09E-03 5.17E-06 
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17 41.699777660 41.698161360 41.699779980 1.62E-03 2.32E-06 

18 41.699908690 41.699069580 41.699909730 8.39E-04 1.04E-06 

19 41.699962500 41.699529170 41.699962960 4.33E-04 4.60E-07 

20 41.699984600 41.699761740 41.699984800 2.23E-04 2.00E-07 

21 41.699993680 41.699879430 41.699993770 1.14E-04 9.00E-08 

22 41.699997400 41.699938980 41.699997440 5.84E-05 4.00E-08 

23 41.699998930 41.699969120 41.699998950 2.98E-05 2.00E-08 

24 41.699999560 41.699984380 41.699999570 1.52E-05 1.00E-08 

25 41.699999820 41.699992090 41.699999820 7.73E-06 0.00E+00 

 

The graphical representations of this model reveal that across both organisms, the Taylor Series 
exhibited considerably larger errors than the RKF method. The difference was more pronounced for 
P. Caudatum, with its maximum absolute error for Taylor Series reaching 4.80, whereas it's only 
0.0214 for RKF. Similarly, for S. Pustulata, the Taylor Series had a maximum error of 0.558, in contrast 
to RKF’s mere 0.0176. In biological modeling, accuracy is paramount. Large errors, like those 
exhibited by the Taylor Series, could lead to misinterpretations, potentially impacting decision-
making, or interventions. It can be accepted that the RKF method is the most reliable approximation 
method than the Taylor Series method for solving the Lotka-Volterra competitive model. This can be 
applied for both species. The table demonstrates that populations of both species rise until they 
achieve a stable equilibrium, where their population levels remain constant for intraspecific 
interaction. P. Caudatum reaches its maximum population size of 202 cells on day 16𝑡ℎ, while S. 
Pustulata reaches its maximum population size of 41 cells on day 8𝑡ℎ. 

In this case, the couple equation (8) does not have an exact analytical solution, thus it is solved 
numerically by using Mathematica 13.2 programming. Those results are presented in Table 3. 

Table 3: Numerical solution for P. Caudatum and S. Pustulata. 

Day 
Numerical Solution 

(P. Caudatum in mixed) (S. Pustulata in mixed) 

0 2 2 

1 3.751451974 4.504472679 

2 6.808330731 9.304627060 

3 11.683631120 16.591242660 

4 18.612572770 24.421613580 

5 27.522162810 30.003024910 
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6 38.313686050 32.453811910 

7 50.911572770 32.557535140 

8 65.061172600 31.279097530 

9 80.206496750 29.258908940 

10 95.554528050 26.882724210 

11 110.267244900 24.399495860 

12 123.667222000 21.977749000 

13 135.357183700 19.725021040 

14 145.223933000 17.698338470 

15 153.364466400 15.916144810 

16 159.991369700 14.371408780 

17 165.355793800 13.043100870 

18 169.699790500 11.904482790 

19 173.233788400 10.928200410 

20 176.130265700 10.088946640 

21 178.525818200 9.364558700 

22 180.526588800 8.736231420 

23 182.214318400 8.188295469 

24 183.651802800 7.707823312 

25 184.887408900 7.284194294 

 

Table 3 demonstrates that P. Caudatum populations in mixed populations are continuously growing, 
while S. Pustulata populations in mixed populations are also continuously growing but start to 
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decrease after day 8𝑡ℎ. From day 1𝑠𝑡 until day 5𝑡ℎ, S. Pustulata is outnumbered P. Caudatum. Starting 
from day 6𝑡ℎ, S. Pustulata started being driven out by P. Caudatum. 

There are four different cases in stability of competition that are being studied, which are species 1 
(P. Caudatum) win, species 2 (S. Pustulata) win, unstable equilibrium, and coexistence of both species. 

 
Figure 5: Case I (Species 1 win) 

 
Figure 6: Case II (Species 2 win) 

 
Figure 7: Case III (Unstable equilibrium) 

 
Figure 8: Case IV (Coexistence of both species) 

 

Figure 5 demonstrates a graph where there is a situation in which species 1 will win in a competition 
for case I. P. Caudatum and S. Pustulata will increase where both isoclines are below them, whereas 
they will decrease if both isoclines are above them. P. Caudatum will increase and S. Pustulata will 
decrease at the point below P. Caudatum's isocline and above S. Pustulata's isocline. This trajectory 
will continue until P. Caudatum can be stable at its own carrying capacity, while S. Pustulata is driven 
to extinction. Figure 6 shows a graph where there is a situation which species 2 will win in a 
competition for case II. The point which at above and below both isoclines are the same as case I. 
However, S. Pustulata will increase and P. Caudatum will decrease at the point below S. Pustulata's 
isocline and above P. Caudatum's isocline. In the meantime, P. Caudatum will be driven to extinction, 
and this trajectory will last until S. Pustulata can stable at its own carrying capacity. 

Figure 7 shows that there is also a situation called competitive exclusion or an unstable equilibrium 
in a competition for case III. The point which at above and below both isoclines are the same as the 
other cases. The competitive exclusion of S. Pustulata by P. Caudatum happens at the point that is 
below P. Caudatum's isocline and above S. Pustulata's isocline. However, the competitive exclusion of 
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P. Caudatum by S. Pustulata happens at the point below S. Pustulata's isocline and above P. 
Caudatum's isocline. It demonstrates that there is an unstable equilibrium, which one species 
outcompetes the other, resulting the extinction of the weaker species at the point where the two 
isoclines intersect, and it depends on the initial numbers of P. Caudatum and S. Pustulata. Figure 8 
shows that there are stable equilibrium points, which represent a balanced coexistence, where the 
populations of both species remain constant over time for case IV. In this case, all the population 
trajectories will leave both species’ populations at the intersection of the isoclines. The point is on 
both isoclines which neither population will grow any further and they will stabilize at this 
equilibrium. This is the only case in which competitive exclusion does not occur. There is a stable 
equilibrium point at the intersection of both isoclines where the two species can coexist without 
extinction when intraspecific competition is larger than interspecific competition. 

4 CONCLUSION AND RECOMMENDATIONS 

In summary, this research offers crucial insights into the use of numerical approximation methods, 
such as the Taylor Series and RKF method in addressing the Lotka-Volterra competitive model. Using 
data from Gause's experiment involving P. Caudatum and S. Pustulata, across both P. Caudatum and 
S. Pustulata models, the RKF method proved to be markedly more accurate than the Taylor Series. 
When prioritizing precision in biological modeling, RKF emerges as the more reliable choice between 
the two. In sum, while the Taylor Series may offer simplicity, its compromised accuracy, especially 
when compared to the RKF method, makes it less suitable for precise biological modeling of the 
organisms in question. Observations on the species' interactions, both intra- and interspecific, reveal 
dynamic population growths that stabilize over time, with P. Caudatum persistently outnumbering S. 
Pustulata in mixed populations due to competitive exclusion. The study underscores the critical role 
of carrying capacities in these outcomes. Furthermore, the commercial application of understanding 
these species' interactions could provide vital insights into freshwater ecology, serve as educational 
tools, and possibly aid in the development of bioindicators for assessing water quality. In essence, 
this study enriches our understanding of numerical approximation methods and their utility in 
ecological research, emphasizing the necessity for precise modeling and prediction of species 
interactions, population behavior, stability, equilibrium, and competitive behavior for effective 
ecological management and conservation. this research suggests a preference for the RKF method 
over the Taylor series method in solving the Lotka-Volterra competitive model due to its higher 
accuracy and adaptability. To enhance realism, models should be calibrated and validated using 
specific data of the populations being studied. Sensitivity analyses are recommended to ascertain the 
effect of parameter changes on numerical solutions, and environmental parameters should be 
included in the model to improve accuracy. The research also proposes comparing numerical 
solutions with real-world data to evaluate the model's predictions. Finally, the study encourages the 
application of the discussed numerical methods in studying interactions beyond the examined 
species, demonstrating their flexibility and applicability in analyzing ecological systems. 
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