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ABSTRACT	
	

Linear	 systems	 are	 applied	 in	 many	 applications	 such	 as	 calculating	 variables,	 rates,	
budgets,	making	a	prediction	and	others.	Generally,	 there	are	 two	 techniques	of	 solving	
system	 of	 linear	 equation	 including	 direct	methods	 and	 iterative	methods.	 Some	 basic	
solution	methods	known	as	direct	methods	are	 ineffective	 in	 solving	many	 equations	 in	
large	 systems	 due	 to	 slower	 computation.	Due	 to	 inability	 of	 direct	methods,	 iterative	
methods	are	practical	to	be	used	in	large	systems	of	linear	equations	as	they	do	not	need	
much	 storage.	 In	 this	 project,	 three	 indirect	methods	are	 used	 to	 solve	 large	 system	 of	
linear	 equations.	 The	methods	 are	 Jacobi	 Davidson,	 Gauss‐Seidel	 and	 Successive	 Over‐
Relaxation	 (SOR)	 which	 are	 well	 known	 in	 the	 field	 of	 numerical	 analysis.	 The	
comparative	results	analysis	of	the	three	methods	is	considered.	These	three	methods	are	
compared	based	on	number	of	iterations,	CPU	time	and	error.	The	numerical	results	show	
that	Gauss‐Seidel	method	and	 SOR	method	with	 ω=1.25	are	more	 efficient	 than	others.	
This	research	allows	researcher	 to	appreciate	 the	use	of	 iterative	 techniques	 for	 solving	
systems	of	linear	equations	that	is	widely	used	in	industrial	applications.	
	
Keywords:	system	of	linear	equation,	iterative	method,	Jacobi‐Davidson,	Gauss‐Seidel,	
Successive	Over‐Relaxation	
	
	 	

1. 	INTRODUCTION		
	
Linear	systems	are	important	in	our	real	life.	They	are	applied	in	various	applications	such	as	in	
calculating	variables,	rates,	budgets,	making	a	prediction	and	others.	A	system	of	linear	equation	
is	defined	as	collections	of	two	or	more	linear	equations	with	the	same	variables	(Jamil,	2012).	
In	general,	a	linear	equation	is	given	as	follows:		
	

ܽଵݔଵ ൅ … ൅ ܽ௡ݔ௡ ൌ ܾ௠ (1)
	

Due	to	many	equations	and	variables,	 the	systems	of	 linear	equations	must	be	represented	by	
matrices	 equation	 since	 they	 are	 impossible	 to	 be	 solved	 (Gerald	 &	 Wheatley,	 2003).	 The	
following	form	is	considered	in	the	systems	of	linear	equations.		
	

ݔܣ ൌ ܾ (2)
	
where,	
	
ܣ ∶ 	matrix	݊	ݔ	݉	
ݔ ∶ 	column	vector	with	݊	entries	
ܾ ∶ 	column	vector	with	݉	entries	
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A	rectangular	array	with	݉	row	and	݊	columns	is	called	a	matrix.	Each	number	in	the	matrix	is	
known	as	an	entry.	A	size	of	the	matrix	can	be	identified	by	checking	on	the	number	of	rows	and	
columns.	 Usually,	 the	 matrix	 is	 denoted	 as	݉	 ൈ ݊	 which	 the	 notations	 refer	 to	 a	 row	 and	 a	
column	respectively.	A	general	݉	 ൈ ݊	matrix	is:	

	

ܣ ൌ ൦

ܽଵଵ ܽଵଶ … ܽଵ௡
ܽଶଵ ܽଶଶ ⋯ ܽଶ௡
⋮ ⋮ ⋱ ⋮

ܽ௠ଵ ܽ௠ଶ ⋯ ܽ௠௡

൪ ൌ ൣܽ௜௝൧	 (3)

	
Based	on	Eq.	(3),	a	capital	letter	ܣ	represents	the	notation	for	a	matrix	while	a	lowercase	letter	
ܽ	refers	to	a	matrix	entry.	Both	notation	commonly	used	the	same	letter	(Robinson,	2011).	 In	
identifying	an	entry	of	a	matrix,	double	subscripts	of	entry’s	row	and	column	is	written	as	ܽ௜௝	
where	 ݅ ൌ 1,2, … ,݉	 and	 ݆ ൌ 1,2, … , ݊	 represent	 the	 row	 and	 column	 respectively	 (Hogben,	
2013).	From	the	previous	equation,	matrices	 that	refer	 to	system	of	 linear	equation	would	be	
written	as:	

	

൦

ܽଵଵ ܽଵଶ … ܽଵ௡
ܽଶଵ ܽଶଶ ⋯ ܽଶ௡
⋮ ⋮ ⋱ ⋮

ܽ௠ଵ ܽ௠ଶ ⋯ ܽ௠௡

൪ ൦

ଵݔ
ଶݔ
⋮
௡ݔ

൪ ൌ ൦

ܾଵ
ܾଶ
⋮
ܾ௠

൪	 (4)

 
Mathematically,	small	systems	of	linear	equations	are	generally	solved	by	using	direct	methods	
which	are	Gauss	Jordan	elimination,	Cramer’s	Rule	and	Gauss	elimination.	Direct	methods	can	
be	solved	manually	or	by	using	computer.	However,	 since	many	applications	 take	 the	 form	of	
large	systems	of	 linear	equations,	direct	methods	are	not	applicable	because	 the	computation	
becomes	 cumbersome	 as	 they	 consists	 large	 number	 of	 variables.	 Hence,	 iterative	method	 is	
used	 as	 an	 effective	 method.	 An	 iterative	 method	 is	 usually	 started	 by	 an	 initial	 guess.	 This	
method	is	practical	to	be	used	in	large	systems	of	linear	equations	because	it	does	not	require	
large	storage.	There	are	many	examples	of	iterative	method,	however	in	this	paper,	only	three	
iterative	 methods	 will	 be	 discussed	 which	 are	 Jacobi	 Davidson	 (JD),	 Gauss‐Seidel	 (GS)	 and	
Successive	Over‐Relaxation	(SOR).	Therefore,	the	main	purpose	of	this	research	is	to	determine	
the	best	indirect	method	to	be	used	to	solve	large	systems	of	linear	equations.	
	

 
2. LITERATURE	REVIEW	
 
According	to	Burden	&	Faires	(2011),	linear	system	is	in	form	of		ݔܣ ൌ ܾ.	Saha	(2017)	examined	
the	 solutions	 of	 non‐square	 systems	 of	 linear	 equations	 by	 generalizing	 Jacobi‐Davidson	 and	
Gauss‐Seidel.		She	found	that	the	methods	are	applied	to	reduced	row	echelon	system	until	the	
solution	is	obtained.	Meanwhile,	Wheaton	&	Awoniyi	(2017)	found	a	new	iterative	method	for	
solving	the	non‐square	which	is	Fourier‐Motzkin.		
	
Jacobi‐Davidson	 (JD)	 is	 used	 in	 solving	 large,	 sparse	 symmetric	matrices	 (Bergamaschi	 et	 al.,	
2003).	The	Jacobi	name	was	picked	by	Carl	Gustav	Jakob	Jacobi	(Emmanuel,	2015).	According	to	
Gutknecht	(2007),	JD	is	the	one	of	the	simplest	iterative	methods	and	it	is	defined	on	matrices	
with	non‐zero	diagonals	(HarpinderKaur,	2012).	JD	is	a	basic	method	to	solve	system	of	linear	
equations	especially	when	the	system	is	huge.	Referring	to	Akhtar	&	Alzghoul	(2009),	there	are	
two	types	of	storage	array	required	in	this	JD	including	old	approximation	and	the	new	one.	The	
updated	values	can	be	done	in	the	same	time.	For	this	reason,	JD	is	also	known	as	simultaneous	
displacement.		
	
Next,	 GS	 is	 defined	 as	 the	 most	 familiar	 method	 used	 to	 solve	 system	 of	 linear	 equation	 as	
suggested	by	Jamil	et	al.	(2013).	Actually,	this	‘Gauss	Seidel’	method	is	named	by	Carl	Friedrich	
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and	Philip	Ludwig	Von	Seidel	Gauss.	In	previous	research	by	Hong	(2012),	GS	is	better	than	JD	
in	term	of	efficiency.	This	is	because	GS	computes	the	iteration	of	ݔሺ௞ାଵሻ	while	JD	only	iterates	
vector	of	ݔሺ௞ሻ.	
	
SOR	method	is	a	method	that	applies	an	extrapolation	which	is	known	as	߱	to	the	GS	method.	
This	method	extrapolates	a	weighted	average	between	the	previous	iteration	and	the	computed	
GS	iteration	successively	(Mittal,	2014).	David	M.	Young	was	the	first	to	introduced	SOR	method	
around	1950	(Leveque	&	Trefethen,	1986).	SOR	is	also	known	as	an	improvement	of	the	GS.	It	is	
used	to	speed	up	the	convergence	of	the	GS	method	by	introducing	a	parameter,	߱.	Regarding	to	
Kumar	(2015),	in	any	iterative	numerical	method,	convergence	means	each	successive	iteration	
results	 in	 a	 solution	 that	 moves	 progressively	 closer	 to	 the	 true	 solution.	 There	 are	 some	
theories	 from	researches	that	discussed	about	the	rate	of	convergence	of	 these	three	 iterative	
methods.	Referring	to	a	research	done	by	HarpinderKaur	(2012),	GS	method	converges	 faster	
than	Jacobi	method.	Despite	JD	slow	convergence	and	not	really	used	for	application	in	our	life,	
it	can	be	parallelized	easily	(Mittal,	2014).	Based	on	this	literature	reviews,	it	can	be	seen	that	
most	 researchers	 found	 that	 SOR	 performs	 much	 better	 methods	 than	 JD	 and	 GS	 method	
because	SOR	converges	quickly.		
	
	
3. FUNDAMENTAL	OF	ITERATIVE	METHODS	
 
For	 solving	 sparse	 large	 systems	 that	 mostly	 contain	 elements	 of	 zero,	 direct	 method	 is	 not	
appropriate	 to	 solve.	 Iterative	 methods	 are	 used	 for	 the	 solution	 of	 large	 systems	 of	 linear	
equations.	Iterative	methods	start	with	an	initial	approximate	solution	which	is	vector	ݔሺ଴ሻ.	The	
approximation	is	keep	improved	until	achieved	an	absolute	error	that	is	less	than	the	tolerance	
value.	In	this	research,	the	three	main	iterative	methods	are	presented:	JD,	GS	and	SOR.	
	
3.1 Jacobi‐Davidson	
	
In	 numerical	 linear	 algebra,	 JD	 is	 an	 algorithm	 for	 determining	 the	 solutions	 of	 a	 diagonally	
dominant	system	of	linear	equations.	Each	diagonal	element	is	solved	for,	and	an	approximate	
value	is	plugged	in.	The	process	is	iterated	until	it	converges.	The	formula	can	be	written	as:	

	

௜ሺ௞ሻݔ ൌ ൬
1
ܽ௜௜
൰ቌ෍൫െܽ௜௝ݔ௝ሺ௞ିଵሻ൯

௡

௝ୀଵ

൅ ܾ௜ቍ	 (5)

 
where 	
	iteration	݇௧௛	in	obtained	that	ݔ	of	values			:ݔ
ܽ:			values	of	element	in	matrix	ܣ	in	݅	row	and	column	݆	
ܾ:			values	of	element	in	matrix	ܾ	
݅ ൌ 1,2, … ,݉	that	refer	to	row	
݆ ൌ 1,2, … , ݊	that	refer	to	column	
	
Algorithm	1.	Steps	in	Jacobi‐Davidson	method	

	
Step	1	 Choose	an	initial	guess	ݔሺ଴ሻ ൌ 0	for		݇ ൌ 1,2,⋯ ,ܰ	and	for	݅ ൌ 1, 2, 3,⋯ܰ		
Step	2	 While	ሺ݇ ൑ ܰሻ	do	steps	3‐6
Step	3	 For	݅ ൌ 1,⋯ , ݊.	Then,	set	ݔ௜ ൌ

ଵ

௔೔೔
ൣെ∑ ൫ܽ௜௝ܺ ௝ܱ൯

௡
௝ୀଵ ൅ ܾ௜൧	

Step	4	 If	‖ݔ െ ܱܺ‖ ൏ ⋯,ଵݔ)	output	Then,	.ܮܱܶ , ;௡ሻݔ
ሺ݄ܶ݁	݁ݎݑ݀݁ܿ݋ݎ݌	ݏܽݓ	݈ݑ݂ݏݏ݁ܿݑݏሻ. 	STOP	

Step	5	 Set	݇ ൌ ݇ ൅ 1	
Step	6	 For	݅ ൌ 1,⋯ , ݊.	Then	set	ܺ ௜ܱ ൌ ௜ݔ
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Step	7	 OUTPUT	ሺ′݉ݑ݉݅ݔܽܯ	ݎܾ݁݉ݑ݊ ݂݋ ݏ݊݋݅ݐܽݎ݁ݐ݅ ;ᇱሻ݀݁݀݁݁ܿݔ݁
ሺ݄ܶ݁		݁ݎݑ݀݁ܿ݋ݎ݌	ݏܽݓ	݈ݑ݂ݏ݁ܿܿݑݏ. ሻ	.	STOP	

	
3.2 Gauss‐Seidel	
	
GS	method	is	a	variant	of	 the	Jacobi	method	that	usually	 improves	the	rate	of	convergence	by	
using	the	new	values	of	ݔ௜

ሺ௞ାଵሻ.	As	a	simplification,	the	formula	used	for	Gauss	Seidel	method	is	
written	as:	
	

௜ሺ௞ሻݔ ൌ ൬
1
ܽ௜௜
൰ቌെ෍൫ܽ௜௝ݔ௝

ሺ௞ሻ൯

௡

௝ୀଵ

െ ෍ ൫ܽ௜௝ݔ௝
ሺ௞ିଵሻ൯

௡

௝ୀ௜ାଵ

൅ ܾ௜ቍ	 (6)

	
where,		
	iteration	݇th	in	obtained	that	ݔ	of	values			:ݔ
ܽ:			values	of	element	in	matrix	ܣ	in	݅	row	and	column	݆	
ܾ:			values	of	element	in	matrix	ܾ	
	݅ ൌ 1,2, … ,݉	that	refer	to	row	
݆ ൌ 1,2, … , ݊	that	refer	to	column	
	
	

ALGORITHM	2.	Steps	in	Gauss‐Seidel	method		
	

Step	1	 Choose	an	initial	guess	ݔሺ଴ሻ ൌ 0	for		݇ ൌ 1,2,⋯ ,ܰ	and	for	݅ ൌ 1, 2, 3,⋯ܰ		
Step	2	 Let	݇ ൌ 1	
Step	3	 While	ሺ݇ ൑ ܰሻ	do	steps	3‐6
Step	4	 For	݅ ൌ 1,⋯ , ݊.	Then,	set	ݔ௜ ൌ

ଵ

௔೔೔
ൣെ∑ ܽ௜௝ݔ௝ െ

௜ିଵ
௝ୀଵ ∑ ൫ܽ௜௝ܺ ௝ܱ൯

௡
௝ୀ௜ାଵ ൅ ܾ௜൧	

Step	5	 If	‖ݔ െ ܱܺ‖ ൏ ⋯,ଵݔ)	output	Then,	.ܮܱܶ , ;௡ሻݔ
ሺ݄ܶ݁	݁ݎݑ݀݁ܿ݋ݎ݌	ݏܽݓ	݈ݑ݂ݏݏ݁ܿݑݏሻ. 	STOP	

Step	6	 Set	݇ ൌ ݇ ൅ 1	
Step	7	 For	݅ ൌ 1,⋯ , ݊.	Then	set	ܺ ௜ܱ ൌ ௜ݔ
Step	8	 OUTPUT	ሺ′݉ݑ݉݅ݔܽܯ	ݎܾ݁݉ݑ݊ ݂݋ ݏ݊݋݅ݐܽݎ݁ݐ݅ ;ᇱሻ݀݁݀݁݁ܿݔ݁

ሺ݄ܶ݁		݁ݎݑ݀݁ܿ݋ݎ݌	ݏܽݓ	݈ݑ݂ݏ݁ܿܿݑݏ. ሻ	.	STOP	
	
3.3 Successive	Over‐Relaxation	
	
SOR	method	 is	 a	variant	of	 the	Gauss–Seidel	method	 for	 solving	a	 linear	 system	of	equations,	
resulting	 in	 faster	 convergence.	 A	 similar	 method	 can	 be	 used	 for	 any	 slowly	 converging	
iterative	 process.	 The	 SOR	 method	 can	 be	 derived	 by	 multiplying	 the	 decomposed	 system	
obtained	from	the	Gauss‐Seidel	method	by	the	relaxation	parameter,	ω.	The	iterative	parameter	
ω	should	always	be	chosen	such	that	0	<	ω	<	2.	Besides	that,	extrapolation	factors,	ω	that	used	
in	this	project	are	0.5,	1.25	and	1.75.	The	SOR	method	can	be	written	as:	

	

௜ሺ௞ሻݔ ൌ ሺ1 െ ߱ሻݔ௜ሺ௞ିଵሻ ൅
߱
ܽ௜௜

ቌܾ௜ െ෍൫ܽ௜௝ݔ௝௞൯

௜ିଵ

௝ୀଵ

െ ෍ ൫ܽ௜௝ݔ௝௞ିଵ൯

௡

௝ୀ௜ାଵ

ቍ	 (7)

 
where: 	
	iteration	݇th	in	obtained	that	ݔ	of	values			:ݔ
ܽ:			values	of	element	in	matrix	ܣ	in	݅	row	and	column	݆	
ܾ:			values	of	element	in	matrix	ܾ	
߱:		extrapolation	factor	
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݅ ൌ 1,2, … ,݉	that	refer	to	row	
݆ ൌ 1,2, … , ݊	that	refer	to	column	
	
Algorithm	3.	Steps	in	Successive	Over‐Relaxation	method	

	
Step	1	 Choose	an	initial	guess	ݔሺ଴ሻ ൌ 0	for		݇ ൌ 1,2,⋯ , ݇௠௔௫		and	for		݅ ൌ 1, 2, 3,⋯ܰ		
Step	2	 ଵݔ

ሺଵሻ ൌ ሺ1 െ ߱ሻݔଵ
ሺ଴ሻ ൅

߱
ܽଵଵ

ቀܾଵ െ ൫ܽଵଶݔଶሺ଴ሻ൯ െ ൫ܽଵଷݔଷሺ଴ሻ൯ቁ	

ଶሺଵሻݔ ൌ ሺ1 െ ߱ሻݔଶሺ଴ሻ ൅
߱
ܽଶଶ

ቀܾଶ െ ൫ܽଶଵݔଵሺଵሻ൯ െ ൫ܽଶଷݔଷሺ଴ሻ൯ቁ	

ଷሺଵሻݔ ൌ ሺ1 െ ߱ሻݔଷሺ଴ሻ ൅
߱
ܽଷଷ

ቀܾ௜ െ ൫ܽଷଵݔଵሺଶሻ൯ െ ൫ܽଷଶݔଶሺଵሻ൯ቁ	

௜ሺ௞ሻݔ ൌ ሺ1 െ ߱ሻݔ௜ሺ଴ሻ ൅
߱
ܽ௜௜

ቌܾ௜ െ෍൫ܽ௜௝ݔ௝௞൯

௜ିଵ

௝ୀଵ

െ ෍ ൫ܽ௜௝ݔ௝௞ିଵ൯

௡

௝ୀ௜ାଵ

ቍ	

Step	3	 Until	ሺ݇ ൑ ܰሻ	repeat	steps	1‐2
Step	4	 Repeat	the	whole	calculation	until	achieved	the	stopping	criteria.		
	
	
4. THE	CONVERGENCE	OF	ITERATIVE	METHODS	

	
The	 three	 methods	 which	 are	 JD,	 GS	 and	 SOR	 are	 iterated	 until	 the	 stopping	 criteria	 are	
achieved.	According	to	Gismalla	(2014),	the	stopping	criteria	are	calculated	by:		
	

ฮ௫ሺೖሻି௫ሺೖషభሻฮ

ฮ௫ሺೖሻฮ
൏	∈		 ;	where	∈൐ 0	

	
The	 symbol	 	 represents	 a	 tolerance	 factor.	 The	 values	of	 tolerance	 factor	 in	 this	project	 are	
10ିଷ, 10ି଺	and	10ିଽ.	Generally,	a	tolerance	is	used	to	know	the	distance	the	last	 iteration	in	a	
method	 to	 the	 exact	 solution.	 Instead,	 various	 tolerance	 factors	 are	 used	 to	 compare	 which	
stopping	criterion	gives	the	best	performance.			
	
	
5. ANALYSIS	OF	RESULTS	
	
In	 this	 world,	 there	 are	many	 applications	 involving	 thousands	 equations	 and	 variables.	 The	
square	 systems	 of	 linear	 equations	 are	widely	 used	 in	 our	 real	 life.	 Related	 to	 that,	 the	 large	
systems	of	linear	equations	are	used	in	this	project.	To	solve	the	large	system	of	linear	equation,	
the	 solutions	 can	 be	 obtained	 by	 three	 iterative	 methods	 which	 are	 Jacobi‐Davidson	 (JD)	
method,	Gauss‐Seidel	(GS)	method	and	Successive	Over‐Relaxation	(SOR)	method	since	they	are	
well‐known	basic	iterative	methods	in	numerical	analysis	(Salkuyeh,	2007).		
	
In	the	beginning,	the	datasets	are	generated	using	Maple	16.	Then,	all	analyses	are	performed	in	
MATLAB	since	it	 is	one	of	the	best	software	for	numerical	computation.	This	software	is	more	
efficient	 than	 another	 program	 such	 as	 Python.	 Furthermore,	 it	 is	 faster	 to	 execute	 the	 large	
datasets	when	using	this	software.	MATLAB	is	selected	since	the	programming	code	had	been	
provided	 and	 guided	 by	 Gismalla	 (2014).	 The	 approximated	 values	 from	 MATLAB	 then	
compared	with	exact	values	that	had	been	executed	in	Maple	by	using	inverse	methods.		
	
This	section	introduced	some	problems	that	will	be	tested	on	each	method	which	is	JD,	GS	and	
SOR.	As	aforementioned,	the	systems	of	linear	equations	are	better	simplified	in	matrices	form.	
There	are	5	practical	examples	applied	in	this	paper.	Symmetric	matrices	are	considered	in	this	
study.	 The	 symmetric	 matrices	 on	 2 ൈ 2, 3 ൈ 3, 5 ൈ 5, 10 ൈ 10		and	20 ൈ 20	 systems	 of	 linear	
equations	are	illustrated	in	following	Table	1.		
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The	following	five	problems	are	tested	using	the	same	processor	performance	which	is	Intel®	
Core™	i5‐3210M	CPU	@	2.50	GHz	on	Asus	Series	A45V.	It	is	important	to	perform	the	tests	using	
the	 same	processor	 in	 order	 to	 get	 a	 uniform	 and	 accurate	 CPU	 time.	 This	 research	 involved	
symmetric	 and	 non‐symmetric	 systems	 of	 linear	 equations	 which	 are	 positive	 and	 negative	
definite.	However,	 the	data	 tabulation	only	showed	symmetric	positive	definite	 (SPD)	applied	
on	an	initial	point	of	(0,0,….0).	For	the	detail	of	the	remaining	results,	research	by	Mohammed	
(2017)	can	be	referred.	

	 	
Table	1	List	of	linear	equations	

	

Size	 ݔܣ ൌ ܾ	

2
ൈ
2	 ቂ 3 െ2

െ2 3
ቃ ቂ
ଵݔ
ଶݔ
ቃ=ቂ7

3
ቃ	

	

3
ൈ
3	 ൥

2 െ1 0
െ1 2 െ1
0 െ1 2

൩ ൥
ଵݔ
ଶݔ
ଷݔ
൩ ൌ ൥

7
3
2
൩	

	

5
ൈ
5	

ۏ
ێ
ێ
ێ
ۍ
5 െ2 3 െ2 െ2
െ2 5 െ2 3 െ2
3 െ2 5 െ2 െ2
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െ1 0 െ1 7 െ1 0 െ1 0 െ1 0
0 െ1 0 െ1 7 െ1 0 െ1 0 െ1
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Table	1	(CONT)	List	of	linear	equations	
	

Size	 ݔܣ ൌ ܾ

20
ൈ
20
	

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 12 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 12 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 12 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 12 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 12 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 12 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 12 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 12 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ے12

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
7
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
ے2
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

	

	
The	result	that	produced	by	the	four	equations	are	given	in	Table	2,	3,	4,	5	and	6.	
	

Table	2	Linear	equation	of	2 ൈ 2  	
	

Methods	 Number	of	Iteration CPU	Time	 Error	

Jacobi‐Davidson	 55	 1.2413E‐03	 1.4651E‐09	
Gauss‐Seidel	 29	 1.0210E‐03	 5.0747E‐10	
Sucessive	Over‐Relaxation	with	߱ ൌ 0.5	 95	 2.0173E‐03	 3.3331E‐09	
Sucessive	Over‐Relaxation	with	߱ ൌ 1.25	 17	 9.0233E‐04	 6.3046E‐10	
Sucessive	Over‐Relaxation	with	߱ ൌ 1.75		 80	 1.7767E‐03	 4.3829E‐10	
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Table	3	Linear	equation	of		3 ൈ 3	3 ൈ 3			

	

Methods	 Number	of	Iteration CPU	Time	 Error	

Jacobi‐Davidson	 65	 1.3957E‐03	 1.8645E‐09	
Gauss‐Seidel	 34	 1.0570E‐03	 7.4216E‐10	
Sucessive	Over‐Relaxation	with	߱ ൌ 0.5	 110	 2.1387E‐03	 3.7693E‐09	
Sucessive	Over‐Relaxation	with	߱ ൌ 1.25	 19	 9.7267E‐04	 2.7376E‐11	
Sucessive	Over‐Relaxation	with	߱ ൌ 1.75	 81	 1.8273E‐03	 6.0185E‐10	

	
Table	4	Linear	equation	of	5 ൈ 5			

	

Methods	 Number	of	Iteration CPU	Time	 Error	

Jacobi‐Davidson		 Fail	 Fail	 Fail	
Gauss‐Seidel		 111	 1.9220E‐03	 4.3016E‐09	
Sucessive	Over‐Relaxation	with	߱ ൌ 0.5	 329	 4.6047E‐03	 1.4742E‐08	
Sucessive	Over‐Relaxation	with	߱ ൌ 1.25	 69	 1.7200E‐03	 2.1552E‐09	
Sucessive	Over‐Relaxation	with	߱ ൌ 1.75	 98	 1.8670E‐03	 2.8764E‐09	

	
Table	5	Linear	equation	of		10 ൈ 10			

	

Methods	 Number	of	Iteration CPU	Time	 Error	

Jacobi‐Davidson		 58	 1.4397E‐03	 1.6250E‐09	
Gauss‐Seidel		 32	 1.2100E‐03	 6.3162E‐10	
Sucessive	Over‐Relaxation	with	߱ ൌ 0.5	 99	 2.0163E‐03	 3.6451E‐09	
Sucessive	Over‐Relaxation	with	߱ ൌ 1.25	 21	 1.1007E‐03	 2.5873E‐10	
Sucessive	Over‐Relaxation	with	߱ ൌ 1.75	 93	 2.0893E‐03	 4.4658E‐10	

	
Table	6	Linear	equation	of	10 ൈ 10			

	

Methods	 Number	of	Iteration CPU	Time	 Error	

Jacobi‐Davidson	 Fail	 Fail	 Fail	
Gauss‐Seidel	 20	 1.1880E‐03	 1.2948E‐10	
Sucessive	Over‐Relaxation	with	߱ ൌ 0.5	 31	 1.6427E‐03	 9.1859E‐10	
Sucessive	Over‐Relaxation	with	߱ ൌ 1.25	 31	 1.9150E‐03	 3.5445E‐10	
Sucessive	Over‐Relaxation	with	߱ ൌ 1.75	 129	 2.8523E‐03	 4.8811E‐10	
	
	
6. DISCUSSION	
	
An	 interpretation	 is	 the	 process	 of	 organizing	data	 that	 is	 analyzed	 and	 collected.	A	 common	
method	of	 interpreting	numerical	 result	graphically	 is	known	as	a	performance	profile	 that	 is	
introduced	 by	 Dolan	 and	 More	 (2001).	 The	 performance	 profile	 is	 one	 of	 the	 ways	 to	
demonstrate	trend	line	in	data	and	make	comparisons	between	JD,	GS,	and	SOR.		
	
This	 section	 provides	 further	 explanation	 for	 numerical	 results	 that	 focuses	 on	 three	 aspects	
which	 are	 number	 of	 iterations,	 CPU	 time	 and	 error	 for	 the	 tolerance	 factor	 of	 10ିଽ.	 The	
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performance	 profiles	 that	 combined	 both	 positive	 definite	 and	 negative	 definite	 are	 shown	
below	 based	 on	 tolerance	 10ିଽ	 only.	 The	 performance	 profile	 of	 all	 methods	 based	 on	 the	
number	 of	 iterations	 is	 illustrated	 in	 Figure	 1	 and	 the	performance	profile	 based	 on	 the	CPU	
time	is	shown	in	Figure	2.	For	error,	the	performance	profile	is	drawn	in	Figure	3.	
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Figure	1.	Performance	profile	based	on	number	of	iterations	
	
Figure	 1,	 shows	 the	 performance	 profile	 based	 on	 the	 number	 of	 iterations	 that	 combine	
symmetric	positive	definite	and	symmetric	negative	definite	based	on	tolerance	10ିଽ.	It	can	be	
seen	that,	GS,	SOR	with	extrapolation	factor,	߱=0.5,	SOR	with	extrapolation	factor,	߱=1.25	and	
SOR	with	extrapolation	factor,	߱=1.75	are	able	to	reach	value	݌௦ሺݐሻ=1.	But,	there	is	a	line	that	
does	not	achieve	݌௦ሺݐሻ=1	which	is	black	line	that	represents	JD.	This	 line	only	reach	݌௦ሺݐሻ=0.7	
since	some	of	 the	selected	problems	 failed	to	obtain	 the	solution.	For	 the	remaining	methods,	
they	are	able	to	solve	the	problems.	From	the	left	side	of	the	performance	profile,	it	can	be	used	
to	determine	the	efficiency	of	a	method.	SOR	with	extrapolation	factor,	߱=1.25	is	declared	as	the	
best	method	based	on	the	number	of	iterations.		
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Figure	2.	Performance	profile	based	on	CPU	time	
	

In	 Figure	 2,	 the	 performance	 profile	 based	 on	 CPU	 time	 that	 combines	 symmetric	 positive	
definite	and	symmetric	negative	definite	based	on	tolerance	10ିଽ	is	plotted.	The	figure	shows	
that	GS,	SOR	with	extrapolation	 factor,	߱=0.5,	SOR	with	extrapolation	 factor,	߱=1.25	and	SOR	
with	extrapolation	factor,	߱=1.75	are	able	to	reach	value	݌௦ሺݐሻ=1.	But,	there	is	a	line	that	does	
not	achieve	݌௦ሺݐሻ=1	which	is	black	line	that	represents	JD.	This	line	only	reach	݌௦ሺݐሻ=0.7	since	
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some	of	 selected	problems	 failed	 to	obtain	 the	solution.	The	remaining	methods	able	 to	solve	
the	problems.	From	the	left	side	of	the	performance	profile,	it	can	help	determine	the	efficiency	
of	a	method.	Thus,	SOR	with	extrapolation	factor,	߱=1.25	is	declared	as	the	best	method	based	
on	the	CPU	time.	
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Figure	3.	Performance	profile	based	on	CPU	time	
	
In	Figure	3,	performance	profile	based	on	error	 that	put	 together	 symmetric	positive	definite	
and	symmetric	negative	definite	based	on	tolerance	10ିଽ	is	illustrated.	It	can	be	seen	that,	GS,	
SOR	 with	 extrapolation	 factor,	 ߱=0.5,	 SOR	 with	 extrapolation	 factor,	 ߱=1.25	 and	 SOR	 with	
extrapolation	 factor,	߱=1.75	are	able	 to	reach	value	݌௦ሺݐሻ=1.	But,	 there	 is	a	 line	 that	does	not	
achieve	݌௦ሺݐሻ=1	which	 is	black	 line	 that	 represents	 JD.	This	 line	only	 reach	݌௦ሺݐሻ=0.833	 since	
some	of	 selected	problems	 failed	 to	 obtain	 the	 solution.	 For	 the	 remaining	methods,	 they	are	
able	to	solve	the	problems.	From	the	left	side	of	the	performance	profile,	 it	can	determine	the	
efficiency	of	a	method.	As	shown	in	Figure	3,	SOR	is	declared	as	the	best	method	based	on	the	
error.		
	
	
7. CONCLUSION	
	
The	numerical	results	are	presented	in	each	aspect	namely	number	of	iterations,	CPU	time	and	
error.	The	three	methods	are	tested	using	five	problems	of	symmetric	positive	definite	systems	
of	linear	equations	with	initial	point	of	(0;0;…;0).	The	approximate	values	obtained	mostly	able	
to	perform	until	closer	to	the	exact	solutions.	Results	shows	that	SOR	with	extrapolation	factor,	
ω=1.25	has	less	number	of	iteration,	 faster	in	term	CPU	time	and	closer	to	the	exact	values	as	
compared	to	other	methods.	The	SOR	with	extrapolation	factor,	ω=1.25	possessed	the	minimum	
number	 of	 iteration.	 For	 the	 3×3,	 5×5	 and	 10×10	 linear	 equations,	 it	 has	 19,	 69	 and	 21	
iterations.	It	also	takes	shorter	CPU	time	for	the	linear	equations	of	3×3,	5×5	and	10×10	which	
are	 0.00097	seconds,	 0.00172	 seconds	 and	 0.0011	seconds.	 In	 terms	 of	 error,	 the	 SOR	 with	
extrapolation	 factor,	ω=1.25	 got	 the	 least	 error.	 Thus,	 it	 can	 be	 concluded	 that	 the	 SOR	with	
extrapolation	 factor,	 ω=1.25	 is	 more	 efficient	 and	 has	 good	 performance	 among	 the	 three	
methods.		
	
	
8. FUTURE	WORK	
	
In	 future	 work,	 there	 are	 some	 improvements	 can	 be	 done.	 In	 this	 project,	 the	 problems	 of	
linear	equations	are	selected	to	be	 tested	with	 iterative	methods:	 JD,	GS	and	SOR.	 It	would	be	
more	 interesting	 if	 non‐linear	 equation	 can	 be	 tested	 to	 compare	 the	 speed	 of	 executable	
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computation	and	accuracy.	Next,	it	is	recommended	to	compare	the	systems	of	linear	equations	
using	more	problems	in	higher	dimensional	of	the	matrices.		
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APPENDIX	
	
If	 any,	 the	appendix	 should	appear	directly	after	 the	 references	without	numbering,	 and	on	 a	
new	page.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


