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ABSTRACT 

Inventory Routing Problem (IRP) is a critical component of Supply Chain Management, where it 
is a coordination of inventory management and transportation. It aims to balance the trade-off 
between transportation costs for delivering products and holding costs for maintaining 
inventory. Several real-world problems faced nowadays require effective optimization and 
logistical solutions, where this problem arises in various industries and has become increasingly 
complex.  The problem addressed in this study is based on an automotive parts supply chain that 
consists of a depot, an assembly plant, a set of homogeneous capacitated vehicles, and multi-
suppliers on a finite horizon with multi-periods. Artificial Bee Colony (ABC) is a swarm 
intelligence algorithm that is based on the behaviour of bees in a colony, where information is 
shared through waggle dance. ABC consists of three phases, which are employed bee phase, 
onlooker bee phase, and scout bee phase. This study proposed an enhancement in the 
initialization phase and in onlooker bee phase of the ABC algorithm. Clarke Wright savings 
algorithm was implemented in the initialization phase to determine the best feasible delivery 
routes while minimizing the total transportation cost. 2-opt and 2-opt* were used to improve the 
routes in the onlooker bee phase. Results showed that 7 better total cost were found out of 14 
benchmark datasets when compared to the previous literature. The enhanced ABC algorithm 
obtained better results with 5.59% at most, which demonstrated the effectiveness of the 
algorithm. 

Keywords: Artificial Bee Colony, Clarke Wright Savings Algorithm, Inventory Routing 
Problem 

1 INTRODUCTION 

An efficient distribution network is critical for Supply Chain Management (SCM) as it enables cost 
minimization and enhances overall productivity [1]. The activities of SCM include purchasing, 
production and scheduling, marketing, location, transportation, and inventory control [2]. SCM is 
defined as strategically coordinating these activities to improve long-term performance [3]. The 
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Inventory Routing Problem (IRP) is a variation of the Vehicle Routing Problem (VRP), which 
coordinates two activities of SCM, inventory and transportation. The decision of inventory and 
routing management must be optimized at the same time to improve the performance of the system 
[4]. The IRP involves finding the optimal solution among many possible combinations of routes and 
inventory levels, which becomes computationally exhaustive as the problem size increases. Routing 
or transportation is the heart of the IRP, which enables the movement of goods and ensures product 
availability. The transportation cost contributes a significantly large amount to the logistics. Hence, 
optimizing transportation will yield significant savings.  

Many optimization algorithms successfully demonstrated the effectiveness of metaheuristics in 
approximate solutions of IRP such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), 
Simulated Annealing, and Artificial Bee Colony (ABC). The ABC is an algorithm based on a honeybee’s 
swarm’s unique behaviour. ABC is a simple and efficient algorithm that is proven to perform better 
compared to other algorithms [5]. Initially proposed for numerical optimization, the application of 
ABC has been extended by many researchers to tackle combinatorial optimization problems, for 
example, the application to Capacitated VRP [6].  

The main contribution of this study is in the enhancement of ABC for solving the IRP.  A modified 
Clarke Wright savings algorithm was proposed to generate better sequences. As the IRP was 
constrained by vehicle capacity, the modification of savings is designed to ensure that the suppliers 
will be assigned to a new route once capacity is full. This study is organized as follows. The following 
section explore the literature focussed on enhancing and modifying existing algorithm. The IRP is 
described in the next section followed by the solution methodology proposed, enhanced ABC. Then, 
results and throughout discussion were presented, and the last section conclude our work. 

2 LITERATURE 

Artificial Bee Colony (ABC) has gain significant interests especially in solving combinatorial 
optimization problems due to its flexibility [7] and simplicity. There are various combinatorial 
problems successfully proposed ABC as their solution strategies, for example assembly line 
productions, DNA sequencing and modelling, network problems and routing problem [8]. However, 
it is known that many combinatorial optimization problems are NP-hard, which often results in 
ineffective polynomial-time solutions.  

Despite the promising results shown by ABC algorithm in addressing various optimization problems 
[5], it does have drawbacks including convergence especially in larger and complex problems [9], 
[10] getting trapped in local optimal, lack of diversity in the population [11], limited scalability results 
in less effective search as the problem size increases and lack of theoretical foundations which makes 
it difficult to understand and analyse the behaviour of the algorithm [12]. Hence, enhancement and 
modification of the algorithm is usually proposed to overcome these weaknesses and improve its 
performance.  

Enhancements of an algorithm are proposed mainly to improve efficiency and effectiveness of an 
algorithm. There are instances where the basic algorithm struggles to handle larger datasets and 
complex problems that involve strict constraints. As the problem size increase, the performance of 
ABC deteriorates gradually [13]. This is critical as most real problems involved large datasets and 
time sensitive. Hence, embedding a fast local heuristic helps in decrease computational time. Another 
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concern of inefficiency is in the accuracy of results in especially in forecasting, where small errors 
could cause serious consequences.  

There are few techniques of enhancements. Among them are hybridizing two algorithms, or by 
modifying/adding phases, and operators of an algorithm, and combining mathematical formulation 
with metaheuristic algorithm, named Mat-heuristic [14]. [15] utilize the qualities of Genetic 
Algorithm (GA) and Particle Swarm Optimization (PSO) by hybridizing both algorithms to solve 
benchmark problem. A set of rules derived from the analysis of swarm intelligence was used inside 
the GA. Results showed to be robust and effective. Similarly, studies by [16] on global optimization, 
[17] on location and sizing distribution, [18] enhanced GA by adaptive mutation operator, [19] on 
embedded feature selection for hyperspectral image analysis, a fully informed PSO presented by [20] 
for multi-mode resource-constrained project scheduling problem, and [21]on finding optimal 
reactive power flow.  

Different combinations of metaheuristic have also been done. For instance, [22] hybridized Variable 
Neighbourhood Search (VNS) with simulation for the Stochastic Inventory Routing Problem, 
achieving rapid solutions compared to previous studies. [23] presented reduced computational time 
results by combining VNS with GA for the Profitable VRP with Cross-Docking.  

In the context of the VRP, researchers have made enhancements to improve the accuracy of the basic 
algorithms. [24] enhanced Clarke Wright savings algorithm (or savings algorithm in short) for VRP 
by considering the combination of distance and customer demand. They obtained fast results with 
5.23% improved accuracy. [25] then further improved the solution quality in [24] by proposing a 
robust enhancement to the savings formulation by implementing a three-parameter savings function. 
The enhancement is aimed to merge customers with both small and large demand in the same route 
to reduce capacity losses.  

[26] studied Capacitated VRP and proposed enhanced savings algorithm in terms of route post-
improvement and tested the algorithm on 90 benchmark datasets. Out of the 90 datasets, 76 has 
shown optimal results indicating a percentage of 84% and a small deviation of 0.049%. Research by 
[27] enhanced the savings algorithm by implementing a stop assignment procedure, inter-route 
improvements similar to [28]. Superior results were obtained when implemented to real-life 
problems compared to the basic savings algorithm. Also, [29] solved real-world problem with lower 
number of vehicles and 30.57% distance savings. 

Pre-seeding in the initialization, [30] improved the ABC to accelerate convergence speed and to avoid 
the local optima, where they were inspired by previous authors such as [31], [32], [33], [34], and 
[35]. By introducing a new initialization approach and a novel search mechanism, [30] were able to 
show high performance in accuracy and the proposed algorithm could be used for complex numerical 
optimization problems.  

Recently, [36] enhanced ABC to solve multi-products IRP that focused on balancing the exploration 
and exploitation process, where the study was able to give an average of 2.25% improvement to the 
results. However, vehicle utilization can be further improved, which will have a direct impact on the 
distance. Previous literatures have proved that an enhancement is required to further improve the 
results from benchmark datasets. Motivated by the literature, an enhancement of ABC is proposed in 
this study that focuses on route improvement to obtain more efficient routes. 
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3 PROBLEM DESCRIPTION 

This study considered an IRP with multi-periods and multi-products. The network is a many-to-one 

distribution network defined on a finite planning horizon that comprises of a depot, an assembly 
plant, and 𝑁 suppliers each supplying a distinct product. A set of homogeneous capacitated vehicles 

available at depot travels and starts collecting products from suppliers to the assembly plant and 

return to the depot. The assumptions include no backordering, immediate product availability when 

vehicle arrival, variable demand over time (which can be zero), unlimited vehicles, and subject to 

vehicle capacity constraint.  

If collection is more than demand, the excess inventory incurs product-specific holding costs at the 

assembly plant. It is also assumed that there are no storage limitations at the assembly plant. The 

objective of this study is to provide the optimal collection strategy that minimizes the total cost, 

which includes the inventory cost and transportation cost. The mathematical formulation of the IRP 

in this is based on a previously literature [37] with a modification made to ensure a supplier cannot 

be visited by more than one vehicle. 

4 METHODOLOGY 

This study implemented a metaheuristic method, ABC, for the problem. The ABC consists of three 

phases, which are employed bee phase, onlooker bee phase, and scout bee phase. In the employed 

bees, a mechanism to update inventories was implemented where deliveries were transferred 

between periods to increase/decrease the inventories and balance with the routing part. Employed 

bees then shared the information of the beneficial food source with the onlooker bees through waggle 

dance. The onlooker bees will decide which employed bees to follow based on the nectar values. The 

onlooker bees will exploit the same food source. The value of food source will be improved according 

to the control parameters decided and if the value is not improved after the pre-determined number 

of iterations, the employed bee assigned will abandon the food source, and become a scout bee. It will 

then begin to search for new food source.  

An enhancement of the ABC that targeted on routing part of IRP was proposed in this study. The 

enhanced algorithm is denoted as ABCSA. The enhancement was done in the initialization phase and 

in the onlooker bee phase. A construction heuristic, Clarke Wright savings algorithm is utilized in the 

initialization phase to generate a feasible route that minimizes distance. This algorithm calculates the 

savings achieved by combining two suppliers, 𝑖 and 𝑗  into a single route, based on a distance matrix. 

The savings values between the suppliers, denoted as 𝑠𝑖𝑗 , are then sorted in descending order [38]. 

The routing process begins by selecting the top value from the savings list, which corresponds to the 

highest savings. If the total demand collected does not exceed the vehicle capacity and there are no 

route constraints, the route for both suppliers will be combined into a single route. As the IRP 

considered is constrained by vehicle capacity, the savings algorithm is modified to ensure feasible 

solution. The capacity of the vehicle is determined concurrently while building the routes using 

savings algorithm. The ABCSA described is presented by flow chart in Figure 1. 
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Figure 1: Flowchart of ABCSA 

In addition to the embedded 1 − 0 swap and 2 − 𝑜𝑝𝑡, an inter vehicle heuristic, 2 − 𝑜𝑝𝑡∗ was 

employed in the onlooker bee phase. The 2 − 𝑜𝑝𝑡∗ finds better routes by swapping suppliers between 

two different vehicles. This is done exhaustively for all vehicles within the same period and 

eventually collapses vehicle. As a trade-off, the ABCSA took longer time to run. Therefore, similarly 

to the previous literature, ABCSA is terminated after 3600 seconds even though the maximum 

number of iterations, 𝑀𝐴𝑋𝐼𝑇𝐸𝑅 have not reach the predetermined value 250. 

Initialization Phase.  
A set of random solutions is generated and implement modified Clarke Wright Savings algorithm 
to find the routing part. A preprocessing is done to avoid split delivery and ensure the feasibility 
of solutions. Each solution is assigned a bee. The control parameters 𝐿𝐼𝑀𝐼𝑇, 𝑀𝐴𝑋𝐼𝑇𝐸𝑅, and 
maximum number of bees values are set. 
 

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 > 𝑀𝐴𝑋𝐼𝑇𝐸𝑅 
(Termination condition) 

START 

END 

YES 

NO 

Employed Bee Phase.  

In this phase, employed bee begin searching for solutions (food source). An Inventory updating 
mechanism, is applied. Deliveries were transferred forward and backward to balance with the 
routing.  

Onlooker Bee Phase.  

In this phase, onlooker bee selects the beneficial food source to follow. A Stochastic Universal 
Sampling (SUS) method is used for selecting the employed bee to be followed. Improvement 
heuristics: 1-0, 2-opt and 2-opt* are applied consecutively to further improve the routing.  

Scout Bee Phase.  

When the exploitation of employed bee reaches 𝐿𝐼𝑀𝐼𝑇, it will abandon the current solution. It will 
then become scout bee and begin to search for new solution. 
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5 RESULTS AND DISCUSSIONS 

The performance of the Artificial Bee Colony enhanced with Savings algorithm (ABCSA) developed 

was tested on a benchmark dataset [36]. The dataset consists of various combinations of suppliers 
and periods. Each dataset is enumerated by S𝑥 T𝑦 such that 𝑆 indicates supplier and 𝑇 is period/time. 

𝑥 takes on the values of 12, 20, 50, and 98, while 𝑦 takes on the values of 5, 10, 14, and 21. For instance, 

S20T5 refers to a dataset with 20 suppliers and 5 periods. It should be noted that the datasets for S12 

and S98 are limited to a maximum of 14 periods. The ABCSA was run on 16GB of RAM computer and 

3.6GHz. The enhanced algorithm is coded in MATLAB 2020a.  

The ABCSA was set to run 10 independent runs until optimality based on pre-determined values of 

control parameters. For comparison purposes, the bee population is set at 50 (25 employed bees and 

25 onlooker bees) following the previous literature, The control parameters, LIMIT, and maximum 

number of iterations (MAXITER) are set at 25×maximum supplier and 250 respectively. Table 1 

tabulates the best costs and the percentage difference (%∆) between the ABCSA and [36]. Note that 

previous literature embedded the Giant Tour procedure in the initialization phase. The best solution 

of both algorithms is given in bold. The ABCSA works better for medium size dataset (S20 and S50) 

with 7 better results out of the 14 datasets tested.  In average, the ABCSA performs slightly better by 

0.31% indicating the effectiveness of the algorithm developed.  

Table 1: Best costs and number of vehicles  

Dataset ABCSA #veh          [36] #veh %∆ 

S12 T5 1983.95 15 1961.71 14 1.13 

S12 T10 4313.05 33 4012.65 29 7.49 

S12 T14 6072.54 44 5645.57 41 7.56 

S20 T5 3004.78 23 2987.73 22 0.57 

S20 T10 5923.64 43 6221.23 46 -4.78 

S20 T14 8678.69 69 8751.05 65 -0.83 

S20 T21 13142.67 100 13233.06 97 -0.68 

S50 T5 5134.54 48 5355.01 47 -4.12 

S50 T10 10755.38 103 11392.59 101 -5.59 

S50 T14 15348.97 146 15600.78 137 -1.61 

S50 T21 23364.70 223 24535.92 219 -4.77 

S98 T5 587242.88 60 585854.63 60 0.24 

S98 T10 1174564.37 120 1165316.11 119 0.79 

S98 T14 1646132.31 168 1642123.06 168 0.24 

Average  -0.31 

 

It is interesting to note that for S20 and S50 found better solution with a higher number of vehicles, 

and the maximum vehicle gap is 9 in the medium dataset of S50 T14. Better vehicle number is given 

in italic. Dataset S50 obtained a better solution with a slightly higher number of vehicles, which 

indicates that the routing sequences found by savings algorithm are better in distances. Note that 

previous literature focused on reducing the number of vehicles while ABCSA saved distances. 
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The average of cost, inventory, transportation costs and standard deviation were tabulated in Table 

2. The S50 and S12 dataset (T5 and T10) consistently perform well based on the standard deviation. 

Furthermore, the transportation cost has a significant impact on the overall cost, indicating that 

maintaining excessive inventory is not beneficial according to the distribution strategy of ABCSA.  

Table 2: Average costs, inventory, transportation, and standard deviation 

Dataset Total Cost Inventory Transportation Standard Deviation 

S12 T5 2043.83 102.60 1941.23 37.47 

S12 T10 4387.31 124.20 4268.11 48.40 

S12 T14 6234.43 314.40 5920.63 136.81 

S20 T5 3096.59 91.80 3004.79 46.68 

S20 T10 6247.88 468.00 5779.88 260.69 

S20 T14 8885.39 308.70 8576.69 266.64 

S20 T21 13419.92 309.30 13110.62 223.96 

S50 T5 5158.49 34.00 5124.49 19.06 

S50 T10 10798.34 50.80 10747.54 32.29 

S50 T14 15441.37 89.00 15352.37 142.85 

S50 T21 23703.83 413.60 23290.23 242.69 

S98 T5 594537.41 6456.52 588080.89 7402.06 

S98 T10 1179839.47 2613.27 1177226.20 11105.87 

S98 T14 1683271.42 26958.82 1656312.60 39106.71 

 

Table 3 tabulates the average running time in seconds for both algorithms. It is observed that S50 

and S98 make use of the second termination condition, which is in 1 hour. It is worth noting that both 

algorithms run on different specifications of computer.  

Table 3: Average running time in seconds 

Dataset ABCSA [36] 

S12 T5 252.71 242.95 
S12 T10 459.90 432.53 

S12 T14 641.05 590.77 

S20 T5 788.40 1466.77 

S20 T10 1478.36 1399.13 
S20 T14 2065.21 1906.02 

S20 T21 3114.63 2849.31 

S50 T5 3600.00 3600.00 

S50 T10 3600.00 3600.00 
S50 T14 3600.00 3600.00 

S50 T21 3600.00 3600.00 

S98 T5 3600.00 3600.00 

S98 T10 3600.00 3600.00 
S98 T14 3600.00 3600.00 
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6 CONCLUSION AND RECOMMENDATIONS 

An Artificial Bee Colony enhanced with Clarke Wright savings algorithm (ABCSA) is proposed for 

solving the inventory routing problem (IRP). The enhancement was made targeting to improve the 
routing part; hence savings algorithm was implemented in the initialization phase while 2-opt* and 

2-opt in the onlooker bee phase. ABCSA performed well in medium dataset, with 7 better solutions 

compared to previous literature. ABCSA showed significant improvement of at most 5.59% and 

0.31% on average, in expense of computational time. It is interesting to emphasize that ABCSA found 

solutions with lower distance but higher number of vehicles. This indicates the capability of savings 

algorithm in finding efficient routes. Future works can explore IRP as a multi-objective and 

embedding a fast algorithm to reduce the computational time.    
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