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ABSTRACT

A new fully implicit two point variable step size based on block backward differentiation formula
with two off-step points for the numerical integration of first order stiff ordinary differential
equations in initial value problems is proposed. The methods are derived by introducing three
different values of the step size ratio to the existing fifth order 2-point block backward
differentiation formula with off-step points for solving stiff ordinary differential equations. The
methods approximate two solutions values with two off-step points simultaneously at each step
of the integration in block. The order, error constant, and consistency of the methods are
presented. The stability analysis of the methods indicates that the methods are both zero and A-
stable. The proposed methods are implemented in Microsoft Dev C++ compiler using Newton’s
iteration and the numerical comparison of results with existing algorithm of the same order
shows that the proposed methods are better in terms of accuracy and compete with 3DIBBDF in
terms of computation time. Hence, the proposed methods serve as alternative solver for stiff
ODE:s.

Keywords: Stiff, Variable Step Size, Block Backward Differentiation Formula, Off-Step, A-
stability.

1 INTRODUCTION

In this paper, we shall consider the first order stiff initial value problems in ordinary differential
equation of the form:

u' =f(x,u), ul@=uy,, a<x<b (1)

where the function f(x,u) is assumed to satisfy the Lipschitz conditions for the existence and
uniqueness of solutions which guarantees that the ordinary differential equation (1) has a uniquely
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continuous differentiable solutions [1]. The solution of such equation is characterized by the
presence of transient and steady state terms which restricts the step length of many numerical
integration schemes except those numerical methods with A-stability properties [2].

The system of ordinary differential equation (1) is said to be “stiff” when an extremely small step size
is required to obtain correct numerical approximation. In other word, stiff problems are equations
where certain implicit numerical methods, in particular backward differentiation formula (BDF)
perform better than explicit numerical schemes [3]. Most interesting and physically relevant real
world stiff problems are difficult to solve analytically rather an alternative numerical methods are
used in determining approximate solutions to the problems. However, in dealing with stiff ODEs, the
stiffness property restricts the conventional explicit numerical integration methods from handling
the problems efficiently. The stiff IVPs occur in many fields of science, engineering and technology,
they are particularly found in chemical Kinetics, thermodynamics and heat flow, control systems,
vibration of the strings, electrical circuits, nuclear radioactive decay, weather prediction and
forecasting.

Implicit linear multistep methods are known to be best and suitable for the treatment of stiff ODEs,
the backward differentiation formula was developed by [3], since then most of the improvements in
the class of linear multistep methods are based on BDF, this is due to its special properties and better
stability characteristics. Considerable recent research efforts have been made by the researchers to
formulate fully and diagonally implicit block methods of both constant and variable step size
technique with A-stability property suitable for the numerical solution of stiff ordinary differential
equations such as [5],[6],[7],[8],[9],[10],[11],[12],[13],[15],[16],[17],[18],[19]. This paper focuses on
the derivation, stability analysis and implementation of variable step size form of the formulain [14],
by introducing different values of r but those that allow for the stability properties of the method will
be used as they are the ones that can lead us to a reasonably accurate numerical approximation when
implemented on first order stiff problems.

2 FORMULATION OF THE METHOD

In this section, we shall be concerned with the formulation of the proposed method we shall call fully
implicit 2-point variable step size block backward differentiation formula with two off-step points
for the numerical integration of stiff initial value problems.

Definition 2.1: The fully implicit 2-point variable step size block BDF with two off-step points for the
numerical integration of stiff initial value problems is defined as:

1 3 _ 1 3
Zj:O aj,k,rum_j_l + Zj=0 a’j+2'k,run+(j+1)/2 = h.Bk,rfn+k' k= 3’ 1;5' 2 (2)

The method (2) approximate two solutions value with a step size h and two off-step points which are
chosen when the step size is halved, the values of r that would be used in this paperarer = 1,r = 2

5 . . o .
and r = s corresponding to the step size control strategy of maintaining constant, doubling or

multiplying the step size by a factor of 1.6 respectively. The Taylor’s series expansion about x,, is
used for the derivation of the method.

Definition 2.2: the linear difference operator L; associated with the fully implicit 2-point variable
step size BDF method with two off-step points is defined by

Lifu(xyp), h] = agrux, —rh) + agulx,) + agu (xn + %h) + azulx, +h)
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ety et (n + 2 h) + s puCey + 20) = hBef (o +kh) = 0, k =2,1,%,2 (3)

In this paper, we only consider the derivation of a first off-step point as similar procedures are used
for the derivation of first, second off-step and second point respectively. We shall consider the
derivation of first off-step point as case 1 as follows:

First Off-step Point: k = %

In deriving the first off-step point, the associated approximate relationship for the linear difference
operator (3) is

Li[u(xn), h] = aj1u(x, —Th) + a 1u(x,) + a,1u (xn + %h) + azu(x, +h)
2 2 2 2 2

3 1
+a4%u (xn + Eh) + aséu(xn + 2h) — h[)’%f (xn + Eh) =0, (4)
Expanding the functions in (4) as a Taylor’s series about x,,, equating and collect the like terms gives
Coau(xy) + C 1hu' (xy) + C,1h%u" (xp) + C,1h%u" (x) + -+ = 0, (5)
2 2 ] 2
where,
Ci1i=a1+a1t+a1+a1+a1+a.1=0,

037 L3 27 33 47 57

1 3
C1=—r0c 1+ 14 1+a 1+ 0£1+20£ 1— p1=0,

2 Z %3 2 43 52 2

1 1 1 9 ) L
2%— ET' OZO%+§0( 1+20(31+80(4é+ a5; EB%_ ,

1

C3% = —ET 0(0%-1-& azé +ga3% +1—6a4% +§a5% _E‘B% =0, (6)
C 1= 1 4 n 1 + 1 4 27 +2 _ 0
3 24 oy 384 23 24“% 1285 " 3%3 " 8"%‘
C .= 1 . N 1 1 N 81 +4 1 N
53”120 %) T3820 %21 T 120%4 T 1280 % T 15 %2 T 384lL

In formulating the first off-step point u__ 1, the coefficient a, 1 is normalized to 1. Solving the set

Tl+E 5

simultaneous equation (6) gives the values of @; , and Sy, as:

1= 9 Q.= 34r2+4r+1 . 1=_2 4r2+4r+1 a1=1
0% T 2(r+1)(10r2+19r—2)(2r+3)r’ 1% T 4 r(10r-1)’ 2% T 2(@r+D@o0r-1) 3% -
3(4r2+4r+1 1 4r244r+1 3(2r+1
(X1=—( ),0(1= — dﬁ1=—( )
47 (2r+3)(10r-1)’ 55 2107241972 2 2 107-1
The first off-step point is therefore obtained as follows
9 34r2+4r+1 9 4ri+4r+1 3(4r2+4r+1)

u Uy Uy + - Ups1 — u
n+§ 2r+1)(10r2+19r—2)(2r+3)r "1 4 r(10r-1) 2 (r+1)(10r-1) "1 (2r+3)(10r-1) n+§
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1 4r2+4r+1 3(2r+1)
T Upgy —————hf 1 (7)
410r2+19r-2 10r-1 n+

The same technique is applied in formulating of first, second off-step and third points as in the
derivation of the first off-step point. Therefore, fully implicit 2-point variable step size block
backward differentiation formula with two off-step points (2BBDFO) is obtained as:

9 34r2+4r+1u 9 4ri+4r+l u 3(4r2+4ar+1)
1 4 r@or-0) ™ " 2¢+0@0r-1) ™1 (2r+3)(10r-1)

n+: T 2G+)(10r24197-2)2r+3)r -

1 4r2+4r+1 3(2r+1)
n+E t i Torzetor—z ¥n+2 T o1 fn+%’

1 1 2r’+4r+2 1-8r?-16r-8 18r2+167+8

u Uy — = U 1—-—————u_ 3+
n+ T o) L T 12T 7 no3 o241 n+s 3 2r43  n+

1 2r2+4r+2
5y Un+z + (0 + Dhfnig,

_ 9 1 4r2+12r+9 121243671427 (8)
n+d T 2r ) (—10r—2) 2+ D) (r+ ) (r+2) Un-1 7 37 C1or—2n ¥ T Gren)(—10r—21) un+% B
3 12+436r+27 1 12r%+36r+27 3(2r+3)
2rrn(tor—2D Y Y S T2 Y42 T Tior21 fn+§'
_ 72 612 +241+24 4(16r%+647r+64)
Unt2 = o i@ D ners ol e Cser—1i T e Csor—112) et T
2
18(41%+167+16) _ 4(48r2+192r+192) _12(r+2)
+1)(—50r—112) “n*+1 ~ (2r13)(—50r—112) n+§ —50r—112 hfnsz-

u

u

For the purpose of zero and absolute stability region of the method, three different values of r =
L,r=2andr = g are selected as in [16]. By substituting the values of r in equation (8), thus fully

implicit 2-point variable step size block backward differentiation formula with two off-step points
becomes:

For r=1
un_% = 610 Un-1 %un + %un+1 - %un_,_i + 1_12un+2 - hfn_,_l'
Un+1 = ﬁun—l - %un + %un_% - % n+3 + g Un+2 + 2hfni1) ©
5 5 5
un+g = _ﬁu"‘l + %u" % n+l + 124 U+l 1224u”+2 + thn+;’

2 1 32 2
Un+z = ggtin-1 7 3Un + 37U, 1 = 2upyq + 1—5un+§ + 5 sz

Forr =2
3 75 75 75 15
U 1=—1Uy,_ 1 ——U —u — 3 u =hf 1
n+> T 2128 ML q52 0 t3eUnt1 T 133 Unsl + 00 304 "2 19 fn+5'
1 3 24 24
Un+1 = SgoUn-1— 3 Un + ?un_% - 7un+% + gun+2 + 3hfni1,
y T Y U LU w7 Zlhf (10)
— A, W L4147 147 21 ,
n+s 3280 "1 T 328" 205 nt; 82 Ml g5 2 T 41 ne>

" _ 3 2, 2% 96u L7688, 412 hf
n+2 7 1g55 M1 537 M T 545 n+ 53 1+l T 37 n+3 53 Jn+2:
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Forr =

4096 81 +243u 81 4%, 9hf
1=—U,_1 —— — - 3+ — - = 1
n+> T 54145 L 70 M T 91 Tl 499 Tnds T og M2 7T gy

1024 16 169 169

u =—Uu,_ ——u s+——u —=h
n+1 = Te06s5 'n-1 T 240 Un 5 52 Un+l T 102 n+5+ 1o0s Un+2 T g Afntss
u 4096 L2800 289u L2801 289 51 hf (11)
3 = _— 1 _— —_——_— —_—
n+s ~ Tas7ss Un—1 T Too0 Yn T 327 nts 1417 ML 1526 T2 T 109 nt
32768 441 5292 7056 2
u =——u,_ u s+—~h .
n+2 7 ¢33165 "1 955 "+573 n+s 2483 Un+1 + 35 n+ 191 fr+z

Thus, in this paper we shall be referring equation (9)-(11) as fully implicit 2-point variable step size
block backward differentiation formula with two off-step points (2BBDFO) method. It should be
noted that at constant step size r = 1, the formula (8) reduces to the existing 2-point block BDF with
off-step points for solving stiff ODEs of order five developed in [14].

3 ORDER, ERROR CONSTANT AND CONSISTENCY OF THE METHOD
In this section, we consider the derivation of order and error constant of the method

corresponding to formulae in (9), (10) and (11) as in [20] and [16], by considering the formulae
(9) when the step size ratio strategy is constant r = 2. The formulae (9) can also rearrange as

1 3 9 3 1
_%un_1+zun+un+g—zun+1 +§un+g o Une2 = —hfn%,
1 2 32 32 2
75 Un-1 + 3Un — ?un_,_% tupeq t+ 1_5un+; ToUn+2 = 2hfnyi1,
L 25 425 225, L L4235 15hf (12)
_ —_— — - — 3+ — = — 3
124 71 g T3 n+% 124 1+l n+> o124 2 7 317 ne
2 1 32 32 2
st tgin T U 2Upyq — 15 e T ez = 5 fniz:

i 1 3 ] I 9 3 17
_ = 2 1 -2 2 =
0 60 0 4 lu, - 4 352 122 U, 000 0f¢,
o L o 2 ||| |22 1 32 2| ™| oo o0 o/
40 3 Upa | F 9 15 9 [|Una [=h f.
o L g _B|[u, 25 225 L 25 ||y, 000 Off; 1
124 124 uz 31 124 124 u”*? 0000 ]”[5
O _i 0 1 n _g 2 _g 1 n+2 n
i 135 3 | | 27 15 i
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10 0 o]
0 0]
*ho o 2 gf fu (13)
31 f,
00 0 2|
L 9_ n+2
Let
[1 ] [ 3 ] L -
- = h 1 - . 3
0 64 0 . 32 o 5
0 10 0 3 9 a 32
PoZlgl A= 1 [P |o|"PsT| 25 P+~ % ' P5=| 25| Ps = 115 .
124 124 > 124 5
R T 2 e I =R B
135 | L 3 ] - - -
7
12 0 0 0 0 -1 0 0
i 2 0 0 0 0 0 2 1%
7 = 9|, 0g= » O = »y Oy = » O3 = »y Oy = » Og = » O = ’
0 0 0 0 0 0 =
2 a1
124 0 0 0 0 0 0 0
_l_
o]
0
o, = 0
2
L9

Definition 3.1: The order of the block numerical scheme (9) and its associated linear operator given

i L[u(x),h]zi{pj(x+ jgj—haj(x+ Jgﬂ (14)

j=0
Is a unique integer & such that A, =0,0 = 0(1)a and A,,; #0; where A, are the column vectors
defined by
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Ao =po+p1tpzt+-tpg
A1:p1+2p2+"'+kpk—2(0'0+0'1+O'2+"'+0'k),

(15)
Aq =%(p1+2qp2+---+kqpk)—( 25 (01 + 270y + o+ KT ).
q=23 ... ..
For g = 0(1)6, we have
7
Aozzpj=100+101+102+p3+p4+p5+p6+p7
=0
1] T T
- = 1] ¢ - [ 3 1
o] | 8 o1 | 4| [ |[-2] |5 12| [0
of |~20! [0] | 3 9 Al 122 o
=lol*l 1 [*]olt 25+§+—%+115+ng0
of | 124 | [of | 4] | 32| | P4 | = @ 0
1. _5_—27— -nl LT
7 7
A = Z(jpj ) Z )/01 (2):02 + (3)/03 + (4):04 + (5):05 + (6)/96 + (7)/07)
=0 =0
—2(00+c71+02+63+0'4+05+06+07)
_ e S o - R
- =z 1 - 5 3 1
0 81 o . 222 5 12
0, 20 |,/ 3 4 PR P
=1 (0 0 +(1 1 +(2 0 +(3) 36 +(4 % +(5 25 +(6 115 +(7 28
I S I I I ol B R B I O R
I 135 | 3 b2 S
0] [0] [o] [o] [-1] [o] [O0] [O]] To
of 0| o] [o| |0 |2| |20 Oll |o
-2 +| |+ |+ 15|+ o=
0 0 0 O 0 O a1 5 0
0 0 0] |0 0 0 0 9 0
Ip 1
A, = Z( ), > (jo,)- 2,( F oy +(2) 0, + (3) o3 +(4) o + 6F ps +(6F o5 + (7))

((O)O_o (1 1t (2)02 (3)(73 +( ) ( )‘75 + (6)0-6 + (7)‘77)
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3 - - _
- et 1 - - 3 1
0 64 0 4 % 2 5 12
1 2|0 2 _E 2|0 2 Z 2 9 2 14 2 % 2 —g
P O e R N S R - T O i
' = - = 31 T 1
o | 2| o Tl I e |m
_ "1 3] U7 B
0] [o 0 0 17 0 0 01| To
0 0 0 0 0 2 0 0 0
-2/(0 0 +(1 0 +(2 0 +(3 0 +(4 0 +(5 0 +(6) 15 |+(7) o || = 0
31 2
o] |o o] o o] o 0 5l Lo

—% (0Y 00 +(1f 0, +(2V o, + (3F o + (4 0, + (6 0 + (6 0 + (7))
- . o ]
-= = 1 - 3 1
0 64 0 4 32 9 c BT
1 3| 0 3 _% 3| 0 3 % 3 _? 3 14 3 % 3 _E
-3 (0) 0 +@°) 7|+ @) 0 +@P| %6 |+@)| 25 |+ 6)| 25 [+6)] 15 |+(7) 259
— e 31 ry: 1
o] | 128 0 ol S 2 I N U N P
T 3 27 15 1]
0 0 0 0 ] o 0 o7 o
2| el O el O o O] el O] el O | el 2] el & | oo O] [0
5] OFo [+ g @ g g 4] g |+6F| |67 5 0¥ g ||
0 0 0 0 0 0 0 gl Lo
Llite) &U'oy) 1
a5 U2 oS U L0 07040 e 07 0 @6 6 00
_g((ofo_o +(1)30_1 +(2) O, +(3)30_3 +(4)304 +(5)3 05+ (6) O +(7)30_7)
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1 9 I § 1 _i
_32 - 5 12
4 9 4 14 4 g 4 —E
+(4) % +(6)"| 55 |+6)'| 15 [+(7) 2
- - 1
124 32 4 _32 124
27 - - | 15 L 1]
=) 0 0 o] o
0 2 0 0 0
0|2 6|55 |+ (77 o |-
31 2
0 0 0 3 0

- : e B
_% 4 352 122
5s |+ (@) 25 |+(5) 2125 +(6)°| 15 |+() _255
-2 31 - 1
124 32 w24 32 124
27 -0 15 | 1]
=) 0 0 o1] o
0 2 0 0 0
c(@| O 0| 2| or| 35| )] o ||- S
31 2
0 10 0 5 0
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1 3 L -
- = =z 1 - - 3 1
1 0 T 0 ” o _£
=50 |+ @ 20 +(2r ol ¥ @ 46 [+ (@ 25 |+(6P| 255 |+(6)| 15 |+(7) I
- — - 31 - 1
0 12421 0 ]iZ4 32 1224 3R @
_ 155 ] 3 27 15 | 1]
17
0 0 0 0 1 0 0 0] 20
2 0 0 0 0 0 2 0 0 ~E
-5 (o) . +(1)° 0 +(2) 0 +(3)° 0 +(4) . +(5) 0 +(6)° 15 +(7) oll= élS *
' 31 2 —
£ 124
0 0 0 0 0 0 0 5] 4
| 45

Therefore, in accordance with definition 3.1, we have shown that the method (9) is of order five with
error constant given by

| 45

The same procedure is applied to determine the order of the method (10) and (11) which indicates
that their order is also five.

Definition 3.2: the block numerical schemes (9)-(11) are said to be consistent if it has order « at
least one [9]. Hence, we conclude that the methods (9)-(11) are consistent since their order is five
which is greater than one.

4 STABILITY ANALYSIS AND CONVERGENCE OF THE METHOD

In this section, we presents the zero stability, convergence and absolute stability properties of the
method in (9), (10), and (11). We begin by the following definitions:

Definition 4.1: the block numerical scheme (9)-(11) is said to be zero stable if all the roots of first
characteristic polynomial have modulus less than or equal to unity and those of modulus unity are
simple [14].

Definition 4.2: the block numerical scheme (9)-(11) is said to be absolutely stable in a region R for
a given hA if for that hA, all the roots 5 of stability polynomial Q(r, hA) = p(r) — hda(r) = 0 satisfy
rn<1ls=12,..,k[20].

Definition 4.3: the block numerical scheme (9)-(11) is said to be A-stable if its stability region covers
the entire negative half plane [20].
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We shall begin with the absolute stability region of the method when r = 2 by applying the scalar
test differential equation of the form u’ = Au, where A is complex constant with negative real part.
Letting the scalar test differential equation u’ = Au in the formula (10) gives:

75 75 75 25

5
U 1= ——Up g+ Uy SUpp — U 3t Upp —ShAu 2
n+s T 2128 M1 g5zt T 3g UL q33 il T304 P2 197

1 3 24 24 3
Uns1 = 5oolUn-1 = Un + ?un% - 7un+g +3Unsz 3hAuy,yq,
I L 147 4147 147 + h/l (16)
Unt2 = T 3280 Hn-1 T 355 T 503 un+1 g2 Un+1 T Gg Un+2 un+§’
12 256 9
u - U, +—u DU + 220 + h/lu
n+2 = 7gss M1 53 T 265 n+r 53 nH1 T 377 n+ n+2:
After collecting the like terms, the formula (16) becomes
15 75 75 25 3 75
e Ehlun% 38 Un+1 T 133 Mnad T 3egUnv2 T g -1 gzt
24 3 1 3
=5 Upyl T Unyr = 3RAURL 7un+§ —gUn+2 = S5 Un-1 = Un
2 2
147 147 21 147 3 49 (17)

—Uu 1——1u +u 3s——hAdu 3+—u =——U,_ 1 +—Uu
205 n+; g2 Nl n+s 41 n+5 656 Nt2 3280 M1 T gpg T

256 96 768 3 12

- %un_% + s3Un+1 T 37 n+3 t Upyz — h/lun+2 = Tgss Yn-1 ~ 3 Un-
The matrix formulation of the equations (17) is
(W) 2 = 5] L3 15
134 38 1235 3g4 u 2128 153 |[u .|
n+§ 1 3 n—E
- (1—34h) = 3 Upa | 0 280 0 7 1| uns 18)
147 _147 (1_£ hj 147 U, 0 — 8 0 49 lu |
205 82 41 656 "2 3280 328 "2
26 % e (128 |Ue] fy 3, 12)0 U]
265 53 371 53 1855 53 ]
Putting h = Ah in equation (18), we have
LB B B s B
19 38 133 304 u, 2128 153 |[u ,
_ 24 (1_35) 24 3 il g L o 3| ™
5 8 un+l _ ﬁ _Z un—l (19)
R N I | Y Y M 4| T
205 82 41 656 "2 3280 328 || "z
% T (gl g S LRl
| 265 53 371 53 L 1855 53 ]
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if M is the number of block and r is the number of points in the block, then N = Mr . Here I =2 and
n=2m. By [4], we let

u u u u u
omel net 2(m-1)+ = am+ s
2 2 2 2 2
U - Usmig _ Ui U = Up(m-1pa _ | Yama || Una
m u u o, 1 ¥ m-1 u 5 u o, u,
2m+> n+s 2(m-1p> 2m—— n—--
2 2 2 2 2
[ Uomez | [Uns2 | | Yamapz | [ Uom | | Un |

Equation (19) can also be written in the following form

AU, = BUp,_4, (20)
where,
(1+§Hj L) 7 2 0 .3 o I
19 38 133 304 2128 153
_2 (1_35) 24 _3 0 1 0 _3
Ao 5 7 8 B 280 4
47 147 (1_£5J 147y 0 -3 o ®
205 82 41 656 3280 328
26 % 768 (1_2@ o 3 o .12
265 53 371 53 1855 93

The stability polynomial of the method is obtained by evaluating the det(At — B)to obtain the
stability polynomial as

n(t,h) =

9 h h A 'R - -
165148 (—5040t*h* + 27396t*h® + 5034t3h> — 84172t*h? + 31855t3h? + 151488t*h
— 3t%h% + 98608t3h — 125248t* — 16t%h + 125232t3 + 16t2)

=0 (21)

To show that the method (10) is zero stable, we substitute h = 0 in equation (21) to obtain the first
characteristics polynomial as:

9
165148

m(t,0) = (—125248t* — 16t% + 125232¢t3 + 16t2) = 0. (22)

Solving equation (22) for t, we obtain the following roots as

t=0,t=0t=1t=——,
7828

Therefore the values of t above indicate that the method (10) is zero-stable since no magnitude of
the root is greater than one and the root t = 1 is simple.

The boundary of the stability region of the method (10) is determined by inputting t=e'",

0 <0< 2x into equation (21). The graph of the stability region for the method (10) using Maple18
software is given below.
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Stable Region Unstable Region Stable Region

Stable Region Unstable Region Stable Region

Figure 1: Stability region of the 2BBDFO when r = 2.

Thus, the region of absolute stability of the method (10) covers the entire negative half plane which
indicates that the method is A-stable.

Next, we consider the stability of method (11) when r = g. The following are the formulae obtained

5 : . oo .
when r = 5 after the scalar test differential equation is substituted.

y 409% 81, 243u 81 + 20 h/1u
1| = — — 3 1
n+: T Satas nm1 T 7t T o Ut T gty 3 T ggtint T ntz
1024 169 _169
u = u,_ + — 3 + u + h/1u
n+1 = Tooes Un-1 " 340 Un n+ T 102 n+— 1008~ Nt2 nt+l
y 4096 428 289u 4 2601 289 L 51,00 (23)
3= —— 1+ — - — 3
n+> T Tas7es Un—1 7T Togo Un T 327 n+s 1417 ML 1526 M2 T 109 n+>’

32768 441 784 5292 7056
= Uy Uy

u u + — 42 hAu
n+2 7 g33165 "1 955 M T 573 n+— 2483 Un+1 T 3557 n+ 191 n+2:

The formula (23) can also be represented in matrix form as

[, 40% 81 9y, #3889

Lo o ollus 54145 “70 |[u 7 91 119 98 |[u,

"o |, 1024 169| " 169 13, 169 169 || "
010 0||lu,|= 16065 240 || Uns || 54 ) 102 1008 || Una |. (24)
001 0ju,| [, _409% , 289 ||u,| |_289 2601 51 . 289 ||u ,
000 1]| " 148785 1090 || 2 327 1417 109 1526 || "z

ol | 32768 o 441 (LT 784 5292 7056 42 LU

633165 955 | | 573 2483 3247 191 |

Equation (24) is equivalent to the following matrix equation:
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[1+9Mj 243 _ 8 9 Jlu, ][, 49 _s]fu ]
7 91 119 98 n+> 54145 _% -3
169 (1_13 h 4) 169 169 Upg | | 2024 _169 |u,,
54 8 102 1008 u |z 16065 220 |, | (%)
289 2601 51 289 e _ 4096 289 || Tnt
_ 2 o0 1- 2= hj == 2 0 0 2
327 1417 100 1526 || u, 148785 1090 ||
s - o (1—42 Mj O e s
| 573 2483 3247 191 :

Putting h = Ah in equation (25). This leads to

(,,97) 2% 81 o . - |og 2% 4 _81| _
7Y e %8 ||t 54145 0|4,
169 13- 169 169 ||, 2| |0 0 o _194) "o
T 1- ry T102 1008 L 16065 240 n-1
280 2601 (1 51 j 289 [[Y.s| o - 4292 0 202% U1

—— = |l-=ch| = 2 148785 1
327 1417 109 1526
u u
784 5202 7056 (_ 2 ) el g 32708y AALIL S,
BGE 2483 3247 101 633165 955 ]
(26)

Equation (26) is equivalent to

AU,, = BU,,_4, (27)
(1+%HJ % _% 9% o, 4% 8]
54145 70
169 (1_5@ 169 169 o 1024 169
A= 54 8 102 1008 and B = 16065 240
- 289 2601 [1_ 51 Hj 289 o _.40% 289
327 1417 109 1526 148785 1090
84 _ 5292 7056 (LEHJ o 32768 5 44l
573 2483 3247 191 633165 935

The zero and absolute stability region of 2-point variable step size block BDF with two off-step points
method when r = g is determined by solving the characteristic equation n(t, f_l) =det(At—B) =0
to obtain the stability polynomial as

() = 2024 ( , 2582295 __. 7177243 __, 5419209 . 626535 ,_,
' 7286658173125 14159475 6913375 15139254096
8192 4096 * 1024 256
, 1509829 , 16t2i_l>
256
=0 (28)
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For zero stability, we substitute h = Ah = 0 in (28) to obtain the first characteristics polynomial as

(t,0) = 1024 (16t2 _ 1513925 44 1509829 t3) -0 (29)
’ 728665 256 256 )

Solving the quadratic equation in (29) for t, we obtain the following roots as

4096

t=0,t=0,t=1t=— .
1513925

The method (11) is also zero stable since it satisfies the root condition given in definition 4.1.
Therefore, the stability region of the method (11) is given in Figure 2 as

g
Stable Region 21 Unstable Region | Stable Region

%5 -4+ 2 0 2 4 6 g
Rel

Stable Region | Unstable Region /| Stable Region

e
Figure 2: Stability region of the 2BBDF when r = Z.

The stability region in figure 2 also shows that the method is also A-stable since the region covers the
entire negative half plane.

Therefore, the detailed derivation, order, stability analysis, convergence and implementation of 2-
point variable step size block backward differentiation formula with two off-step points of constant
step size have been discussed in [14]. Using same procedure for the value of r = 2 as above, the
stability polynomial is obtained as
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3276 ,_ 804 10779 4702 20272 ,_

t]h)=— 4% & 473 33 _ ap2 372 4R
T[( ) 2511 2511 2511 2511 2511 2511
o2 14304 L 17264 (716 717248 o A6
2511 25111 2511 2511 2511 2511
=0 (30)

To show that the method (9) is zero stable, we put h = Ah =0 in (30) to obtain the first
characteristics polynomial as:
17264 4 , 17248 .3 , 16 5 _

(¢, 0) = - st Tt Tt =0 (31)

Solving (31) for t leads obtain the following roots as

t=0t=0t=1¢t=——
1079
Therefore the values of t above indicate that the method (9) is zero-stable since no magnitude of the

root is greater than one and the root t = 1 is unique.

Using the technique of boundary locus, the boundary of the stability region of the method (9) is
determined by substituting the set of points t = ¢®,0 < # < 2 for which |t| < 1 into equation (30).
The graph of the stability region for the method (9) is plotted using Maple18 software is given below.

Stable Region Stable Region

Stable Region Stable Region

Figure 3: Stability region of the 2-point VSBBDF with two off-step points when r = 1.

Thus, the region of stability is the region outside the circular shape. It indicates that the method is A-
stable since the region covers the entire negative half plane.

The above figures have shown that it is evident that all our block methods presented are A-stable and
therefore suitable for the numerical integration of stiff initial value problems.
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Definition 4.4: the necessary and sufficient conditions for the block numerical schemes (9)-(11) to
be convergent are that it must be consistent and zero-stable [19].

The proposed methods (9)-(11) satisfied the requirement of consistency and that of zero-stability as
stated in definition 4.4, therefore we conclude that the proposed methods (9)-(11) converge.

5 IMPLEMENTATION OF THE METHOD

In this section, Newton’s iteration is used to implement the method, we begin by presenting the
formulae (9)-(11) in the following form:

un_l_% = glun+1 + gzun

Unir = 04w 1+ 05U 3+ Oty + azhfnyg + e,
2 2

+§ + 03un+2 + Ollhfn_l_% + 8%,

32
un+§ = 97un+% + 98un+1 + 99un+2 + 0(3hfn+% + 8;, ( )
Unz = 910un+% + 011Unyq + 912un+; + ashfpiz + €.
where €1, g1, €3 and &, are the backvalues.
2 2
The formulae (32) can be cast in matrix form as
(u | u | [f ] _8 i
1000 n+% 0 91 02 93 m% a, 0 0 0 m% %
0100 un+1 — 94 0 05 96 un+l +h 0 az O 0 fn+l + ‘91 . (33)
0 01 0l|lU, 6, 6 0 6&,(lu , 0 0 «a O]|f, £,
n+— n+— n+— =
2 2 2 2
0 001 u,,, | 6, 6, 6, 0 u,,, 0 0 0 a fLl e
Equation (33) can be represented as
(I —A)U = hBF; +n. (34)
where,
1000 0 6 6, 6, @, 0 0 0 U fng
I20100A:6?4 0 6, 6 BZOO{2 0 O U | Y szn+1
0010/ 0, 6, 0 6,/ 0 0 a O] u L, ' o|f,
n+— n+=
0 0 01 6, 6, 0, 0 0 0 gq 2 2
_un+2_ _fn+2_
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&1

2

&1

and 77 =

€3

2
L&2

Let
F=(—-AU-hBF,—1=0. (35)

The Newton'’s iteration of 2-point variable step size block backward differentiation formula with
two off-step points takes the form:

- -1
(i+1) _g® — _ | (® @
Un+%,n+1,n+;,n+2 Un+$,n+1,n+g,n+2 _F] (Un+%,n+1,n+;,n+2>] [F} (Un+%,n+1,n+%,n+2>]' (36)
Equation (36) is equivalent to
i -1
(i+1) _® — 1 a_ ppof [ ;®
Un+l,n+1,n+3,n+2 Un+1,n+1,n+§,n+2 - (I—4)—hB au (Un+l,n+1,n+3,n+2>]
2 2 2 2 | 2 2
_ @ _ —
X (I A) (Un+%,n+1,n+%,n+2> hBFl n]' (37)

e is the Jacobian matrix of F;with respect to U. For the sake of

0F; )
where ©71/ au <U Sn+in+in+2
comparison purposes, the maximum error is computed from the method developed. Let U;and U (x;)
be the approxximate and exact solution of first order ordinary differential equation (1). The absolute

error is defined by

(errory)e = [(Upe — (U(x))el (38)

The maximum error is defined by:

MAXE = qu (max(errory),), (39)
1=isT 1<i<N

where, T is the total number of steps and N is the number of equations.

Let Uff:ll) denote the (i + 1)th iterate and

1132 nEsnF1i o n+2 n+sn+inton+2
2 2 2 2 2 2

The equation (40) can be written as

(i+1) _ 71p
=A7'B, (41)
2122
which is equivalent to
AE(")) = B, (42)
2’72

where

111



Applied Mathematics and Computational Intelligence
Volume 12, No. 4, Nov 2023 [94-121]

-1
[(I—A) hB <U(l) )] and
n+-, n+1n+ n+2

[(1 —A) <U(‘) s ) — hBF, — n]

n+5n+1 n+2 n+2

Newton’s iteration is therefore applied to solve the system (42). For different values of the step size

ratior
af 1
n+s
1—ah 2 -0
( 1 aun+l 1 _92 —93
2
af, _95 _96
n+1
—0, (1- aphles)
A= Ouniq
O 2 '
1—aszh z -0
-6, —0g 3 ou_s 9
_910 _011 ’ afn+2
0 (1-ah i)
Ounyz
—u' 1+ 01Ul +0ul s+ Osulyy Faghft it e
2 2 2 2
i i i i i
~ —U'pyq +04u’ 1+ Osut 3+ Ogulny +aphft  + e
B = . o2 o2 . .
—u' s+ 07u' 1+ Ogu'nyg +OgUlyyy +ashft st es
2 2 2 2
i i i i i
—U n42 + 910u Tl+% + 911u n+1 + 912u Tl+% + a4,hf n+2 + &y
Whenr =1
af 1
1+h——2 -2 31
a 1 4 5 12
n+s
2 32 2
- 9 ou
A — n+1 f ,
25 _ 228 1-2Bp ™ 25
31 124 31 du 43 124
32 2 2
27 __EE (1__Z}laﬁwz)
15 9 Oup4rn
9 3 1 ; 1
gl Tl 2 gl _ L _ 2
u n+% + sUn+1— U n+% + 7 Un+2 hf n+1 + o0 Un—1 Un
; 32 32 1 2
gl 2e 1 _o- i _ s
~ Uner + U 1 15un 3+ un+2+2hfn+1 25 Un—1 3un
B =
; 25 225 25 1
gl _eva cev ol i
UWne2 T3t n+§ t+ 122+l T u n+2 + hf n+— T 122 Un-1 o 124 Un
; 32 ; 2., 2
) o4 i _ i 34 i _ =
Unez + U n% 2ut, 1 + S U3 + hf niz T35 Un-1 U,
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Whenr = 2
9
145, Sl 75 75 25
197 9u_1 38 133 304
2 s 24 3
24 - —=
_er (1 _ 3h fn+1) 7 8
A= 5 Ount1
= o ,
147 147 1— 21 h—2 147
205 82 41 6un+§ 656
256 96
265 53 _ 768 (1 —Eh—af"”)
371 FI
; 75 25 15, 3 75
_ i _ i i _ e _ 2
n+l + u n+1 T gt n+§ toatntz T g hf n+l t oizsUn-1 T 15, Un
24 24 ; 1 3
= TR tsu n% 7un 3+ un+2+3hf n+1 T 550 Un-1— Un
= ; 147 147 147 3 49
l L l i
—ut 3 ——u —u ——ut 2y 3—— Uy 1 +—U
n+5 205 n+%+ g2 Ut T gggniz Fphf n+; 3280 "1 t3Un
256 i 9% ; 768 i 12, 3 12
—u! - =u s+—h — Uy — U
n2 T ogeWnd TzWnn T2t g finvz ¥ gsstn-1 " 55 tn
5
Whenr ==
8
af 1
9 n+s 243 81 9
1+=h 2 —— —_—  —=
7 0u 1 91 119 98
p 169 169
_ 169 (1 _Eh%) 102 1008
14— _ 54 8 6un+1
= o )
289 2601 13l ™2 289
327 1417 109 6un+§ 1526
784 5292
573 2483 _ 7056 (1 — ﬁh—afn“)
3247 191 Qupy,
243 i 81 9 9. i 4096 81
n+s + Wnt1 — ot n+§ + gt nt2 T3 hf n+% t 5a14s 54145 Un-1 7 75 Un
i 169 i 169 ; 169 ; 13, 4 1024 169
—ut ——u' 3+—u —h — Uy, ——U
5 et gy Wil T 702 % nad T Toos 4 vz T M st T Tg065 U1 T 20 Un
= 289 2601 289 4096 289
l l L L i
—ut 3 —=—u —u ——u — u
n+> 327 n+% t s U ntl T s Y nt2 t s 109 hf n+— 128785 Un-1 T 590 Un
; 784 5292 ; 7056 32768 441
l l l l i
—u —u —u 2 h Uy 1 ——U
n2 ol 1 T gt T U T gy ' nez ¥ G33105 Y1 T 555 Un

A computer code written in C programming language is used for the implementation of the methods.

6 PROBLEMS TESTED
The efficiency and performance of the proposed methods are validated by solving the following first

order stiff initial value problems:
Problem 1:
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% =-5+cosx+5sinx, u(0)=1, 0<x<0.1,
X
Exact solution: u(x)=sin x+e™>".
Source: (Artificial)
Problem 2:
% =—8(u-2x)+2, u(0)=1, 0<x<0.01
X
Exact solution: u(x)=2x+e®.
Source: (Artificial)
Problem 3:
U _ oy, u(0)=1,0<x<0.1,
dx
Exact solution: u(x)=e™?,

Source: (Artificial)

The numerical results obtained for the tested problems are presented and compared with the
existing diagonally implicit block backward differentiation formula of order five which is given as [6]:

2 9 18 6
==Yp 2~ —Yn-1+t—=Ynt—h
Yn+1 11yn 2 11yn 1 11yn 11 fn+1'
3 16 36 48 12
=—=Yn 2t =Vno1—=Vnt— +—=h
Yn+2 Zsyn 2 ZSyn 1 25yn 25yn+1 25 fn+Zr
12 75 200 300 300 60
= —Vpn2——=Vn-1+-—"—Vn—— +— + —hfnqs.
Yn+3 137yn 2 137yn 1 137yn 137yn+1 137.'yn+2 137 fn+3

For the purpose of illustrating the accuracy and computation time of the proposed methods, we
denote the fully implicit block BDF method (9) which corresponds to the constant step size strategy
r =1 as 2BBDFO1 while those BBDF methods corresponding to halving and multiplying the step size
by a factor of 1.6 given by the formulae in (10) and (11) are denoted by 2ZBBDFO2 and 2BBDF03

respectively. The maximum error and computation time for the methods are presented and
compared in the tables 1-3 below. However, the efficiency graphs of Log,,(MAXE) against Log,oH
for each problem are plotted in order have a visual impact on the performance of the methods. The
following notations apart from those defined earlier are used in tables below.

H: Step size.
MAXE: Maximum error.

TIME: Computation time in seconds.

Table 1: Numerical comparison between Exact and Approximate solution for Problem 1 with step size H =
1072

| | Method |
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x; | Exact Solution 2BBDFO1 2BBDFO02 2BBDFO03
0.00 | 1.0000000000 | 0.9983855500 | 0.9985411500 | 0.9962974500
0.01 | 0.9612292578 | 0.9596148078 | 0.9597704078 | 0.9575267078
0.02 | 0.9248360847 | 0.9232216347 | 0.9233772347 | 0.9211335347
0.03 | 0.8907034766 | 0.8890890266 | 0.8892446266 | 0.8870009266
0.04 | 0.8587200873 | 0.8571056373 | 0.8572612373 0.8550175373
0.05 | 0.8287799524 | 0.8271655024 | 0.8273211024 | 0.8250774024
0.06 | 0.8007822272 | 0.7991677772 | 0.7993233772 0.7970796772
0.07 | 0.7746309370 | 0.7730164870 | 0.7731720870 | 0.7709283870
0.08 | 0.7502347400 | 0.7486202900 | 0.7487758900 | 0.7465321900
0.09 | 0.7275067008 | 0.7258922508 | 0.7260478508 | 0.7238041508
0.10 | 0.7275067008 | 0.7047496264 | 0.7049052264 | 0.7026615264

Table 2: Numerical comparison between Exact and Approximate solution for Problem 2 with step size H =

1073
Method
X; Exact Solution 2BBDFO1 2BBDFO02 2BBDF03
0.000| 1.0000000000 | 0.9999527445 | 0.9999744530 0.9994566230
0.001| 0.9940319148 | 0.9939846593 | 0.9940063678 0.9934885378
0.002 | 0.9881273201 | 0.9880800646 | 0.9881017731 0.9875839431
0.003 | 0.9822857098 | 0.9822384543 | 0.9822601628 0.9817423328
0.004 | 0.9765065821 | 0.9764593266 | 0.9764810351 0.9759632051
0.005| 0.9707894392 | 0.9707421837 | 0.9707638922 0.9702460622
0.006| 0.9651337871 | 0.9650865316 | 0.9651082401 0.9645904101
0.007 | 0.9595391359 | 0.9594918804 | 0.9595135889 0.9589957589
0.008 | 0.9540049995 | 0.9539577440 | 0.9539794525 0.9534616225
0.009 | 0.9485308958 | 0.9484836403 | 0.9485053488 0.9479875188
0.010| 0.9431163464 | 0.9430690909 | 0.9430907994 0.9425729694

Table 3: Numerical comparison between Exact and Approximate solution for Problem 3 with step size H =

1072
Method

x; | Exact Solution 2BBDFO1 2BBDFO02 2BBDFO03

0.00 | 1.0000000000 | 0.9925681300| 0.9930093300 | 0.9896704000
0.01 | 0.8869204367 | 0.8794885667| 0.8799297667 | 0.8765908367
0.02 | 0.7866278611 | 0.7791959911| 0.7796371911 | 0.7762982611
0.03 | 0.6976763261 | 0.6902444561| 0.6906856561 | 0.6873467261
0.04 | 0.6187833918 | 0.6113515218| 0.6117927218 | 0.6084537918
0.05| 0.5488116361 | 0.5413797661| 0.5418209661 | 0.5384820361
0.06 | 0.4867522560 | 0.4793203860| 0.4797615860 | 0.4764226560
0.07 | 0.4317105234 | 0.4242786534| 0.4247198534 | 0.4213809234
0.08 | 0.3828928860 | 0.3754610160| 0.3759022160 | 0.3725632860
0.09 | 0.3395955256 | 0.3321636556| 0.3326048556 | 0.3292659256
0.10 | 0.3011942119 | 0.2937623419| 0.2942035419 | 0.2908646119
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These tables 1, 2, and 3 present the numerical comparison of exact and approximate solutions for
different problems at three different step sizes. The methods used are labeled as 2BBDFO1,
2BBDFO02, 2BBDF03, and 3DIBBDF. The results show that as the step size H decreases, the accuracy
of the approximate solutions tends to improve. Furthermore, it can be observed that method
2BBDFO1 consistently exhibits better accuracy in comparison to the other methods, especially when
H is smaller. This indicates the effectiveness of method 2BBDFO1 in approximating the exact
solutions for these problems. However, the method 2BBDFO2 also provides reasonably accurate
results and can be considered when computational efficiency is a priority.

Table 4: Numerical comparison of Maximum error and computation time between the methods for Problem 1

H METHOD MAXE TIME
1072 2BBDFO1 1.61445e — 003 1.36700e — 001
2BBDFO2 1.45885e — 003 1.69100e — 001
2BBDFO3 3.70255e — 003 1.44200e — 001
3DIBBDF 8.18728e — 001 1.30400e — 001
1073 2BBDFO1 1.86340e — 005 1.43100e — 001
2BBDFO2 3.83801e — 004 1.47100e — 001
2BBDFO3 3.11823e — 003 1.37400e — 001
3DIBBDF 9.80199e — 001 1.43800e — 001
107* 2BBDFO1 1.89018e — 007 1.50000e — 001
2BBDFO2 4.01272e — 004 1.50400e — 001
2BBDFO3 3.16549¢e — 003 1.54600e — 001
3DIBBDF 9.98002e — 001 1.42400e — 001
1075 2BBDFO1 1.89287e — 009 2.04800e — 001
2BBDFO2 4.01967e — 004 2.04400e — 001
2BBDFO3 3.17112e — 003 2.11400e — 001
3DIBBDF 9.99800e — 001 1.43200e — 001
10 2BBDFO1 1.89313e — 011 5.26800e — 001
2BBDFO02 4.02026e — 004 5.31800e — 001
2BBDFO3 3.17170e — 003 5.45700e — 001
3DIBBDF 9.99980e — 001 2.19400e — 001

Table 5: Numerical comparison of Maximum error and computation time between the methods for Problem 1

H METHOD MAXE TIME
1072 | 2BBDFO1 3.75727e — 003 1.46700e — 001
2BBDFO2 3.52947e — 003 1.55500e — 001
2BBDFO3 5.26696e — 003 1.52300e — 001
3DIBBDF 7.26149e¢ — 001 1.51500e — 001
1072 | 2BBDFO1 4.72555e — 005 1.54300e — 001
2BBDFO02 2.55470e — 005 1.54500e — 001
2BBDFO3 5.43377e — 004 1.67200e — 001
3DIBBDF 9.68507e — 001 1.75800e — 001
10™* | 2BBDFO1 4.83430e — 007 1.66200e — 001
2BBDFO02 9.39008e — 005 1.69900e — 001
2BBDFO3 7.46901e — 004 1.80000e — 001
3DIBBDF 9.96805e — 001 1.79200e — 001
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1075 | 2BBDFO1 4.84530e — 009 1.67200e — 001
2BBDFO02 9.73565e — 005 1.74500e — 001
2BBDFO3 7.70730e — 004 1.80100e — 001
3DIBBDF 9.99680e — 001 1.70000e — 001

107 | 2BBDFO1 4.84638e — 011 1.78600e — 001
2BBDFO2 9.76614e — 005 1.82500e — 001
2BBDFO3 7.73146e — 004 1.89000e — 001
3DIBBDF 9.99968e — 001 1.71900e — 001

Table 6: Numerical comparison of Maximum error and computation time between the methods for Problem 3

H METHOD MAXE TIME
1072 | 2BBDFO1 7.43187e — 003 | 1.54100e — 001
2BBDFO2 6.99067e — 003 | 1.59000e — 001
2BBDFO3 1.03296e — 002 | 1.83000e — 001
3DIBBDF 6.18783e — 001 | 1.54800e — 001
1073 | 2BBDFO1 1.04988e — 004 | 1.74600e — 001
2BBDFO02 6.20482e — 004 1.67400e — 001
2BBDFO3 5.17892e — 003 1.89500e — 001
3DIBBDF 9.53134e — 001 1.63800e — 001
10~* | 2BBDFO1 1.08634e — 006 | 1.84600e — 001
2BBDFO2 6.58066e — 004 1.69400e — 001
2BBDFO3 5.17148e — 003 1.60400e — 001
3DIBBDF 9.95212e — 001 1.68300e — 001
1075 | 2BBDFO1 1.09005e — 008 | 1.85200e — 001
2BBDFO02 6.58438e — 004 1.81600e — 001
2BBDFO3 5.17434e — 003 1.97800e — 001
3DIBBDF 9.99520e — 001 1.69500e — 001
10° | 2BBDFO1 1.09042e¢ — 010 | 4.29600e — 001
2BBDFO2 6.58440e — 004 3.99000e — 001
2BBDFO3 5.17467e — 003 4.45400e — 001
3DIBBDF 9.99952e — 001 1.74000e — 001

Similarly, the tables 4, 5, and 6 provide a comparison of the maximum error (MAXE) and computation
time (TIME) for the different methods and step sizes. As expected, the maximum error generally
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decreases as the step size decreases. However, it's worth noting that method 2BBDFO1 consistently
outperforms the other methods in terms of maximum error, indicating its accuracy.

In terms of computation time, the tables show that the 3DIBBDF method generally has the lowest
computation time across different step sizes, suggesting it is the most computationally efficient
method. However, method 2BBDFO1 offers a trade-off between accuracy and computation time, with
reasonably low computation times while maintaining good accuracy.

Overall, these tables illustrate the trade-offs between accuracy and computation time when using
different numerical methods for solving the stiff problems. Method 2ZBBDFO1 appears to be a strong
contender, offering good accuracy even with small step sizes, making it a promising choice for
applications where precision is essential. However, the selection of the most suitable method may
depend on the specific requirements of the problem, considering the balance between accuracy and
computational efficiency.

In order to visually highlight the performance of the 2BBDFO1, 2BBDF02, 2BBDF03, and 3DIBBDF
methods, we have generated graphs in the Matlab software environment. These graphs depict

Loglo(MAXE) against Log,,H for all the tested problems and also the efficiency graphs between
exact and approximate solutions have been plotted.
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Figure 4: Efficiency graph between exact and approximate solutions for Problem 1.
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Figure 5: Efficiency graph between exact and approximate solutions for Problem 2.
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Figure 6: Efficiency graph between exact and approximate solutions for Problem 3.
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Figure 7: Efficiency graph of L0g,,MAXE against L0g,,H for Problem 1.
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Figure 8: Efficiency graph of L0g,,MAXE against L0g,,H for Problem 2.
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Figure 9: Efficiency graph of L0g,,MAXE against L0og,,H for Problem 3.

The new methods (2BBDFO1, 2BBDFO02, and 2BBDFO03) tend to provide more accurate results
compared to 3DIBBDF for the given problems. This is evident from the smaller maximum error values
in most of the cases.

7. CONCLUSION

A new fully implicit 2-point variable step size block backward differentiation formula with two off-
step points for solving first order stiff ordinary differential equations has been developed. The
method is derived to be of order five. The stability analysis of the methods indicates that the methods
are both zero and A-stable. To demonstrate the performance of the methods, some first order stiff
initial value problems are solved and compared with existing diagonally implicit 3-point block
backward differentiation formula in terms of accuracy and computation time. The numerical results
obtained show that all the proposed methods performed better than 3DIBBDF in terms of accuracy.
In addition, it can also be seen that the 3DIBBDF method is better than the proposed methods in
terms of computation time.
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