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ABSTRACT 

This paper investigates the efficacy of the half-sweep approximation to solve the nonlinear 
diffusion equation in the two-dimensional porous medium. The half-sweep approximation is 
systematically formulated, and its stability properties are analysed based on its iterative form. 
The system of equations corresponding to the approximation equation to the two-dimensional 
nonlinear diffusion equation is solved using the developed half-sweep Newton-Gauss-Seidel 
algorithm. The numerical experiment uses several initial boundary value problems in natural 
science to illustrate the efficacy of the proposed approximation. This study finds that the half-
sweep approximation is more efficient than the implicit finite difference approximation in 
numerical computation. The numerical convergence of the approximation is presented to show 
the potential of the half-sweep approximation to solve different types of nonlinear diffusion 
equations in a two-dimensional porous medium. 

Keywords: nonlinear diffusion, porous medium, finite difference method, Newton-Gauss-
Seidel, iterative method. 

1 INTRODUCTION 

The finite difference (FD) method is a versatile numerical discretisation method to approximate the 
solution of a multidimensional nonlinear partial differential equation (NPDE). Then, the derivation 
of the FD schemes can be easily made using the expansion of the Taylor series. The simplicity of 
deriving and implementing FD to solve NPDE has attracted the interest of many researchers. Thus, 
many FD schemes for solving NPDE have been introduced to the literature, such as stochastic non-
standard FD [1], meshless generalised FD [2], fourth-order standard compact FD [3], sixth-order FD 
[4], radial basis function-generated FD [5], space-time generalised FD [6], semi-implicit FD [7], and 
many more. Generally, the choice of FD scheme to solve NPDE depends on the balance of 
approximation accuracy and computational cost. The scheme with higher order accuracy in time 
produces more accurate approximations for the time derivatives. However, additional function 
evaluations are required and thus increase the computational cost. Similarly, the scheme with higher 
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order accuracy in space suffers from higher computational expense. It requires a finer grid or more 
grid points to calculate for a more accurate approximation of the spatial derivatives. 

The ongoing development of an FD scheme to solve NPDE has motivated this study to investigate a 
computationally efficient FD scheme that can overcome the complexity of computing a complex 
nonlinear system modelled from a discretised NPDE. This study focuses on a computationally 
efficient FD scheme called the half-sweep FD.  Half-sweep FD is a type of FD scheme that can reduce 
the complexity of numerical computation of a large-sized system of equations [8]. Besides that, the 
accuracy of the half-sweep FD approximation is almost like the implicit FD but has a lower 
computational cost. Several researchers reported the advantage of using half-sweep FD over the 
standard implicit FD. For example, Sunarto et al. [9] showed the superiority of the half-sweep FD with 
a preconditioned successive over-relaxation over the implicit preconditioned successive over-
relaxation regarding computational complexity to solve the space-fractional diffusion equation. 
Then, Xu et al. [10] and Xu et al. [11] studied a rational half-sweep FD with a composite trapezoidal 
approach to approximate the solutions of Fredholm integro-differential equation in first and second-
order problems, respectively. They showed that the half-sweep FD could reduce the number of 
iterations and elapsed time less than the implicit FD in solving the system of equations from first- 
and second-order linear Fredholm integro-differential equations. Next, Sunarto et al. [12] showed 
that the half-sweep FD with a preconditioned accelerated over relaxation could be one of the best 
computational approaches to solve the time-fractional diffusion equation, compared to the implicit 
preconditioned accelerated over relaxation method. Besides that, Agarwal et al. [13] introduced an 
efficient half-sweep accelerated overrelaxation iterative method with a new preconditioning matrix 
to solve a one-dimensional linear space-fractional diffusion equation. They showed that the new 
numerical method solves the problem with lesser iterations and faster computation time than the 
preconditioned accelerated overrelaxation and implicit Euler method. Recently, Xu et al. [14] 
established the three-point newly half-sweep linear rational finite difference-quadrature 
discretisation scheme for solving the first-order linear Fredholm integro-differential equation. Half-
sweep FD has a lot of success in solving integro-differential and fractional differential equations 
efficiently. However, the information about the efficacy of half-sweep FD to solve NDPE is still limited, 
especially for the two-dimensional problem. Thus, we aim to evaluate the effectiveness of the half-
sweep FD in solving a two-dimensional NPDE. 

The contribution of this paper is to derive a two-dimensional half-sweep FD approximation for 
solving NPDE and to present the efficiency and convergence rate of the approximation. A porous 
medium-type differential equation is used to illustrate the efficacy of the half-sweep FD 
approximation. This differential equation is one of the essential NPDE of the parabolic type. It 
famously appears in modelling natural phenomena related to nonlinear liquid or gas diffusion and 
heat propagation [15-22]. The solution of this equation is essential to understand the mentioned 
phenomena and leads to a realisation of a more complex mathematical model. The exact solution is 
challenging to obtain when a porous medium model considers many assumptions. Hence, the 
numerical solution from an efficient numerical method becomes the better option. 

The structure of this paper contains: Section 2 shows the formulation of the half-sweep FD 
approximation to the two-dimensional porous medium-type differential equation. Then, the stability 
of the approximation equation is analysed based on the iterative formula. Next, the iterative 
procedure using Gauss-Seidel's method to solve the arisen nonlinear system is discussed. Section 3 
describes the numerical experiment using several initial boundary value problems (IBVP) in natural 
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sciences. The finding from implementing the half-sweep FD approximation to the proposed problems 
is reported. The last section concludes this paper with the future research direction. 

2 METHODS 

2.1 Two-Dimensional Nonlinear Porous Medium-type Differential Equation 

This section presents a half-sweep FD approximation to solve a two-dimensional nonlinear porous 
medium-type differential equation. Let consider the main equation be defined as follows [23], 

𝜕𝑢

𝜕𝑡
= 𝛼 [

𝜕

𝜕𝑥
(𝑢𝑚

𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑢𝑚

𝜕𝑢

𝜕𝑦
)], ( 1 ) 

where 𝑚 ∈ ℤ and 𝛼 ∈ ℝ.  Eq. (1) describes the evolution of a scalar field 𝑢 = 𝑢(𝑥, 𝑦, 𝑡) over time 𝑡 in 
two spatial dimensions (𝑥, 𝑦). The equation constitutes nonlinear diffusion terms represented by 

𝑢𝑚 𝜕𝑢

𝜕𝑥
 and 𝑢𝑚 𝜕𝑢

𝜕𝑦
 where both 𝑚 and 𝛼 are constant. Eq. (1) can be understood as a mathematical model 

for a process where the field 𝑢 undergoes diffusion in a porous medium that is influenced by the 
nonlinearity with varied magnitude 𝑚. When 𝑚 > 0, the field 𝑢 undergoes slow diffusion, while 𝑚 <
0 is where the field 𝑢 undergoes fast diffusion. The diffusion speed or the value of 𝑚 can be 
determined experimentally by considering various variables, including porosity, permeability, 
concentration gradient and molecules sizes [24]. 

2.2 Half-sweep FD Scheme 

To formulate a half-sweep FD approximation to Eq. (1), we define an initial condition 𝑢(𝑥, 𝑦, 0), 0 ≤
𝑥, 𝑦 ≤ 1 and boundary conditions 𝑢(0, 𝑦, 𝑡), 𝑢(1, 𝑦, 𝑡), 𝑢(𝑥, 0, 𝑡), and 𝑢(𝑥, 1, 𝑡) at the time interval 0 ≤

𝑡 ≤ 1. Then, we define the approximate solutions of Eq. (1) as 𝑈𝑝,𝑞,𝑛 = 𝑈(𝑥𝑝, 𝑦𝑞 , 𝑡𝑛), that correspond 

to exact solutions 𝑢(𝑥𝑝, 𝑦𝑞 , 𝑡𝑛) where 𝑝, 𝑞 ∈ ℤ such that 1 ≤ 𝑝, 𝑞 ≤ 𝑀 − 1 and 𝑛 ∈ ℤ such that 1 ≤ 𝑛 ≤

𝑁. Note that 𝑀 and 𝑁 represent the number of grid points (or size of matrix) and total time level, 
respectively. The distribution of grid points is equidistant with 𝑥𝑝 = 𝑝ℎ, 𝑦𝑞 = 𝑞ℎ, and spatial steps 

ℎ = 1 𝑀⁄  . The time step is also uniform with 𝑡𝑛 = 𝑛𝑘 and 𝑘 = 1 𝑁⁄ . 

Now, we derive the half-sweep FD schemes using the Taylor series expansion as follows. Let us 
consider 

𝑈𝑝,𝑞,𝑛+1 = 𝑈𝑝,𝑞,𝑛 + 𝑘
𝜕

𝜕𝑡
𝑈𝑝,𝑞,𝑛+1 + ⋯, ( 2 ) 

𝑈𝑝+1,𝑞,𝑛+1 = 𝑈𝑝,𝑞,𝑛+1 + ℎ
𝜕

𝜕𝑥
𝑈𝑝,𝑞,𝑛+1 +

ℎ2

2
(

𝜕

𝜕𝑥
𝑈𝑝,𝑞,𝑛+1)

2

+ ⋯, ( 3 ) 

𝑈𝑝−1,𝑞,𝑛+1 = 𝑈𝑝,𝑞,𝑛+1 − ℎ
𝜕

𝜕𝑥
𝑈𝑝,𝑞,𝑛+1 +

ℎ2

2
(

𝜕

𝜕𝑥
𝑈𝑝,𝑞,𝑛+1)

2

+ ⋯, ( 4 ) 
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𝑈𝑝,𝑞+1,𝑛+1 = 𝑈𝑝,𝑞,𝑛+1 + ℎ
𝜕

𝜕𝑦
𝑈𝑝,𝑞,𝑛+1 +

ℎ2

2
(

𝜕

𝜕𝑦
𝑈𝑝,𝑞,𝑛+1)

2

+ ⋯, ( 5 ) 

and 

𝑈𝑝,𝑞−1,𝑛+1 = 𝑈𝑝,𝑞,𝑛+1 − ℎ
𝜕

𝜕𝑦
𝑈𝑝,𝑞,𝑛+1 +

ℎ2

2
(

𝜕

𝜕𝑦
𝑈𝑝,𝑞,𝑛+1)

2

+ ⋯. ( 6 ) 

Then, Eq. (2) can be rearranged to approximate the first-order derivative to 𝑡, which is 

𝜕𝑢

𝜕𝑡
=

𝑈𝑝,𝑞,𝑛+1 − 𝑈𝑝,𝑞,𝑛

𝑘
. ( 7 ) 

The standard approximation to first order derivative to 𝑥 can be derived using the difference of Eq. 
(3) and (4) into 

𝜕𝑢

𝜕𝑥
=

𝑈𝑝+1,𝑞,𝑛+1 − 𝑈𝑝−1,𝑞,𝑛+1

2ℎ
. ( 8 ) 

We modify Eq. (8) for the diagonal direction from 𝑈𝑝+1,𝑞+1,𝑛+1 to 𝑈𝑝−1,𝑞−1,𝑛+1 and obtain the new 

distance between these two points using the Pythagoras formula, which yields the following half-
sweep FD scheme for the first-order derivative to 𝑥, 

𝜕𝑢

𝜕𝑥
=

𝑈𝑝+1,𝑞+1,𝑛+1 − 𝑈𝑝−1,𝑞−1,𝑛+1

2√2ℎ
. ( 9 ) 

Next, the standard approximation to the first order derivative to 𝑦 can be derived using the difference 
of Eq. (5) and (6) into 

𝜕𝑢

𝜕𝑦
=

𝑈𝑝,𝑞+1,𝑛+1 − 𝑈𝑝,𝑞−1,𝑛+1

2ℎ
. (10) 

The half-sweep FD scheme for the first-order derivative to 𝑦 is derived by modifying the 
approximation for the diagonal direction from 𝑈𝑝−1,𝑞+1,𝑛+1 to 𝑈𝑝+1,𝑞−1,𝑛+1 with a new distance to 

become 

𝜕𝑢

𝜕𝑦
=

𝑈𝑝−1,𝑞+1,𝑛+1 − 𝑈𝑝+1,𝑞−1,𝑛+1

2√2ℎ
. (11) 

The half-sweep FD schemes for the second-order derivatives in both 𝑥 and 𝑦 can be derived similarly. 
The sum of Eq. (3) and (4) produce the standard approximation to the second-order derivative to 𝑥 
as follows, 

𝜕2𝑢

𝜕𝑥2
=

𝑈𝑝+1,𝑞,𝑛+1 − 2𝑈𝑝,𝑞,𝑛+1 + 𝑈𝑝−1,𝑞,𝑛+1

ℎ2
. (12) 
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Then, Eq. (12) is modified for the diagonal direction from 𝑈𝑝+1,𝑞+1,𝑛+1 to 𝑈𝑝−1,𝑞−1,𝑛+1 with the new 

distance into 

𝜕2𝑢

𝜕𝑥2
=

𝑈𝑝+1,𝑞+1,𝑛+1 − 2𝑈𝑝,𝑞,𝑛+1 + 𝑈𝑝−1,𝑞−1,𝑛+1

2ℎ2
. (13) 

Next, the sum of Eq. (5) and (6) produce the standard approximation to the second-order derivative 
to 𝑦, 

𝜕2𝑢

𝜕𝑦2
=

𝑈𝑝,𝑞+1,𝑛+1 − 2𝑈𝑝,𝑞,𝑛+1 + 𝑈𝑝,𝑞−1,𝑛+1

ℎ2
, (14) 

which we then modify for the diagonal direction from 𝑈𝑝−1,𝑞+1,𝑛+1 to 𝑈𝑝+1,𝑞−1,𝑛+1 with the new 

distance into 

𝜕2𝑢

𝜕𝑦2
=

𝑈𝑝−1,𝑞+1,𝑛+1 − 2𝑈𝑝,𝑞,𝑛+1 + 𝑈𝑝+1,𝑞−1,𝑛+1

2ℎ2
. (15) 

Thus, using the schemes shown in Eqs. (7), (9), (11), (13) and (15), the half-sweep FD approximation 
equation to Eq. (1) can be formulated and yields, 

𝐹𝑝,𝑞(�̂�𝑛+1) = 𝑈𝑝,𝑞,𝑛+1 − 𝐴1𝑈𝑝,𝑞,𝑛+1
𝑚 𝑈𝑝+1,𝑞+1,𝑛+1 − 𝐴1𝑈𝑝,𝑞,𝑛+1

𝑚 𝑈𝑝−1,𝑞+1,𝑛+1 

+4𝐴1𝑈𝑝,𝑞,𝑛+1
𝑚 𝑈𝑝,𝑞,𝑛+1 − 𝐴1𝑈𝑝,𝑞,𝑛+1

𝑚 𝑈𝑝+1,𝑞−1,𝑛+1 − 𝐴1𝑈𝑝,𝑞,𝑛+1
𝑚 𝑈𝑝−1,𝑞−1,𝑛+1  

                       −𝐴2𝑚𝑈𝑝,𝑞,𝑛+1
𝑚−1 𝑈𝑝+1,𝑞+1,𝑛+1

2 − 𝐴2𝑚𝑈𝑝,𝑞,𝑛+1
𝑚−1 𝑈𝑝−1,𝑞+1,𝑛+1

2  

                       +2𝐴2𝑚𝑈𝑝,𝑞,𝑛+1
𝑚−1 𝑈𝑝+1,𝑞+1,𝑛+1𝑈𝑝−1,𝑞−1,𝑛+1 + 2𝐴2𝑚𝑈𝑝,𝑞,𝑛+1

𝑚−1 𝑈𝑝−1,𝑞+1,𝑛+1𝑈𝑝+1,𝑞−1,𝑛+1 

                       −𝐴2𝑚𝑈𝑝,𝑞,𝑛+1
𝑚−1 𝑈𝑝+1,𝑞−1,𝑛+1

2 − 𝐴2𝑚𝑈𝑝,𝑞,𝑛+1
𝑚−1 𝑈𝑝−1,𝑞−1,𝑛+1

2 − 𝑈𝑝,𝑞,𝑛, 

 

 

(16) 

where 1 ≤ 𝑝, 𝑞 ≤ 𝑀 − 1,0 ≤ 𝑛 ≤ 𝑁, 𝐴1 = 𝛼𝑘 2ℎ2⁄ , 𝐴2 = 𝛼𝑘 8ℎ2⁄ , and  

�̂�𝑛+1 = (𝑈𝑝+1,𝑞+1,𝑛+1, 𝑈𝑝−1,𝑞+1,𝑛+1, 𝑈𝑝,𝑞,𝑛+1, 𝑈𝑝+1,𝑞−1,𝑛+1, 𝑈𝑝−1,𝑞−1,𝑛+1).  

Using Eq. (16) on the specified solution domain, a nonlinear system that is typically large-sized and 
possesses high computational complexity can be formed as follows, 

�̂�(�̂�𝑛+1) = 0, (17) 

where �̂�(. ) = ( 𝑓1,1(. ),… , 𝑓𝑀−1,1(. ),… , 𝑓1,𝑀−1(. ),… , 𝑓𝑀−1,𝑀−1(. )). 

A second-order Newton's method is used to solve the nonlinear system shown by Eq. (17). Then, 
through a linearisation approach using Newton's method, the corresponding linear system for each 
time level 𝑛 + 1 can be generalised as, 
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𝐽𝑛+1�̂�𝑛+1 = −�̂�𝑛+1, (18) 

where 𝐽𝑛+1 is a penta-diagonal Jacobian matrix with the following form, 

𝐽𝑛+1 =

[
 
 
 
 
𝑇1

𝐿2

     

𝑉1

𝑇2
⋱        

⋱
⋱     

𝑇𝑀−2

𝐿𝑀−1

𝑉𝑀−2

𝑇𝑀−1]
 
 
 
 

, (19) 

where 𝑇, 𝐿 and 𝑉 are tri-diagonal groups, lower groups, and upper groups of the coefficient matrix, 
respectively. Based on Eq. (19), �̂�𝑛+1 represents the solution corrector, which can lead to the 
approximate solution �̂�𝑛+1 by iteration by the following equation, 

�̂�𝑛+1
(𝑙+1)

= �̂�𝑛+1
(𝑙) + �̂�𝑛+1

(𝑙+1)
, (20) 

where 𝑙 is the iteration index. 

2.3 Stability Analysis 

Theorem 2.1 Suppose that �̂�𝑛+1 be the solution. The half-sweep FD approximation equation shown 
by Eq. (16) is unconditionally stable and satisfies the eigenvalue, 

[
1

1 + 𝜆
] < 1. (21) 

Proof.  

Let us consider the iterative form given by 

(𝐼 + 𝐴)�̂�𝑛+1 = �̂�𝑛 − �̂�𝑛+1,  (22) 

where 𝐼 is an identity matrix, and 𝐴 is a coefficient matrix. Then, we define the approximation errors 
as ϵ̂𝑛+1 and ϵ̂𝑛 which correspond to �̂�𝑛+1 and �̂�𝑛 respectively. By substituting the errors into �̂�𝑛+1 
and �̂�𝑛, Eq. (22) can be rewritten as 

(𝐼 + 𝐴)ϵ̂𝑛+1 = ϵ̂𝑛 − �̂�𝑛+1. (23) 

According to the Neumann series theorem, if 𝐴 is invertible, then (𝐼 + 𝐴) is also invertible [25]. Thus, 
the growth of approximation errors by Eq. (16) can be expressed in the following equation, 

�̰�𝑛 = (𝐼 + 𝐴)−1𝐼 �̰�𝑛−1, (24) 

and �̂�𝑛+1 → 0.  

Next, according to Gerschgorin's theorem [26], the eigenvalues of 𝐴 can be found inside the disks 
centred at each diagonal entry. Since the diagonal entries for the coefficient matrix in Eq. (18) are 
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always positive, this implies that 𝐴 has an eigenvalue 𝜆. If 𝐴 has an eigenvalue 𝜆, then every 
eigenvalue of the matrix (𝐼 + 𝐴) has a radius larger than unity.  

Also, if (𝐼 + 𝐴) is invertible, then (𝐼 + 𝐴) has an eigenvalue of 1 + 𝜆. Consequently, (𝐼 + 𝐴)−1𝐼 has an 
eigenvalue of 1 (1 + 𝜆)⁄ . Therefore, it can be concluded that 1 (1 + 𝜆)⁄  is always smaller than 1, which 
implies that Eq. (16) is unconditionally stable. □ 

2.4 Half-Sweep Newton-Gauss-Seidel Algorithm 

Next, to develop the half-sweep Newton-Gauss-Seidel (hs-NGS) algorithm for solving the two-
dimensional porous medium-type equation, let considers a type of matrix decomposition as follows, 

𝐽𝑛+1 = 𝑇𝑛+1 + 𝐿𝑛+1 + 𝑉𝑛+1, (25) 

where 𝑇𝑛+1 = (𝑇1, 𝑇2, … , 𝑇𝑀−2, 𝑇𝑀−1)𝑛+1, 𝐿𝑛+1 = (𝐿2, … , 𝐿𝑀−1)𝑛+1 and 𝑉𝑛+1 = (𝑉1, … , 𝑉𝑀−2)𝑛+1.  

Hence, using Eq. (25) and substituting it into Eq. (18), the iterative formula of hs-NGS can be 
expressed as 

�̂�𝑛+1
(𝑙+1)

= (𝑇𝑛+1 + 𝐿𝑛+1)
−1 (−𝑉𝑛+1�̂�𝑛+1

(𝑙) − �̂�𝑛+1), (26) 

and the algorithm is provided as follows, 

(i) Define 𝑢(𝑥, 𝑦, 0), 𝑢(0, 𝑦, 𝑡), 𝑢(1, 𝑦, 𝑡), 𝑢(𝑥, 0, 𝑡), and 𝑢(𝑥, 1, 𝑡). 

(ii) For 1 ≤ 𝑛 ≤ 𝑁 , set �̂�𝑛+1
(0)

= 1.000 and �̂�𝑛+1
(0)

= 0. 

(iii) For 𝑙 = 1,2, …, compute Eq. (26). 

(iv) Convergence test |�̂�𝑛+1
(𝑙+1)

− �̂�𝑛+1
(𝑙)

| ≤ 10−10. 

(v) For 𝑙 = 1,2, …, compute Eq. (20). 

(vi) Check the convergence |�̂�𝑛+1
(𝑙+1)

− �̂�𝑛+1
(𝑙)

| ≤ 10−10. 

(vii) Display outputs. 

3 RESULTS AND DISCUSSION 

This section evaluates the efficacy of the half-sweep FD approximation to the porous medium-type 
differential equation based on the number of iterations, computer time and absolute errors. The three 
mentioned criteria are analysed using different spatial and temporal step sizes. Several experiments 
are presented to show the results of the research. Three porous medium-type natural science 
problems are used in the experiment. Below are the proposed problems used in the experiment. 



Jackel Vui Lung Chew et al / Half-Sweep Iterative Approximation … 

8 

3.1 Proposed Problem 1 

Consider the following IBVP of porous medium type: 

𝜕𝑢

𝜕𝑡
=

1

5
[
𝜕

𝜕𝑥
(𝑢

𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑢

𝜕𝑢

𝜕𝑦
)], (27) 

subjects to the conditions, 𝑢(𝑥, 𝑦, 0) = 𝑥 + 𝑦, 𝑢(0, 𝑦, 𝑡) = 𝑦 + 0.4𝑡, 𝑢(1, 𝑦, 𝑡) = 1 + 𝑦 + 0.4𝑡, 
𝑢(𝑥, 0, 𝑡) = 𝑥 + 0.4𝑡 and 𝑢(𝑥, 1, 𝑡) = 𝑥 + 1 + 0.4𝑡. The exact solution is given by 𝑢(𝑥, 𝑦, 𝑡) = 𝑥 + 𝑦 +
0.4𝑡. Eq. (27) is important to simulate a two-dimensional unsteady flow of groundwater that involves 
the presence of a free surface. The solutions to be computed determine the groundwater pressure in 
the porous medium over a certain period [23]. 

3.2 Proposed Problem 2 

Consider an IBVP of the porous medium type that is given by: 

𝜕𝑢

𝜕𝑡
=

1

5
[
𝜕

𝜕𝑥
(𝑢2

𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑢2

𝜕𝑢

𝜕𝑦
)], (28) 

with the initial 𝑢(𝑥, 𝑦, 0) = √5𝑥 + 5𝑦 and the boundaries 𝑢(0, 𝑦, 𝑡) = √5𝑦 + 5𝑡, 𝑢(1, 𝑦, 𝑡) =

√5 + 5𝑦 + 5𝑡, 𝑢(𝑥, 0, 𝑡) = √5𝑥 + 5𝑡 and 𝑢(𝑥, 1, 𝑡) = √5𝑥 + 5 + 5𝑡. The exact solution is 𝑢(𝑥, 𝑦, 𝑡) =

√5𝑥 + 5𝑦 + 5𝑡. Eq. (28) can be used to model a slow diffusion process such as two-dimensional 

melting metals [27]. 

3.3 Proposed Problem 3 

Let the IBVP of porous medium type be expressed as: 

𝜕𝑢

𝜕𝑡
=

𝜕

𝜕𝑥
(𝑢5

𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑢5

𝜕𝑢

𝜕𝑦
), (29) 

subjects to the initial value 𝑢(𝑥, 𝑦, 0) = √0.8𝑥 + 0.8𝑦4 . The solutions are based on boundary 

conditions of 𝑢(0, 𝑦, 𝑡) = √0.8𝑦 + 1.6𝑡4 , 𝑢(1, 𝑦, 𝑡) = √0.8 + 0.8𝑦 + 1.6𝑡4 , 𝑢(𝑥, 0, 𝑡) = √0.8𝑥 + 1.6𝑡
4

 

and 𝑢(𝑥, 1, 𝑡) = √0.8𝑥 + 0.8 + 1.6𝑡
4

. The exact solution is 𝑢(𝑥, 𝑦, 𝑡) = √0.8𝑥 + 0.8𝑦 + 1.6𝑡4  [28]. 

The numerical outputs are compared against the implicit finite difference scheme with NGS iterative 
formula. The efficiency of the hs-NGS iterative method is studied based on the iteration numbers and 
computer time in seconds against several sizes of matrices. The comparison results for each IBVP are 
shown in Tables 1 to 3. 
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Table 1 : Number of iterations and computer time required to solve Problem 1 

 Iterations Time (seconds) 

Sizes of matrices NGS hs-NGS NGS hs-NGS 

16 × 16 136 80 0.76 0.40 

32 × 32 436 245 2.93 2.68 

64 × 64 1525 829 19.59 9.12 

128 × 128 5462 2901 360.89 201.13 

256 × 256 19,404 10,313 4586.69 2958.93 

Table 2 : Number of iterations and computer time required to solve Problem 2 

 Iterations Time (seconds) 

Sizes of matrices NGS hs-NGS NGS hs-NGS 

16 × 16 130 77 0.97 0.55 

32 × 32 400 221 2.70 1.90 

64 × 64 1380 738 18.26 8.56 

128 × 128 4901 2593 248.82 183.43 

256 × 256 17,458 9243 4243.79 1965.08 

Table 3 : Number of iterations and computer time required to solve Problem 3 

 Iterations Time (seconds) 

Sizes of matrices NGS hs-NGS NGS hs-NGS 

16 × 16 739 405 0.98 0.85 

32 × 32 2630 1402 9.51 8.39 

64 × 64 9478 5005 113.63 63.64 

128 × 128 34,098 18,002 1653.85 530.82 

256 × 256 121,649 64,469 29,234.80 13,038.50 
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Based on the results shown in Tables 1 to 3, it can be observed that the number of iterations and the 
computer time required by the hs-NGS method to solve the selected problems are lesser and shorter 
than the implicit NGS method. It can be said that the half-sweep FD approximation is superior to the 
implicit FD approximation in terms of computing efficiency. Besides that, the numerical convergence 
test of the solutions obtained using the hs-NGS method to solve the problems is carried out using 
spatial steps, ℎ = 1 16⁄ , 1 32⁄ , 1 64⁄ , 1 128⁄  and 1 256⁄ , and temporal steps, 𝑘 = 0.01, 0.001, and 
0.0001, see Figures 1 until 3. 

 

Figure 1 : Numerical convergence of hs-NGS method to solve Problem 1 

 

 

Figure 2 : Numerical convergence of hs-NGS method to solve Problem 2 
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Figure 3 : Numerical convergence of hs-NGS method to solve Problem 3 

Based on Figure 1, the absolute errors decrease as the temporal step decreases, although absolute 
errors grow slightly as the spatial step decrease. This result indicates the hs-NGS method can solve 
Problem 1 accurately in smaller temporal steps. Then, as in Figures 2 and 3, absolute errors decrease 
as the spatial step decreases, but the errors grow when the temporal step decrease. These errors 
behaviour show that the hs-NGS method can accurately obtain the solution to Problems 2 and 3 using 
smaller spatial steps. 

Based on the numerical results of solving nonlinear porous medium-type equations using the hs-NGS, 
this study finds that the half-sweep FD can reduce the complexity of numerical computation of a 
large-sized system of equations even after linearising the nonlinear system. The findings of this study 
are compared against the findings from Sunarto et al. [9], Xu et al. [10], Xu et al. [11], Sunarto et al. 
[12], Agarwal et al. [13] and Xu et al. [14], and all agree that the half-sweep FD is more 
computationally efficient the implicit FD regardless the use of linear solvers. In addition, this study 
offers some information about the half-sweep FD schemes for solving two-dimensional nonlinear 
problems, including the derivations and stability analysis. We believe that the presented derivations, 
analysis, and results can be the benchmark for the researchers to explore the efficient solution for 
nonlinear integro-differential and fractional differential equations. 

4 CONCLUSION 

In conclusion, the efficiency of the half-sweep FD approximation to solve the two-dimensional 
nonlinear porous medium-type differential equations is better than the implicit FD approximation. 
The presented efficiency results agree with the literature that the iteration number and computer 
time required to solve the large-sized system of equations can be reduced using the half-sweep FD 
method. The numerical convergence tests using several IBVPs of porous medium-type differential 
equations are provided to illustrate the absolute error behaviours using different spatial and 
temporal steps. The application of a half-sweep FD to solve a more variety of NPDE, including the 
more realistic mathematical problems, will be investigated in future. 
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