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ABSTRACT 

Compartmental models have gained tremendous usage in various fields, including epidemiology, 
pharmacokinetics, and ecology, to describe the dynamics of a system consisting of interacting 
compartments one need to understand that the challenges in using compartmental models is 
solving the system of ordinary differential equations (ODEs) that govern the dynamics of the 
compartments. In this study, we propose the use of the Adam-Bashforth predictor method to solve 
compartmental models formed from COVID-19 data in Malaysia between Match 24 to April 23, 
2020 and we showcased its promising results. The Adam-Bashforth predictor method is a widely 
used numerical method for solving ODEs. It uses previous solution values to calculate the next 
solution value, and the solutions is refined by using another fashion of the formula known as ABM 
correction formula. We improved the performance of the Adam-Bashforth predictor method by 
using the first four solutions of the fourth-order Runge-Kutta method RK4, which is another 
popular numerical method for solving ODEs, using the compartmental models. Our results 
showed that the Adam-Bashforth predictor method enhanced with the fourth-order Runge-Kutta 
method for accuracy and computational efficiency was able to capture the trend in the COVID-
19 dataset used. Generally, the Adam-Bashforth method was about 2.5 times faster than the 
fourth-order Runge-Kutta method while maintaining similar accuracy. So merging two of them 
will in no doubt provide a better accuracy in solving the epidemiological model, the Adam-
Bashforth method showed significantly accuracy, particularly in the early stages of the outbreak. 
The Adam-Bashforth predictor method is a promising numerical method for solving 
compartmental models. It offers better accuracy and computational efficiency, can be 
particularly useful in scenarios where accurate and fast predictions of compartmental dynamics 
are crucial. The model will be of great importance to the Malaysian Government, the Ministry of 
Health, and other stakeholders in disease management for an immediate and timely response to 
disease outbreaks. 

Keywords: Adam-Bashforth Predictor, COVID-19, Runge-Kutta method 

1 INTRODUCTION 

Infectious disease mathematical modelling can be thought of as an intellectual representation of a 
physical phenomenon constructed using logic, relations, and equations to envision the perspectives 
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of an epidemic's general behaviour, opening up avenues for research into visualization of impact of 
specific factors on disease transmission and providing an epidemic's general behaviour as addressed 
by epidemic curves [1]. Additionally, it enables projections of the epidemic's longevity, infection rate, 
population size, and disease evaluation. A good technique for predicting the incidence of infectious 
diseases is modelling in the context of mathematics. Accomplished plant health and public health care 
delivery is facilitated by predicting the anticipated outcome of an epidemic in animals, plants, and 
other living things [2]. After collecting accurate data about an epidemic, models employ reasonable 
assumptions, hypotheses, and special mathematical skills to identify the compartments that make up 
different infectious diseases. These parameters are then used to assess the effects of various 
treatments, such as mass vaccination, isolation, and quarantine, among others, to retard the spread 
of diseases and project future growth patterns based on the data accumulated. Infectious disease 
transmission dynamics are better understood and more apparent when represented using 
mathematical models. The saying that things become clearer when seen in the light of mathematics 
has promoted the acceptability of mathematical models [3]. These models are crucial in quantifying 
potential infectious disease control, management and prevention techniques [4;5]. Numerous 
compartmental models have been proposed by different scholars to model infectious diseases, 
ranging from the very traditional SIR model to more complicated types [6]. 

According to [7], modelling techniques can be broadly categorised into three major groups: 
mathematical models sometimes referred to as "state-space models," statistical based methods that 
monitor outbreaks while discovering spatial patterns of actual epidemics [7; 8]. Lastly, most 
celebrated recent approach that is reigning in the modelling community is machine learning or 
empirical methods for forecasting the evolution of an epidemic [9]. All these methods are based on 
dynamic systems for predicting the evolution of "theoretical" or ongoing epidemic spread. The three 
methods mentioned above span the majority of the literature in the area of modelling infectious 
diseases, and each has produced wonderful results. They have used in identifying and addressing 
numerous outbreaks in the past [10]. 

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, emerged in December 2019 when the 

mysterious cases of pneumonia was noticed in the city of Wuhan, a city in China and it  rapidly spread 

worldwide, turning into one of the most significant global health crises. By January 30, 2023, it had 

resulted in more than 700 million confirmed cases and over 6 million deaths [11]. This 

unprecedented threat highlighted the importance of understanding the transmission patterns and 

dynamics of infectious diseases, which could aid in epidemiological trend analysis and the evaluation 

of outbreak prevention measures [12; 13]. The pandemic posed various challenges, including delays 

in symptom onset and testing due to the virus's incubation period. Mathematical models, such as 

compartmental models, have played a crucial role in addressing these challenges and have garnered 

attention from researchers across diverse fields [14;15]. 

Malaysia, like many other countries, faced the impact of the pandemic. The country's first confirmed 
case was reported on January 25, 2020 [16]. The initial wave, lasting until February 15, 2020, saw 22 
recorded cases, primarily imported from the disease's epicentre [17;18]. However, communal 
transmission sparked the second wave, with a sudden surge in cases attributed to a major religious 
gathering that occurred at the Sri Petaling Mosque from February 27 to March 2, 2020, involving both 
local and overseas attendees. This rapid transmission was facilitated by the virus's mode of 
transmission through infected droplets, leading to the unpreparedness of Malaysia [19]. Malaysia is 
one of the countries in Asia that is massively hit by the pandemic that claimed the lives of more than 
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35,000 people and left over 5 million people with a tale to tell the unborn generation [20]. The 
pandemic has had a devastating impact on the country, with significant loss of life and numerous 
economic setbacks.  

The COVID-19 pandemic prompted extensive research and proposals, particularly in epidemiology. 
Mathematical modelling, including compartmental models, played a significant role in understanding 
disease transmission dynamics and informing preventive measures. These models, which 
compartmentalise the population for the study of disease transmission, have been instrumental in 
studying various infectious diseases. The pandemic highlighted the need for interdisciplinary efforts 
and mathematical modelling to address public health exigencies and better prepare for future disease 
outbreaks [21;22]. 

SIRS model is one of the most prominent model that has been deployed to capture the dynamic of 
infectious diseases within a population, "SIRS" means Susceptible-Infectious-Recovered-Susceptible. 
It is a modification of  SIR, which stands for Susceptible, Infected, and Recovered, its construction and 
analysis have been an inspiration, which subsequently led to the development of many more variants. 
Compartmental models gained widespread acceptance among mathematicians, with many of these 
advancements credited to [23]. In SIRS model, individuals are originally regarded as susceptible (S), 
on infected, they can move to the Infected (I) compartment, there they are infectious and can transfer 
the disease to other individuals, after recovering from the disease, they move to the Recovered (R) 
compartment, where they are still susceptible to the disease when there is no immunity or lost their 
immunity. However, the movement of individuals between these compartments is governed by a set 
of differential equations that dictate the transmission rate, recovery rate, and even death. Using the 
model, it is possible to simulate the progression of the disease through time and assess the effects of 
various interventions, including vaccination or social distancing, on its spread. Modelling society has 
also witnessed proposal of other compartmental models like SEIR (Susceptible, Exposed, Infected, 
and Recovered) and SIRD (Susceptible, Infected, Recovered, Deceased), which include features for 
further compartmentalising for exposed individuals as well as deceased individuals respectively. In 
this research the models can be employed to investigate various aspects of the disease's dynamics, 
such as the influence of mortality on its spread or the function of pre-symptomatic transmission. The 
SIRS model will be utilised to monitor the spreading of the disease among the susceptible, which is 
the main target group to safeguard from getting infected, while making efforts to secure more from 
the infectious population and transfer them to the susceptible population. Our proposed SIRS model 
will be solved using the Adams-Bashforth-Moulton Predictor-Corrector (ABPC) numerical method. 
Parameters’ estimations are obtained from the information made available by [24] for COVID-19 
from March 24 to April 23, 2020. The results generated from the hybrid simulation were plotted and 
visualised to comprehend the disease dynamics and the effects of each parameter and intervention. 

2 MODEL FORMULATION 

The total population, which is denoted by N , is divided into three groups: those who are vulnerable 
to the disease, generally called susceptible, which is denoted by S , the second group, is called 

infected population, which is denoted by I , and the third group are those that have recovered from 

the disease and it is denoted by R . The relationship between the total population and other 
compartments is given as N S I R= + + . One apparent phenomenon about the compartmental 
model is that one can reasonably guess correctly the number of different compartments that 
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Susceptible (S) Infectious  Recovered (R)  

constitute the model from its name. Figure 1 depicts the mechanism involved in the dynamical 
movement of the disease among the population under consideration, since no single individual can 
be in more than one compartment at the same time.  

                                                                                                          (I)           

                                                                                                        

  

Figure 1: Representation of dynamic movement of diseases in SIRS model 

Susceptible-infected-removed-susceptible (SIRS) model is used in this studies to demonstrate the 
transmission of COVID-19 disease in Malaysia. Equations (1-3) are deployed to capture the spread of 
disease within the population. These equations describe the movement across different stages of 
infection and transmission within a known population. The model is particularly useful for studying 
infectious diseases and understanding the dynamics of how diseases spread. The three 
compartmental equations represent the mechanism of transmission of different states of individuals 
within the population. Equations (1-3) are formed by considering factors that can lead to an increase 
or decrease in each of the compartments. The susceptible compartment will increase based on the 
birth rate ( ) and recovery rate ( ) while it will decrease based on the death rate ( ) and infection 

rate (  ). Combining these parameters will lead to equation (1). Events leading to an increment of 

the compartment takes positive sign while those that lead to a decrease in the size of the 
compartment takes a negative sign. Thus, this information is used to form equations (1-3), an 
illustration of the movement of the individual within the compartment is shown in Figure 1. We can 
then formulate comparative governing equations of the SIRS model as follows:    

.
dS SI

N R S
dt N


  = − + −                                                                                    (1) 

( ) .
dI SI

I
dt N


 = − +                                                             (2) 

( ) .
dR

I R
dt

  = − +                                                                            (3) 

where 

 : Birth rate of the population 

 : Death rate of the population 

 : Transmission rate of the disease 

 : Transfer rate of the individuals from recovery compartment to re-entering susceptible class 
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 : Recovery rate 

S : Susceptible population that might contract the disease 

I : Number of infectious individuals or active cases 

R : Removal class where the individuals have recovered or deceased 

N : Total population where N S I R= + +   

 From the fact that N S I R= + +  we have  1s i r+ + =  by dividing through by N  

.
ds

is r s
dt

   = − + −                                                                                                                                           (4) 

( ) .
di

is i
dt

  = − +                                                                                                                                                   (5) 

( ) .
dr

i r
dt

  = − +                                                                                                                                                    (6) 

 By translation, ( ) ( ) ( )1r t s t i t= − − , the above system can be further simplified into a smaller 

number of systems of two ordinary differential equations (ODE) in equation (7) 

( )

( )

1 ,

.

ds
is s i s

dt

di
is i

dt

   

  

= − + − − −

= − +
                                                                                                                 (7) 

Using the same data utilised by (24).  we arrived at the following set of parameters as the initial values 

for each of the compartments as, ( )0 0.783s = , ( )0 0.192i =  and ( )0 0.025r = , also the following 

parameters were also computed from actual data of the infected population from March 24, 2020 
until April 23, 2020, 0.00005 = = , 0.19 = , 0.065 =  and 0.0009 = .  Models of this nature 

are characterised by two steady state, namely, the pandemic equilibrium (PE), which is denoted by 
* * *( , , )S I R  and disease-free steady state (DFSS) denoted by , 0, 0

N



 
 
 

.  The determination of stability 

can be done using local stability analysis, which is an important tool that facilitates the understanding 
of system behaviour around equilibrium and detecting whether a small utterance will make the 
system return to the point or diverge from the point. Local stability involves first identifying 
equilibrium points, performing linearization, calculating the Jacobian matrix, and subsequently 
finding the eigenvalues of the matrix. By examining the characteristics of these eigenvalues, one can 
determine the local stability of the equilibrium point based on the sign of the real part of each 
eigenvalue.    
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Another variable to look for in any epidemic is basic reproductive number sometimes called the basic 

reproduction number which is often denoted by 0R . In a community where everyone is vulnerable to 

infection with no external source of infection or immune against an infection by any means, either 

naturally or through vaccination, 0R of an infection is the anticipated number of cases that can be 

directly credited to one case of infection. To understand the dynamics of infectious diseases and 

predict their transmission, basic reproduction number 0R  offers good leverage by providing sensible 

information regarding the progression of an infectious disease. In epidemiological language 0R  is 

defined as 

                                                                                                                                                                       (8) 

 

Regardless of the disease’s initial state, the value of the number 
0R decides which limiting value will 

be approached. In epidemiology, if 0 1R    the infection will frail and consequently fade out, forcing 

the number of infected people to get closer to zero or eventually have a numerical value of  ( 0I = ), 

and S = N. When the value 0 1R =  each existing infection will produce one more new infection, this 

instance will compel the infection into stagnation, which will not lead to either an outbreak or an 
epidemic, thus, leading to the disease-free steady state. However, with 0 1R  , the infection status will 

persist and keep growing uncontrollably, in fact, the bigger the value of 0R , the bigger the threat of 

an infectious disease. Such 
0R  forms the endemic equilibrium, which /I N  = −  thus, corresponds 

to S  =  [25]. However, achieving pandemic equilibrium (PE) or disease-free steady state (DFSS) 

revolves around controlling the spread of an infectious disease within the population, either through 
prevention, quarantine, isolation, medication, vaccination, heath education and many other means 
that can balance the infection rate and recovery rate. It's crucial to note that reaching and preserving 
a pandemic equilibrium or steady state devoid of disease can be difficult and may call for continuous 
efforts. The particular approach will change based on the illness and its symptoms. Experts in public 
health and epidemiologists can benefit from using mathematical models, including compartmental 
models, to better understand and forecast the dynamics of disease and the effects of different 
measures. 

4 DATA INFORMATION, COMPUTER REQUIREMENTS AND FLOWCHART  

In our study of COVID-19 transmission in Malaysia, we analysed the transmission dynamics based on 

daily active cases. We sourced our data from the open-source repository on Github (accessible at: 

https://github.com/MoH-Malaysia/covid19-public) for the period spanning March 24 to April 23, 

2023. This dataset aligns with the data used in [26]. The essential parameters required for model 

development were obtained from the same source and within same time frame. To streamline the 

computational process, we conducted the simulations using MATLAB R2022a on a laptop equipped 

with an Intel(R)Core(TM) i5-8250U processor and 8GB of RAM. The laptop was running the Microsoft 

Windows 11 Home Version 10.0 operating system. The flowchart that demonstrates the procedures 

in the formulation of our hybrid model.  

0R



=
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Figure 2: The Flowchart Describing the Methodology  
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5 MATHEMATICAL FORMULATION 

Our compartmental equations are solved using a hybrid of Runge-Kutta of order 4 (RK4) and the 
Adam-Bashforth Predictor-Corrector method (ABPC). The first four solutions of the compartmental 
model are obtained using the RK4. The Adam-Bashforth Predictor Corrector Method (ABPC) is a 
multistep method that uses the Adam Bashforth method as the predictor and the Adam Moulton 
method as the corrector. It is sometimes called the Adam Bashforth-Moulton (ABM) method. The 
predictor part computes roughly an approximation of the desired solution, while the corrector part 
corrects the approximation solution obtained from the predictor part. The corrector part can be 
applied more than once for possible improvement. The hybrid enjoys the stability and accuracy of 
RK4 by performing the initial integration of the compartmental model, which helps in ensuring that 
the solution remains stable over short time steps, and the combined advantages of the explicit and 
implicit techniques of Adams-Bashforth and Adams-Moulton, respectively.  

The formula for Runge-Kutta 4𝑡ℎ order is given as  

1 1 2 3 4( 2( ) ).
6

i i

h
s s k k k k+ = + + + +

                                                                                                            (9) 

where 

1 ( , )i ik hf t s= , 

)
2

1
,

2

1
( 12 hkshtfk ii ++= , 

)
2

1
,

2

1
( 23 hkshtfk ii ++= , 

),( 34 hkshtfk ii ++= . 

The general representation of multistep methods called Adams method involve the integration of the 
function of the form 

( )
1

1( ) ( ) ( , ( ) .
n

n

t

n n

t

y t y t f t y t dt
+

+ = + 
                                                                                                                (10) 

where 4( , ( ) ( )f t y t p x=  as described in equation (11). 

The derivation of Adams- Bashforth method formula is obtained by interpolating the polynomial for

( , ( ))f t y t  which passes through the four distinct points 3 3 2 2 1 1( , ), ( , ), ( , )n n n n n nt f t f t f− − − − − −  and 

( , ).n nt f  interpolating polynomial can be wrtten as: 
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4 3 3 2 2 1 1( ) ( ) ( ) ( ) ( ).n n n n n n n np x f L t f L t f L t f L t− − − − − −= + + +                                                                               (11) 

where , 3 2 1( ), ( ), ( )and ( )n n n nL t L t L t L t− − − are Lagrange polynomial basis, substitute equation (11) 

into equation (10) and simplify leads to: 

1 1 1 1

1 3 3 2 2 1 1( ) ( ) ( ) ( ) .
n n n n

n n n n

t t t t

n n n n n n n n n n

t t t t

y y f L t dt f L t dt f L t dt f L t dt
+ + + +

+ − − − − − −= + + + +   
                                                     (12) 

Integrating equation (12) yield equation (13) which is Adams-Bashforth of order 4  

Predictor:                                           

1 1 2 3(55 59 37 9 ).
24

i i i i i i

h
S S f f f f+ − − −= + − + −                                                                                          (13)   

However, due the implicit nature of an Adams-Moulton technique, this often requires finding the root 
of a nonlinear equation to update the solution at the next time step, it may not be practicable. As an 
alternative, we can create an Adams-Moulton predictor-corrector method by combining an Adams-
Moulton method with an Adams-Bashforth method. Such a process works as follows: we compute a 

first approximation to 1ny + using the Adams-Bashforth method, and designate it 1ny + . We then 

evaluate 1 1( , y )n nf t + + , after which we utilised the Adams-Moulton method as if it were an explicit 

method,  we then compute 1ny + , but instead of solving the equation, we use 1 1( , y )n nf t + + in place of

1 1( , y )n nf t + + , the corrector Adams-Moulton is shown in equation (14).   

Corrector: 

1 1 1 2(9 19 5 ).
24

i i i i i i

h
S S f f f f+ + − −= + + + −                                                                                                        (14) 

6 MODIFICATION OF 4TH ORDER RUNGE-KUTTA METHOD TO COMPARTMENTAL 
EQUATION 

In order to apply ABM in solving the compartmental equations, we need to have two version of the 
differential equations, one for susceptible population and the other for infected population, the 
modification is shown below,   

 We define ( ) ( ), , 1f t s i is s i s   = − + − − −  and ( ) ( ), ,g t s i is i  = − + . Starting from 0n =  

until 3n = , we form the RK4 relation as 
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( )

( )

1 1 2 3 4

1 1 2 3 4

1 1 1

2 2 ,
6

2 2 ,
6

1 .

n n

n n

n n n

h
s s k k k k

h
i i l l l l

r s i

+

+

+ + +

= + + + +

= + + + +

= − −                                                                                                    (15) 

where  

( )

( )

( )

( )

( )

( )

( )

( )

1

1

2 1 1

2 1 1

3 2 2

3 2 2

4 3 3

4 3 3

, , ,

, , ,

0.5 , 0.5 , 0.5 ,

0.5 , 0.5 , 0.5 ,

0.5 , 0.5 , 0.5 ,

0.5 , 0.5 , 0.5 ,

, , ,

, , .

n n n

n n n

n n n

n n n

n n n

n n n

n n n

n n n

k f t s i

l g t s i

k f t h s hk i hl

l g t h s hk i hl

k f t h s hk i hl

l g t h s hk i hl

k f t h s hk i hl

l g t h s hk i hl

=

=

= + + +

= + + +

= + + +

= + + +

= + + +

= + + +

 

The results of  0 1 2 3, , ,s s s s  and 0 1 2 3, , ,i i i i   were obtained from equation (15), we need to continue 

the process until the desired day say n , for each time step t , the solutions 0 1 2 3, , ,s s s s  and 0 1 2 3, , ,i i i i  

are fed into the Adams-Bashforth predictor method. The obtained predicted solution are 
subsequently fed into the Adams-Moulton corrector method for improvement, whereas the value for 

variable r  is obtained with the formula 1 1 11n n nr s i+ + += − − .  

7 MODIFICATION OF ADAMS-MOULTON PREDICTOR AND CORRECTOR METHOD TO 
COMPARTMENTAL EQUATIONS 

The predictor formulas used for the variables s  and i  are as follows. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

1 1 1 1 2 2 2 3 3 3

0

1 1 1 1 2 2 2 3 3 3

55 , , 59 , , 37 , , 9 , , ,
24

55 , , 59 , , 37 , , 9 , , .
24

n n n n n n n n n n n n n n

n n n n n n n n n n n n n n

h
s s f t s i f t s i f t s i f t s i

h
i i g t s i g t s i g t s i g t s i

+ − − − − − − − − −

+ − − − − − − − − −

= + − + −  

= + − + −  
                               (16)    

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

1 1 1 1 1 1 1 2 2 2

1 1

1 1 1 1 1 1 1 2 2 2

9 , , 19 , , 5 , , , , ,
24

9 , , 19 , , 5 , , , , .
24

k k k

n n n n n n n n n n n n n n

k k k

n n n n n n n n n n n n n n

h
s s f t s i f t s i f t s i f t s i

h
i i g t s i g t s i g t s i g t s i

− −

+ + + + − − − − − −

− −

+ + + + − − − − − −

 = + + − +
 

 = + + − +
 

                                      (17)  
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8 RESULT AND DISCUSSION 

The compartmental model that describes the rates of change for each compartment (S, I, R) is 
presented in equations (4-6). The compartment is transformed into a system of linear equations 
using the Runge-Kutta of order 4 (RK4) technique. This was necessitated so that equation (4) and (5) 
can be reformed as schemes that can be solved iteratively, both equations  have  sets of unknowns, 

which were denoted by ik  and il  ( 1,2,3,4i = ), ik  are computed for the susceptible population while 

that of infectious were computed as iI , both ik  and iI  are very important constants in obtaining 

subsequent values of ns and ni  in equation (15). The values of 0S  and 0I  were the initial values of 

susceptible and infectious populations from where 0s  and oi  were obtained respectively, first three 

solutions of ns  and ni  were obtained from RK4. The obtained solutions for 0 1 2 3( , , , )s s s s  and 

0 1 2 3(i ,i ,i ,i ) were used in the Adam-Bashforth predictor to predict the subsequent values of the 

susceptible and infected population. Adam-Mouton corrector method was used to correct the earlier 
result, which produced a trend in COVID-19 dynamics in Malaysia within the specific interval. A series 
of solutions obtained from the simulation for both susceptible, infected, and recovered populations 
were plotted to visualise the outcome.   

Figure 3(a) depicts the time series graph for the SIRS model computed numerically as result obtained 
from the Adam-Bashforth Predictor-Corrector (ABPC) method. The black curve represents the 
susceptible proportion, red curve represents the infected proportion, and the green curve indicates 
the removed proportion, while blue dot crosses represent the actual infected population obtained 
from the dataset from March 24 to April 23, 2020. It can be observed that results obtained from our 
models show a great deal of similarity with the actual COVID-19 incidence in Malaysia within the 
stipulated period; they  also share a great resemblance to the graph and results obtained by [24], who 
use an entirely different approach.  

Figure 3(a): Time Series Plot for Susceptible,                Figure 3(b): The Relative Absolute Error of the 
          Infected and Recovered Portions for 100 days              Infected Portion for 30 days   

 
However, the situation at the beginning is an indicator of serious concern as the reproductive number 
corresponds to the dynamics of basic SIRS model is roughly, 2.9231 . This period can be assumed as 
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the period at which Malaysian Government and other stakeholders in the Ministry of Health were 
trying to get full detail and accurate information on the dynamic of the transmission of COVID-19, as 
such, infected agents spread the diseases to the susceptible unknowingly.  We proclaimed that our 
model is consistent with the number of reported active COVID-19 cases in Malaysia, which increases 
and reaches its peak between the first two weeks of April, 2020, with the highest number of infections 
hitting 2596 active cases recorded in a single day. Infection cases increase unchecked on a daily basis 
until it reaches an acme; the infection curve represented in Figure 3 by the red curve reached its acme 
around the second week of April 2020. However, as the number of active cases starts declining, it can 
be observed that our SIRS model predicts that active cases will eventually decline and infection will 
consequently die out.  

As time goes on 0 1R  , which signaled the presence of medical resources and preventive methods to 

combat the free spread of COVID-19 among the population. An obvious reason was that the Federal 
Government of Malaysia on March 18, 2020 implemented a number of national quarantine and 
cordon sanitaire measures known as the Malaysia Government Movement Control Order (Perintah 
Kawalan Pergerakan Kerajaan Malaysia), or simply MCO or PKP [27], whose effects were not 
immediately felt until the middle of April, 2020. MCO measures place limitations on mobility, 
gathering, and international travel, as well as the closure of businesses, industries, governments, and 
educational institutions, thus, the MCO breaks down the infection pattern. Additionally, Figure 3(b) 
showed small relative absolute errors on each day, which justified that the proposed model is indeed 
accurate and suitable for capturing accurate information pertaining the spread of COVID-19 disease 
in Malaysia in the period under review. The numerical results using Adams-Bashforth-Moulton 
predictor-corrector method and actual data are compared using different step size, ℎ =
0.50, 0.25, 0.20, 0.10 and 0.01, and number of correction steps, 𝑘 = 1, 2, 3, 4 and 5. The mean and 
standard deviation for the relative absolute error for each pair of step size and correction steps are 
depicted in Figure 4.   

 

 

 

 

 

 

Figure 4: Graphs of Mean and Standard Deviation for Relative Absolute Error against Number of Correction 
steps, 𝑘 = 1, 2, 3, 4 and 5 for step size, ℎ = 0.50, 0.25, 0.20, 0.10 and 0.01 

For each fixed step size ℎ, it is discovered that as the number of correction steps, 𝑘 increases from 1 
to 3, the mean and standard deviation for relative absolute error greatly decreases, but approaches 
a constant as 𝑘 further increases. On the other hand, for each fixed number of correction steps, 𝑘, we 
can observe that as the step size, ℎ decreases from 0.50 to 0.01, the standard deviation for relative 
absolute error decreases and approaches a constant value, but its mean for relative absolute error 
increases and approaches a constant value. Thus, for this proposed model, it is recommended to use 
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step size ℎ = 0.10 and number of correction step, 𝑘 = 3 as the numerical results obtained are more 
consistent with just a little sacrification in the precision, and also save the computational cost and 
time without having to use a smaller step size or to iterate more loops of correction in each time step, 
the mean and standard deviation for the relative absolute error for each pair of step size and 
correction steps are presented  in Table 1 and Table 2 respectively.   

Table 1: Mean for relative absolute error (%) for step size, ℎ = 0.50, 0.25, 0.20, 0.10 and 0.01, and number of 
correction steps, 𝑘 = 1, 2, 3, 4 and 5 

Step 
size 

Number of correction steps 

1 2 3 4 5 
0.50 2.22131096221356 2.22131066574317 2.22131066228168 2.22131066228364 2.22131066228483 

0.25 2.22131118424822 2.22131117483234 2.22131117477350 2.22131117477345 2.22131117477345 

0.20 2.22131120513294 2.22131120201004 2.22131120199436 2.22131120199434 2.22131120199434 

0.10 2.22131122206507 2.22131122196488 2.22131122196461 2.22131122196461 2.22131122196461 

0.01 2.22131122350033 2.22131122350033 2.22131122350033 2.22131122350033 2.22131122350033 

 

Table 2: Standard deviation for relative absolute error (%) for step size, ℎ = 0.50, 0.25, 0.20, 0.10 and 0.01, 
and number of correction steps, 𝑘 = 1, 2, 3, 4 and 5 

 

9 CONCLUSION 

In this research, we have demonstrated that the Adam-Bashforth predictor method is an effective 
technique for solving compartmental model solutions. This method allows for the efficient 
computation of future time steps by using previous solutions and present data to approximate the 
future solution. By utilising this method, researchers can gain a better understanding of how different 
compartments interact with one another over time, which can inform decision-making in various 
fields such as epidemiology, pharmacology, and ecology. However, it is important to note that the 
accuracy of the Adam Bashforth predictor method can be affected by factors such as the step size, the 
order of the method, and the stability of the model. Therefore, careful consideration and validation 
of the results are necessary to ensure the reliability of the solution. In the absence of adequate 
medical facilities, decisions such as Strict Standard Operating Procedure (SOP) such as wearing 
masks, restricting outdoor activities, prohibiting large gatherings, and closing borders can effectively 
reduce the infection rate in Malaysia. As demonstrated in this research, the number of infected cases 

Step 

size 

Number of correction steps 

1 2 3 4 5 

0.50 1.88843470542901 1.88843434942738 1.88843434784179 1.88843434785582 1.88843434785582 

0.25 1.88843091445384 1.88843090303029 1.88843090301369 1.88843090301381 1.88843090301380 

0.20 1.88843078474446 1.88843078097997 1.88843078097603 1.88843078097606 1.88843078097606 

0.10 1.88843070459000 1.88843070447092 1.88843070447088 1.88843070447088 1.88843070447088 

0.01 1.88843069963029 1.88843069963029 1.88843069963029 1.88843069963029 1.88843069963029 
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of infectious diseases can be reduced effectively. However, this may have an adverse effect in the long 
run due to its negative impact on the country's economy. 

As mentioned earlier, in solving a system of ordinary differential equations (ODEs) numerically, it is 
more accurate to set the step size to be as small as possible for better accuracy of the numerical 
simulation results. In addition, a pair of predictor-corrector numerical models is recommended to be 
used, as we can "correct" the solution as many times as we wish to reduce its relative and absolute 
error. However, smaller step sizes and a higher number of correction steps may increase the 
computational burden and consume a lot of time. 
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