
Applied Mathematics and Computational Intelligence
Volume 14, No. 2, 2025 [145 – 158]

Modeling Road Network in the Main Campus of Universiti Putra
Malaysia, Serdang, Selangor, Using Graph Theory

Tan Chai Fang1, Athirah Nawawi1*, Siti Hasana Sapar1

1Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM
Serdang, Selangor, Malaysia

* Corresponding author: athirah@upm.edu.my

Received: 19 November 2024
Revised: 6 February 2025
Accepted: 8 May 2025

ABSTRACT

Graph theory is a powerful mathematical tool that can be applied to solve many real-life
problems including modeling traffic flows as directed graphs and analyzing them to propose
solutions for congestion problems. This research aims to describe the road network of the
north and south campuses of Universiti Putra Malaysia, Serdang, Selangor, as a directed
graph, consisting of junctions as vertices and interchanges (or links) between junctions with
other junctions as directed edges. This research also aims to determine the shortest path
between a junction to all other junctions by using two shortest path algorithms, namely
the Dijkstra and Floyd-Warshall algorithms, and consequently compare their efficiencies
in producing the results. The algorithms are modified so that not only the length of the
shortest path is given but also to identify the shortest path itself. Based on the findings of
this research, we propose several strategies to minimize traffic congestion, especially during
peak hours or convocation sessions, which would benefit both university and surrounding
communities.

Keywords: Dijkstra Algorithm, Floyd-Warshall Algorithm, Shortest Path.

1 INTRODUCTION

The application of graph theory to address traffic congestion at the main campus of Universiti Putra
Malaysia (UPM) involves modeling the road network as a directed multigraph, reflecting the complex
interactions between junctions and road segments. This approach allows for a comprehensive analysis
of traffic flow dynamics, considering factors such as one-way roads and multiple roadways connecting
different junctions. By assigning weights to the edges in the directed multigraph, representing
distances or costs associated with traversing each road segment, the model can accurately capture
the intricacies of travel within the main campus of UPM. These weights facilitate the identification
of the shortest or most efficient paths between junctions, allowing the development of strategies to
minimize congestion and optimize traffic flow.

The degree of each vertex in the graph model serves as a crucial indicator of traffic flow at junctions,
highlighting areas prone to congestion. By analyzing vertex degrees, it becomes possible to pinpoint
junctions experiencing high traffic volumes, allowing for targeted interventions such as installing

Tan Chai Fang et al/Modeling Road Network in the Main Campus of UPM Using Graph Theory

traffic lights or designing diversion routes. Furthermore, the distinction between trails and paths in
the context of the road network delineates between routes where vertices or edges may be repeated,
informing decisions to ensure drivers follow optimal, nonrepetitive paths for efficient navigation.

Directed multigraphs accurately represent the directionality of traffic flow in each segment of the
road, providing a nuanced understanding of travel patterns within the main campus of UPM. This
detailed representation facilitates the development of traffic management plans tailored to specific
routes and junctions, contributing to improved overall efficiency and reduced travel times for the
university community. By leveraging graph theory principles and methodologies, UPM can devise
effective solutions to alleviate congestion, enhancing productivity and convenience for students,
faculty, and staff navigating the campus road network.

Hence, in Section 2 of this article, we discuss on the research methodology which includes modelling of
UPM road network as a directed graph and applying both Dijkstra’s and Floyd-Warshall Algorithms
on the resulting graph. Subsequently, in Section 3, we present the description of our results and
discuss the analysis based on the findings. Finally, the Conclusion section highlights the successful
modelling of the UPM road network and demonstrates the effectiveness of the Floyd-Warshall
algorithm in efficiently determining the shortest paths.

1.1 Related Research

[1] proposed a methodology for improving city traffic management using directed graphs, focusing
on two main strategies. Firstly, they aimed to enhance road efficiency by reducing traffic congestion
at bottleneck areas, achieved by minimizing interruptions at junctions with multiple incoming
flows. This approach resulted in a redesigned city map with smoother traffic flows and decreased
congestion. Secondly, traffic accumulation at junctions was mitigated by regulating traffic flow
through the timing patterns of traffic lights, based on lane capacities, leading to a smoother driving
experience and optimal traffic redistribution. Additionally, [1] explored the use of graph theory,
particularly edge and vertex connectivity, to address traffic control issues at junctions, proposing the
placement of traffic sensors to minimize driver waiting times, especially at junctions with multiple
traffic streams.

On a related note, [2] discussed the shortest path problem, which involves identifying the shortest
route between an initial vertex and a final destination in a graph. Graphs represent this problem
with vertices and edges, where weights assigned to edges help calculate the shortest path between
vertices. This path connects the specified pair of vertices and represents the shortest route from an
initial vertex to a destination. In this article as well, Dijkstra’s algorithm emerges as a valuable
tool for determining the shortest distance in directed graphs with non-negative edge weights.
This greedy algorithm efficiently calculates the smallest possible weights of each vertex, aiding in
finding the shortest path and reducing traffic congestion in certain road segments by identifying
alternative routes with smaller weights. The effectiveness of Dijkstra’s algorithm is further explored
in the development of real-time information and navigation systems accessible via mobile phones,
offering alternative routes in case of traffic congestion, accidents, or natural disasters. Additionally,
studies have utilized Dijkstra’s algorithm to identify the nearest distance from a user’s location
to specific destinations, such as specialist doctors’ practices, aiming to minimize search time
and ensure timely access to treatment. These applications of Dijkstra’s algorithm highlight its

146

Applied Mathematics and Computational Intelligence
Volume 14, No. 2, 2025 [145 – 158]

effectiveness in facilitating route optimization and resolving traffic congestion issues. Moreover,
research demonstrates its ability to generate alternate routes for drivers to avoid congestion on
specific roads, as observed in the study conducted in Purwokerto.

In graph theory, the Floyd-Warshall algorithm, as outlined by [3], stands as a prominent method for
determining the shortest routes between any pair of vertices within a weighted graph. It operates
by creating a distance matrix, utilizing dynamic programming to iteratively update it until all
potential pathways are considered. The algorithm initializes the distance matrix with direct edge
weights between vertices, then proceeds to determine shorter paths by calculating intermediate
vertices for each vertex pair. Despite its ability to handle networks with positive or negative edge
weights, it cannot manage graphs with negative cycles and is best suited for small to medium-sized
networks. Nevertheless, the Floyd-Warshall algorithm finds extensive application in various fields
such as network routing, traffic optimization, and graph connectivity analysis due to its capability
in determining shortest pathways between any vertex pairs.

Additionally, [4] highlight the algorithm’s efficiency in calculating minimum path lengths for all
pairs of vertices in a directed graph, contrasting it with Dijkstra’s algorithm, which may be slower
due to blind search but is effective in solving the shortest path problem.

Furthermore, [5] stated that the Floyd-Warshall algorithm is a highly effective solution for solving
the shortest path problem. Unlike Dijkstra’s algorithm, which can be slow due to its blind search
approach, the Floyd-Warshall algorithm efficiently handles route searches. Hence, in this research,
both Dijkstra’s and Floyd-Warshall algorithms will be used to determine the shortest paths between
vertices in the graph of UPM main campus, and the efficiency of the algorithms will be compared
by measuring the computation time. Both algorithms are intended to find the shortest path
lengths but do not provide the actual paths to be taken. Therefore, in this research, Dijkstra’s
and Floyd-Warshall algorithms will be modified to demonstrate the shortest path from one vertex
to another, and the results from both algorithms will be compared to assess their accuracy. In
conclusion, Dijkstra’s and the Floyd-Warshall algorithms are distinct methods for solving the
shortest path problem in weighted graphs. Dijkstra’s algorithm identifies the shortest path from a
single source vertex to all other vertices using a greedy approach that iteratively updates distance
estimates. In contrast, the Floyd-Warshall algorithm calculates the shortest paths between all
pairs of vertices simultaneously, employing an iterative matrix-based method that refines distance
estimates by considering intermediate vertices. The key difference is that while Dijkstra’s algorithm
handles one shortest path at a time, Floyd-Warshall provides all shortest path distances in a single
process.

2 MATERIAL AND METHODS

2.1 Modelling a Road Network into a Directed Graph

Parameter needed

G = (V,E) is a directed graph to model UPM South and North maps, where V is a set of vertices
in G representing the junctions of the road network in UPM Map and E is a set of edges in G

147

Tan Chai Fang et al/Modeling Road Network in the Main Campus of UPM Using Graph Theory

representing the direction of the traffic flow at each junction. In addition, w(e) is the weight of an
edge e in E of G representing the distance of the road segment.

Step to Model the Roadway as a Directed Graph

1. We collect information about the roadway such as the number of junctions, the location
of each junction, the direction of traffic flow at each junction, and the length of each road
segment between junctions.

2. We assign a vertex for each junction in the map, and every vertex will be labelled as vi, which
i = 0, 1, 2, . . . , n− 1, n is the total number of vertex in the graph.

3. Directed edges are drawn between the vertices based on the direction of traffic flow at each
junction. If traffic flows in both directions, a parallel edge with different directions will be
created between the vertices to represent the traffic flow in each direction.

4. We assign weights to the edges based on the length between the junctions. Distance is
measured by using satellite Google Maps. This will be used to calculate the shortest path
between two vertices in the graph.

2.2 Dijkstra’s Algorithm

Let G be a simple and connected weighted graph. The weights are non-negative real numbers and
are denoted by W . Let a and z be two vertices in G. Let P be a path in G from a to z. The length
of path P , denoted as L(P), is the sum of the weights of all edges on path P . Our objective in this
section is to determine the length of the shortest path from a to z. Dijkstra’s algorithm iteratively
constructs the set S that consists of all vertices of G for which the length of the shortest path has
been determined. The algorithm ([6]) is described in the following steps:

1. S := ∅.

2. With V being the set of all vertices of G, let N := V in the beginning. (Generally, V = S ∪N)

3. Since a is the origin vertex, L(a) which is the length of a shortest path from a to a is 0, i.e,
L(a) = 0.

4. For all vertices u ∈ V , u ̸= a and L(u) := ∞.

5. While the end vertex z /∈ S, iteratively do

(a) Let v ∈ N such that L(v) = min {L(u)|u ∈ N}.

(b) S := S ∪ {v}.

(c) N := N − {v}.

(d) For all w ∈ N such that there is an edge from v to w. If L(v) +W [u,w] < L(w) then
L(w) = L(v) +W [u,w].

148

Applied Mathematics and Computational Intelligence
Volume 14, No. 2, 2025 [145 – 158]

6. Algorithm will be terminated once the end vertex z is in S and L(z) gives the length of a
shortest path from a to z.

2.3 Floyd-Warshall Algorithm

Let G be a directed and weighted graph (V,E), consisting of a set of vertices, V , and edges, E.
Each edge e, is assigned a weight denoted as w(e). The weight matrix of the graph, Wij , must
not contain a negative weight cycle. This algorithm computes the smallest weight among all paths
connecting pairs of vertices simultaneously, iteratively assessing each pair until the optimal route to
reach each destination vertex is determined with minimum weights. The algorithm ([7]) is described
in the following steps:

1. Let A be the weight matrix of dimension n× n representing the distances between vertices,
with n being the number of vertices in the graph G.

2. The entry of the matrix A at the position of i and j ranging from 1 to n, is denoted by A[i][j].
With k being the intermediate vertex between i and j ranging from 1 to n, A[i][j] is updated
as follows:

A[i][j] = min(A[i][j], A[i][k] +A[k][j]).

3. Terminate when all ∞ and all other entries within the matrix have been replaced by the
shortest distances.

4. The final matrix A contains the shortest path distances between all pairs of vertices.

3 RESULTS AND DISCUSSION

3.1 Modelling the UPM Network as a Directed Graph

Junctions are identified using the UPM map – covering both North and South Campuses. Each
junction represents a vertex, labelled as vertices vi, where i = 0, 1, 2, . . . , 51, as shown in Figure
1. These vertices are connected by directed edges that represent the roadways between junctions,
with edge directions determined by traffic flow. The inclusion of edges to the graph is limited to
roadways accessible by car, identified through satellite in Google Maps, excluding paths restricted
to pedestrians or cyclists.

As a result, Figure 2 shows the directed graph representing the UPM traffic network, denoted as G,
comprises of set V (G) and E(G). Its set V (G) contains a total of 52 vertices. Meanwhile, E(G) is
the edge set of G, consists of a total of 109 directed edges within the graph. This directed graph
is also a multigraph which may contain parallel edges between vertices. The edges of the graph
G are also labelled with their weights. The weights of these edges are the length of each road
segment which are measured using Google Maps satellite imagery, providing distance measurements
in meters (m). Additionally, these distances become the entries of the weight matrix, of dimension
52 × 52, which later being utilized to compute shortest path distances. In this weight matrix,
non-adjacent vertices are designated with a weight of infinity, denoted as INF.

149

Tan Chai Fang et al/Modeling Road Network in the Main Campus of UPM Using Graph Theory

Figure 1 : UPM Map-Combining North and South Campuses

3.2 C++ Coding of Dijkstra Algorithm to Find the Shortest Path of UPM Map

The modified Dijkstra’s algorithm incorporates enhancements to facilitate the printing of the
shortest path and the computation of total execution time. By utilizing std :: chrono :: high
resolution clock, time points are captured before and after the execution of the algorithm segment.
The duration of code execution is then calculated by subtracting the start time from the end
time and converting the result to microseconds. This duration serves as a metric for assessing the
computational efficiency of the algorithm and enables quantitative comparisons between different
implementations. Additionally, the algorithm includes functions such as printSolution and printPath,

150

Applied Mathematics and Computational Intelligence
Volume 14, No. 2, 2025 [145 – 158]

Figure 2 : Directed Graph of UPM Map

which work in tandem to display the shortest distances and paths from the source vertex to all
other vertices. The printPath function utilizes recursion to trace back the shortest path by following
parent vertices from the destination to the source. These enhancements contribute to a more
comprehensive evaluation of the algorithm’s effectiveness, enabling clear comparisons of routes
based on both their lengths and computation times.

#inc lude <chrono>
i n t minDistance (i n t d i s t [] , bool sptSet []) {

i n t min = INT MAX, min index ;

151

Tan Chai Fang et al/Modeling Road Network in the Main Campus of UPM Using Graph Theory

f o r (i n t v = 0 ; v < V; v++)
i f (! sptSet [v] && d i s t [v] <= min)

min = d i s t [v] , min index = v ;
re turn min index ;

}
void pr intPath (i n t parent [] , i n t j) {

i f (parent [j] == −1)
re turn ;

pr intPath (parent , parent [j]) ;
p r i n t f (” −> %d” , j) ;

}
void p r i n tSo l u t i on (i n t d i s t [] , i n t parent [] , i n t s r c) {

p r i n t f (” Vertex Distance from Source (m) Path\n ”) ;
f o r (i n t i = 0 ; i < V; i++) {

i f (i != s r c) {
p r i n t f (”%d \ t \ t %d \ t \ t \ t \ t%d” , i , d i s t [i] , s r c) ;
pr intPath (parent , i) ;
p r i n t f (”\n ”) ;

}
}

}
void d i j k s t r a (i n t graph [V] [V] , i n t src , long long& to t a l t ime) {

i n t d i s t [V] ;
bool sptSet [V] ;
i n t parent [V] ;
f o r (i n t i = 0 ; i < V; i++) {

d i s t [i] = INT MAX;
sptSet [i] = f a l s e ;
parent [i] = −1;

}
d i s t [s r c] = 0 ;
auto s t a r t t ime = std : : chrono : : h i g h r e s o l u t i o n c l o c k : : now () ;
f o r (i n t count = 0 ; count < V − 1 ; count++) {

i n t u = minDistance (d i s t , sptSet) ;
sptSet [u] = true ;
f o r (i n t v = 0 ; v < V; v++) {

i f (! sptSet [v] && graph [u] [v] && d i s t [u] != INT MAX && d i s t [u]
+ graph [u] [v] < d i s t [v]) {

d i s t [v] = d i s t [u] + graph [u] [v] ;
parent [v] = u ;

}
}

}
auto end time = std : : chrono : : h i g h r e s o l u t i o n c l o c k : : now () ;
auto durat ion = std : : chrono : : dura t i on ca s t<std : : chrono : :
microseconds>(end time − s t a r t t ime) ;
p r i n t f (”Computation Time from vertex %d : %l l d microseconds \n” ,
src , s t a t i c c a s t <long long>(durat ion . count ())) ;
t o t a l t ime += durat ion . count () ;
p r i n tSo l u t i on (d i s t , parent , s r c) ;

}
i n t main () {

i n t graph [V] [V] = { I n s e r t the Weight Matrix } ;
long long t o t a l t ime = 0 ;
f o r (i n t i = 0 ; i < V; i++) {

d i j k s t r a (graph , i , t o t a l t ime) ;

152

Applied Mathematics and Computational Intelligence
Volume 14, No. 2, 2025 [145 – 158]

}
p r i n t f (” Total Computation Time f o r a l l v e r t i c e s : %l l d microseconds \n” ,
t o t a l t ime) ;
r e turn 0 ;

}

3.3 C++ Coding of Floyd-Warshall Algorithm to Find the Shortest Path of UPM
Map

The modified Floyd-Warshall algorithm incorporates enhancements to display both the shortest
paths and their corresponding computation times. Computation time is measured using < chrono >
in C++ to accurately assess the algorithm’s performance. The program captures time points before
and after executing the algorithm segment using std :: chrono :: high resolution clock, calculating
the duration of code execution in microseconds. This duration serves as a metric for evaluating the
computational efficiency of the algorithm. Additionally, the algorithm includes functions such as
printMatrix and printAllShortestPaths to display the computed shortest path matrix and showcase
all shortest paths between pairs of vertices, respectively. These modifications enable users to identify
optimal routes with minimum length while providing insights into the algorithm’s effectiveness
based on computation times.

#inc lude <chrono>
void pr intMatr ix (i n t matrix [] [nV]) ;
void p r in tA l lSho r t e s tPath s (i n t parent [] [nV]) ;

void f loydWarsha l l (i n t graph [] [nV]) {
i n t matrix [nV] [nV] , parent [nV] [nV] ;
i n t i , j , k ;
f o r (i = 0 ; i < nV; i++) {

f o r (j = 0 ; j < nV; j++) {
matrix [i] [j] = graph [i] [j] ;
parent [i] [j] = i ; // I n i t i a l i z e the parent array

}
}
auto s t a r t t ime = std : : chrono : : h i g h r e s o l u t i o n c l o c k : : now () ;
f o r (k = 0 ; k < nV; k++) {

f o r (i = 0 ; i < nV; i++) {
f o r (j = 0 ; j < nV; j++) {

i f (matrix [i] [k] + matrix [k] [j] < matrix [i] [j]) {
matrix [i] [j] = matrix [i] [k] + matrix [k] [j] ;
parent [i] [j] = parent [k] [j] ;
// Update the parent f o r s h o r t e s t path

}
}

}
}
auto end time = std : : chrono : : h i g h r e s o l u t i o n c l o c k : : now () ;
auto durat ion = std : : chrono : : dura t i on ca s t<std : : chrono : : microseconds>
(end time − s t a r t t ime) ;
p r i n t f (”Computation Time : %l l d microseconds \n” , s t a t i c c a s t <long long>
(durat ion . count ())) ;
pr intMatr ix (matrix) ;
p r i n t f (” Shor t e s t Paths f o r Al l Ve r t i c e s :\n\n ”) ;
p r i n tA l lSho r t e s tPath s (parent) ;

}

153

Tan Chai Fang et al/Modeling Road Network in the Main Campus of UPM Using Graph Theory

void pr intMatr ix (i n t matrix [] [nV]) {
p r i n t f (” Shor t e s t Path Matrix :\n ”) ;
f o r (i n t i = 0 ; i < nV; i++) {

f o r (i n t j = 0 ; j < nV; j++) {
i f (matrix [i] [j] == INF)

p r i n t f (”INF\ t ”) ;
e l s e

p r i n t f (”%d\ t ” , matrix [i] [j]) ;
}
p r i n t f (”\n ”) ;

}
}
void p r in tA l lSho r t e s tPath s (i n t parent [] [nV]) {

f o r (i n t source = 0 ; source < nV; source++) {
f o r (i n t d e s t i n a t i on = 0 ; d e s t i n a t i on < nV; d e s t i n a t i on++) {

i f (source != de s t i n a t i on) {
p r i n t f (” Shor t e s t Path from %d to %d : ” , source , d e s t i n a t i on) ;
std : : vector<int> path ;
i n t cur rent = de s t i n a t i on ;
whi l e (cur rent != source) {

path . push back (cur rent) ;
cur rent = parent [source] [cur r ent] ;

}
path . push back (source) ;
f o r (i n t i = path . s i z e () − 1 ; i >= 0 ; i−−) {

p r i n t f (”%d” , path [i]) ;
i f (i > 0) {

p r i n t f (” −> ”) ;
}

}
p r i n t f (”\n ”) ;

}
}

}
}
i n t main () {

i n t graph [nV] [nV] = { I n s e r t the Weight Matrix } ;

f l oydWarsha l l (graph) ;

r e turn 0 ;
}

3.4 Shortest Path between Vertices in the Graph and Their Distances

The computational results obtained through the implementation of the Dijkstra and Floyd-Warshall
Algorithms in C++ provide significant insights into the shortest path computations within the
UPM roadway network. Although both algorithms yield identical outputs in terms of the calculated
shortest paths, they distinctly showcase variations in computational times. In Table 1, the source
vertex (the initial vertex), the destination (the end vertex), and the corresponding shortest path
distances are measured in meters. Interpreting the shortest path is straightforward; for instance,
v0 − v1 − v2 denotes the path originating from v0, passing through v1, and then reaching the
destination v2.

154

Applied Mathematics and Computational Intelligence
Volume 14, No. 2, 2025 [145 – 158]

Table 1 : Shortest paths between v0 to vi (1 ≤ i ≤ 5) and its distance

Source Vertex Destination Vertex Distance
(m)

Shortest Path

v0 v1 120 v0 – v1
v2 390 v0 – v1 – v2
v3 570 v0 – v1 – v2 – v3
v4 300 v0 – v1 – v4
v5 390 v0 – v1 – v4 – v5

The rest of the information on the shortest paths involving all vertices in the directed graph of
UPM map can be accessed through the QR code in Figure 3.

Figure 3 : Shortest path between a vertex to another vertex in the graph G

Both Dijkstra’s and Floyd-Warshall algorithms consistently identify the same shortest path within
the UPM traffic network. While both algorithms yield identical outputs for the shortest path
and weight, they exhibit notable differences in computational efficiency. Dijkstra’s Algorithm
takes approximately 2384 microseconds to compute all paths, while the Floyd-Warshall algorithm
completes this task in just 600 microseconds due to its matrix-based approach.

Further analysis of the data reveals that the longest shortest path between two vertices in UPM
spans from v51 to v15, covering a distance of 4610 meters, which is the diameter of the traffic network.
Additionally, the shortest path covering the most vertices extends from v50 to v8, measuring 3520
meters. Traversing a greater number of vertices may lead to increased interruption time, despite
the shorter overall path length, due to more junctions and stops along the route. Mitigating
traffic congestion requires considering not only the shortest path but also the total travel time,
incorporating interruption time. Further insights into minimizing waiting times are provided by [8],
offering valuable strategies for traffic congestion management.

3.5 Analysis

Table 2 displays some vertices of the graph G which have high degree for relevant junctions that
were identified when doing this research.

155

Tan Chai Fang et al/Modeling Road Network in the Main Campus of UPM Using Graph Theory

Table 2 : Vertices with high degree

Vertex Vertex Degree Name of Junction

v12 7 Cross junction between Faculty of Educational Studies and
Co-curriculum Centre (MLK)

v1 6 Junction between Lorong Sapucaya, Persiaran Asam Jawa and
Faculty of Biotechnology and Biomolecular Sciences (3)

v18 6 Cross junction between Main Hall (PKKSSAAS), Academic
Complex and Faculty of Computer Science and Information
Technology

v23 6 Gate 4
v24 6 Gate 3
v26 6 Gate 2
v27 6 Junction on Persiaran Masjid
v44 6 Junction in front of College Principals Housing
v46 6 Cross junction between Pendeta Za’ba College, University Health

Care and Tun Perak College
v47 6 Junction between 13th College and Ladang 10
v48 6 Junction between 16th College, MTDC and Office of the Deputy

Vice-Chancellor (Research and Innovation)
v50 6 Junction between Jalan Satelit and Ladang 10

The high degree of these vertices indicates the high possibility of traffic congestion when a substantial
volume of transportation traverses these junctions concurrently. Congestion is expected during peak
times, such as convocations, major events, morning rush hours, and the conclusion of office hours.

3.6 Suggestion to Minimize the Traffic Congestion

To alleviate traffic congestion at UPM, a multifaceted approach has been proposed, encompassing
various strategic measures. Extending the operational hours of specific routes, such as those around
junctions near high-traffic areas like Haura’s Cafe and the Faculty of Science, could divert vehicles
away from congested zones during peak hours. Additionally, implementing access controls based
on vehicle plate numbers and promoting carpooling initiatives are suggested strategies to reduce
overall traffic density at crucial junctions. Furthermore, enhancing infrastructure for alternative
transportation modes like cycling and walking, collaborating with local authorities to improve
road access, and optimizing traffic flow through advanced traffic signal systems represent integral
components of the congestion alleviation strategy.

In conjunction with the university’s transportation system enhancements, fostering behavioural
changes among staff and students through incentives for alternative transportation modes and
flexible work or class schedules is advocated. Furthermore, educational campaigns on traffic impact
awareness, real-time traffic information dissemination, and efficient parking management systems
are proposed to complement infrastructure improvements. By integrating these diverse initiatives,
UPM aims to comprehensively address congestion issues, enhance traffic management practices,
and cultivate a sustainable and efficient transportation ecosystem within its campus premises.

156

Applied Mathematics and Computational Intelligence
Volume 14, No. 2, 2025 [145 – 158]

4 CONCLUSION

The research successfully achieves its objective by modeling the road network at UPM as a
directed graph and conducting a comparative analysis of path-finding algorithms. Both the Floyd
Warshall and Dijkstra algorithms yield accurate results for finding the shortest paths, with the
former demonstrating higher efficiency in computational times. This observation aligns with existing
literature, reinforcing the efficacy of the Floyd Warshall algorithm in such contexts. Additionally, the
study proposes a range of alternative measures to minimize traffic congestion at junctions, considering
the diverse commuting patterns of UPM’s staff, lecturers, and students. While implementing vehicle
limitations may pose challenges for some commuters, the strategies aim to balance congestion
alleviation with sustainability goals, fostering a green learning environment and facilitating faster
emergency access.

A well-structured road system not only mitigates congestion but also supports efficient emergency
pathways and overall campus functioning. Leveraging the traffic network enables the establishment
of emergency routes and ensures swift access to essential services like ambulances during urgent
hours. Moreover, such a system streamlines transportation, promotes sustainable practices, and
contributes to the optimization of the campus environment. Striking a balance between facilitating
convenient access for road users and implementing congestion-reducing strategies remains crucial
for enhancing efficiency and sustainability within UPM and similar environments.

ACKNOWLEDGEMENT

Thanks for all the comments and suggestions from the reviewers to improve the article.

REFERENCES

[1] L. K. R. Abanes, J. A. M. Maniago, and I. B. Jos, “Traffic management at junctions
along taft avenue using graph theory,” in De La Salle University Research Congress,
2017. [Online]. Available: https://www.dlsu.edu.ph/wp-content/uploads/pdf/conferences/
research-congress-proceedings/2017/SEE/SEE-I-011.pdf

[2] R. D. Gunawan, R. Napianto, R. I. Borman, and I. Hanifah, “Implementation of dijkstra’s
algorithm in determining the shortest path (case study: Specialist doctor search in bandar
lampung),” International Journal of Information System and Computer Science, vol. 3, no. 3,
pp. 98–106, 2019, https://jurnal.ftikomibn.ac.id/index.php/ijiscs/article/view/768.

[3] D. Sarkar, M. Chakrabarty, A. De, and S. Goswami, “Emergency restoration based on
priority of load importance using floyd–warshall shortest path algorithm,” in Computational
Advancement in Communication Circuits and Systems: Proceedings of ICCACCS 2018.
Springer, 2020, pp. 59–72.

[4] I. K. L. D. Pandika, B. Irawan, and C. Setianingsih, “Application of optimization heavy
traffic path with floyd-warshall algorithm,” in 2018 International Conference on Control,
Electronics, Renewable Energy and Communications (ICCEREC). IEEE, 2018, pp. 57–62.

[5] Risald, A. E. Mirino, and Suyoto, “Best routes selection using dijkstra and floyd-warshall algo-

157

https://www.dlsu.edu.ph/wp-content/uploads/pdf/conferences/research-congress-proceedings/2017/SEE/SEE-I-011.pdf
https://www.dlsu.edu.ph/wp-content/uploads/pdf/conferences/research-congress-proceedings/2017/SEE/SEE-I-011.pdf
https://jurnal.ftikomibn.ac.id/index.php/ijiscs/article/view/768

Tan Chai Fang et al/Modeling Road Network in the Main Campus of UPM Using Graph Theory

rithm,” in 2017 11th International Conference on Information & Communication Technology
and System (ICTS). IEEE, 2017, pp. 155–158.

[6] D. Malik, M. Sen, and S. Ghosh, Introduction to Graph Theory. Singapore: Cengage
Learning Asia Pte Ltd, 2014.

[7] I. H. Toroslu, “Improving the floyd-warshall all pairs shortest paths algorithm,” 2021.
[Online]. Available: https://arxiv.org/abs/2109.01872

[8] S. Tanveer, “Application of graph theory in representing and modelling traffic control
problems,” International Journal of Mathematics and Computer Applications Research, vol. 6,
no. 3, pp. 29–34, 2016, https://papers.ssrn.com/sol3/papers.cfm?abstract id=2838642.

158

https://arxiv.org/abs/2109.01872
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2838642

	Introduction
	Related Research

	Material and Methods
	Modelling a Road Network into a Directed Graph
	Dijkstra's Algorithm
	Floyd-Warshall Algorithm

	Results and Discussion
	Modelling the UPM Network as a Directed Graph
	C++ Coding of Dijkstra Algorithm to Find the Shortest Path of UPM Map
	C++ Coding of Floyd-Warshall Algorithm to Find the Shortest Path of UPM Map
	Shortest Path between Vertices in the Graph and Their Distances
	Analysis
	Suggestion to Minimize the Traffic Congestion

	Conclusion

