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ABSTRACT 

A new diagonally implicit extended 2-point super class of block backward differentiation formula with two off–
step points is developed for the solution of first order stiff initial value problems. The method computes two 
solution values with two off–step points concurrently at each integration step. The method is of order five. Sets of 

different formulae can be generated from the method by varying a free parameter ( )1,1  −  in the formula.  A 

specific choice of the value of the parameter   within the interval is made and the method is found to be 

consistent, zero stable and convergent. The region of absolute stability is plotted and it indicated that the 
method is A-stable.  The numerical results obtained demonstrated efficiency of the new method when compared 
with some existing implicit numerical block methods.  The developed method performed better than some 
existing algorithms in terms of accuracy and competes with others in terms of execution time. 

Keywords: A-stability, block backward differentiation formula, convergence, diagonally implicit, off–
step points. 

1 INTRODUCTION 

In this paper, we shall consider the approximate numerical solution of first order stiff ordinary 
differential equation in initial value problem (IVP) of the form: 

𝑦′ = 𝑓(𝑥, 𝑦),          𝑦(𝑥0) = 𝑦0,         𝑎 ≤ 𝑥 ≤ 𝑏                                                                                                      (1) 
 
The syshasof initial value problem (1) is said to be stiff if all its eigenvalues of the coefficient matrix 
have negative real parts and the stiffness index of the eigenvalues is extremely large [1].  In other 
words, a system of ordinary differential equations (ODEs) can be regarded as stiff ordinary 
differential equation if its theoretical solution contains a very fast component as well as a very slow 
component [2].  These stiff systems are usually found in the fields of physical science, behavioral 
science, medicinal science, engineering and particularly, in the study of chemical kinetics, vibrations 
of springs, electrical circuits, statistical thermodynamics, weather predictions, theory of fluid and 
quantum mechanics and so on [3].  Most of the mathematical modeled relevant real world problems 
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are impossible or difficult to solve analytically.  Rather, alternative numerical integration methods 
are required in obtaining an approximate solution to the problems.  However, in dealing with stiff 
ODEs, stiffness property prevents conventional explicit numerical methods from handling the 
problem efficiently, thus implicit numerical schemes with infinite region of absolute stability and no 
restriction on the step length have to be adopted. 

Backward differentiation formula (BDF) is one of the most successful classes of implicit linear 

multistep method for solving stiff initial value problems [4].  Due to the good performance and 

efficiency of the BDF methods in integrating both linear and nonlinear stiff ODEs, several research 

efforts have been made by the researchers to develop both fully and diagonally implicit block BDF 

methods such as those found in [5,6,7,8,9,10,11,12,13,14,15,17,18,19,20] among others to 

formulate implicit numerical schemes for solving stiff IVPs.  In an effort to develop new implicit 

methods of block type, recent research focuses on computing the solutions of IVPs at off–step 

points.  Examples are [5,10,16,17]. 

The motivation of this research is to construct a diagonally implicit form of the method developed 

by [5] by introducing a lower triangular matrix in the formula so as to improve its accuracy and 

computational time. 

2 DERIVATIONS OF THE METHOD 

We shall consider the following numerical scheme for the integration of stiff ODEs developed in [5] 
which is given as: 

∑ 𝛼𝑗,𝑖𝑦𝑛+𝑗−1 +∑ 𝛼𝑗,𝑖𝑦𝑛+𝑗−1
3

𝑗=
3

2

= ℎ𝛽𝑘,𝑖(𝑓𝑛+𝑘 − 𝜌𝑓𝑛+𝑘−3
2

)1
𝑗=0 ,   𝑘 = 𝑖 =

1

2
, 1,

3

2
, 2.          (2) 

The method (2) is fully implicit, A-stable numerical scheme for solving nonlinear and linear systems 
of stiff ordinary differential equations which approximates two solution values concurrently at each 
integration step in block with two off-step points. 

In this paper, we focus on the derivation of diagonally implicit form of (2) that also computes two 
solution values with two off-step points simultaneously in block. We consider the formulation of: 

∑ 𝛼𝑗,𝑖𝑦𝑛+𝑗−1
1
𝑗=𝑜 + ∑ 𝛼𝑗,𝑖𝑦𝑛+𝑗−1

1+𝑘

𝑗=
3

2

= ℎ𝛽𝑘,𝑖(𝑓𝑛+𝑘 − 𝜌𝑓𝑛+𝑘−3
2

),        𝑘 = 𝑖 =
1

2
, 1,

3

2
, 2             (3) 

with 𝑗 increment of 1 in the first sum and increment of 
1

2
 in the second sum. 𝑘 and 𝑖 always assume 

the same values. Moreover, 𝑘 = 𝑖 =
1

2
 represents the first off-step point, 𝑘 = 𝑖 = 1 represents the 

first point, 𝑘 = 𝑖 =
3

2
 represents the second off-step point and  𝑘 = 𝑖 = 2 represents the second 

point.  Unlike the extended 2-point super class of block BDF with off-step points method (2), the 
first off-step, first and second off-step points of (3) have one point less than those in the first off-
step, first and second off-step points of (2) respectively. This makes (3) contain a lower triangular 
matrix in the coefficient matrix when the method is written in matrix form, thereby qualifying it to 
be diagonally implicit method. 

The formula (3) is derived using Taylor’s series expansion about 𝑥𝑛 as follows 
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First Off-Step Point: 𝑘 = 𝑖 =
1

2

 

To derive the first off-step point 𝑦
𝑛+

1

2

. define the linear operator as  

𝐿1
2

[𝑦(𝑥𝑛), ℎ]: 𝛼0,1
2

𝑦𝑛−1 + 𝛼1,1
2

𝑦𝑛 + 𝛼3
2
,
1

2

𝑦
𝑛+

1

2

− ℎ𝛽1
2
,
1

2

(𝑓
𝑛+

1

2

− 𝜌𝑓𝑛−1) = 0,            (4) 

The approximate relationship associated with (4) can be written as 

𝛼
0,
1

2

𝑦(𝑥𝑛 − ℎ) + 𝛼1,1
2

𝑦(𝑥𝑛) + 𝛼3
2
,
1

2

𝑦(𝑥𝑛 +
1

2
ℎ) − ℎ𝛽1

2
,
1

2

(𝑓 (𝑥𝑛 +
1

2
ℎ) − 𝜌𝑓(𝑥𝑛 − ℎ)) = 0,          (5)  

The Taylor’s series expansion of equation (5) about 𝑥𝑛, after equating and collecting the like terms 
gives  

𝐶
0,
1

2

𝑦(𝑥𝑛) + 𝐶1,1
2

ℎ𝑦′(𝑥𝑛) + 𝐶3
2
,
1

2

ℎ2𝑦′′(𝑥𝑛) + ⋯ = 0.              (6) 

where,  

𝐶
0,
1

2

= 𝛼
0,
1

2

+ 𝛼
1,
1

2

+ 𝛼3
2
,
1

2

= 0

𝐶
1,
1

2

= −𝛼
0,
1

2

+
1

2
𝛼3
2
,
1

2

− 𝛽1
2
,
1

2

(1 − 𝜌) = 0 

𝐶3
2
,
1

2

=
1

2
𝛼
0,
1

2

+
1

8
𝛼3
2
,
1

2

− 𝛽1
2
,
1

2

(
1

2
+ 𝑝) = 0

}
 
 

 
 

,               (7) 

In deriving the first off-step point 𝑦
𝑛+

1

2

, the coefficient 𝛼3
2
,
1

2

 is normalized to 1. Solving the set of 

equation (7) leads to the values of 𝛼𝑗,𝑖′𝑠 and 𝛽𝑗,𝑖′𝑠  given as: 

𝛼
0,
1

2

=
1

4

5𝜌+1

𝜌+2
,𝛼
1,
1

2

= −
9

4

𝜌+1

𝜌+2
, 𝛼3

2
,
1

2

= 1 and 𝛽1
2
,
1

2

=
3

4(𝜌+2)
. 

Substitute these values of 𝛼𝑗,𝑖′𝑠 and 𝛽𝑗,𝑖′𝑠 in equation (4) to obtain the following formula of the first 

off-step point as: 

𝑦
𝑛+

1

2

= −
1

4

5𝜌+1

𝜌+2
𝑦𝑛−1 +

9

4

𝜌+1

𝜌+2
𝑦𝑛 +

3

4(𝜌+2)
ℎ𝑓

𝑛+
1

2

−
3

4(𝜌+2)
𝜌ℎ𝑓𝑛−1            (8) 

The same procedure is applied for the derivation of first, second off-step and second points 
respectively. Therefore, the diagonally implicit extended 2-point super class of block BDF with two 
off-step points (DIE2OSBBDF) is obtained as:  

𝑦
𝑛+

1

2

= −
1

4

5𝜌+1

𝜌+2
𝑦𝑛−1 +

9

4

𝜌+1

𝜌+2
𝑦𝑛 +

3

4(𝜌+2)
ℎ𝑓

𝑛+
1

2

−
3

4(𝜌+2)
𝜌ℎ𝑓𝑛−1

𝑦𝑛+1 = −
1

3

11𝜌−2

𝜌+14
𝑦𝑛−1 +

2(𝜌−4)

𝜌+14
𝑦𝑛 +

8

3

𝜌+8

𝜌+14
𝑦
𝑛+

1

2

+
4

𝜌+14
ℎ𝑓𝑛+1 −

4

𝜌+14
𝜌ℎ𝑓

𝑛−
1

2

𝑦
𝑛+

3

2

=
3

2

𝜌+1

4𝜌−61
𝑦𝑛−1 +

5(8𝜌−5)

4𝜌−61
𝑦𝑛 −

15(4𝜌−5)

4𝜌−61
𝑦
𝑛+

1

2

+
45

2

𝜌−5

4𝜌−61
𝑦𝑛+1 −

15

4𝜌−61
ℎ𝑓

𝑛+
3

2

+
15

4𝜌−61
𝜌ℎ𝑓𝑛

𝑦𝑛+2 = −
1

5

𝜌+4

𝜌−54
𝑦𝑛−1 +

9(𝜌+2)

𝜌−54
𝑦𝑛 +

4(3𝜌−16)

𝜌−54
𝑦
𝑛+

1

2

−
27(𝜌−4)

𝜌−54
𝑦𝑛+1 +

36

5

𝜌−16

𝜌−54
𝑦
𝑛+

3

2

−
12

𝜌−54
ℎ𝑓𝑛+2

+
12

𝜌−54
𝜌ℎ𝑓

𝑛+
1

2 }
 
 
 
 

 
 
 
 

          (9) 
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For the attainment of region of absolute stability and zero-stability of the method (9), a value of  

𝜌 =
1

5
  is selected within the interval −1 < 𝜌 < 1 as in [3]. 

By substituting 𝜌 =
1

5
  in equation (9), the diagonally implicit extended 2-point super class of block 

BDF with two off-step points becomes: 

𝑦
𝑛+

1

2

= −
5

22
𝑦𝑛−1 +

27

22
𝑦𝑛 +

15

44
ℎ𝑓

𝑛+
1

2

−
3

44
ℎ𝑓𝑛−1

𝑦𝑛+1 = −
1

213
𝑦𝑛−1 −

38

71
𝑦𝑛 +

328

213
𝑦
𝑛+

1

2

+
20

71
ℎ𝑓𝑛+1 −

4

71
ℎ𝑓

𝑛−
1

2

𝑦
𝑛+

3

2

= −
9

301
𝑦𝑛−1 +

85

301
𝑦𝑛 −

45

43
𝑦
𝑛+

1

2

+
540

301
𝑦𝑛+1 +

75

301
ℎ𝑓

𝑛+
3

2

−
15

301
ℎ𝑓𝑛

𝑦𝑛+2 =
21

1345
𝑦𝑛−1 −

99

269
𝑦𝑛 +

308

269
𝑦
𝑛+

1

2

−
513

269
𝑦𝑛+1 +

2844

1345
𝑦
𝑛+

3

2

+
60

269
ℎ𝑓𝑛+2 −

12

269
ℎ𝑓

𝑛+
1

2}
 
 
 

 
 
 

,       (10) 

Thus, throughout this paper, we shall be referring equation (10) as diagonally implicit extended 2-
point super class of block BDF with two off–step points (DIE2OSBBDF).  

3 ORDER AND ERROR CONSTANT OF THE DIE2OSBBDF METHOD 
 

In this section, the derivation of order and error constant of the diagonally implicit extended 2-
point super class of block BDF with two off-step points corresponding to the equations in (10) are 
presented. To derive the order of the method, the formulae (10) can also be expressed as: 

𝑦
𝑛+

1

2

+
5

22
𝑦𝑛−1 −

27

22
𝑦𝑛 =

15

44
ℎ𝑓

𝑛+
1

2

−
3

44
ℎ𝑓𝑛−1

𝑦𝑛+1 +
1

213
𝑦𝑛−1 +

38

71
𝑦𝑛 −

328

213
𝑦
𝑛+

1

2

=
20

71
ℎ𝑓𝑛+1 −

4

71
ℎ𝑓

𝑛−
1

2

𝑦
𝑛+

3

2

+
9

301
𝑦𝑛−1 −

85

301
𝑦𝑛 +

45

43
𝑦
𝑛+

1

2

−
540

301
𝑦𝑛+1 =

75

301
ℎ𝑓

𝑛+
3

2

−
15

301
ℎ𝑓𝑛

𝑦𝑛+2 −
21

1345
𝑦𝑛−1 +

99

269
𝑦𝑛 −

308

269
𝑦
𝑛+

1

2

+
513

269
𝑦𝑛+1 −

2844

1345
𝑦
𝑛+

3

2

=
60

269
ℎ𝑓𝑛+2 −

12

269
ℎ𝑓

𝑛+
1

2}
  
 

  
 

      (11) 

 

The matrix form of equation (11) is given by: 
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

























−

−

−

269

99
0

1345

21
0

301

85
0

301

9
0

71

38
0

213

1
0

22

27
0

22

5
0





















−

−

−

n

n

n

n

y

y

y

y

2

1

1

2

3

+

























−−

−

−

1
1345

2844

269

513

269

308

01
301

540

43

45

001
213

328
0001





















+

+

+

+

2

2

3

1

2

1

n

n

n

n

y

y

y

y

=

























−

−

−

0000
301

15
000

0
71

4
00

00
44

3
0

h





















−

−

−

n

n

n

n

f

f

f

f

2

1

1

2

3

+



























−
269

60
00

269

12

0
301

75
00

00
71

20
0

000
44

15

h





















+

+

+

+

2

2

3

1

2

1

n

n

n

n

f

f

f

f

         

(12) 

Let 



















=

0

0

0

0

0 ,



























−

=

1345

21
301

9
213

1
22

5

1 ,



















=

0

0

0

0

2 ,



























−

−

=

269

99
301

85
71

38
22

27

3 ,

























−

−

=

269

308
43

45
213

328
1

4 ,























−=

269

513
301

540
1

0

5 ,





















−

=

1345

2844
1

0

0

6 , 



















=

1

0

0

0

7 ,



















=

0

0

0

0

0 ,




















−

=

0

0

0
44

3

1 ,





















−
=

0

0
71

4
0

2 ,





















−
=

0
301

15
0

0

3 ,























−

=

269

12
0

0
44

15

4 ,





















=

0

0
71

20
0

5 ,





















=

0
301

75
0

0

6 ,





















=

269

60
0

0

0

7  

Definition 3.1: the order of the block method (10) and its associated linear difference operator 
given by: 
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𝐿{𝑦(𝑥), ℎ} = ∑ [𝛾𝑗𝑦 (𝑥 + 𝑗
ℎ

2
) − ℎ𝜓𝑗𝑦

′ (𝑥 + 𝑗
ℎ

2
)]𝑘

𝑗=0             (13) 

is the unique integer 𝑝 such that if 𝐴𝑞 = 0, 𝑞 = 0(1)𝑝 and 𝐴𝑃+1 ≠ 0; where 𝐴𝑞are constant (column) 

matrices defined by: 

𝐴0 = 𝛾0 + 𝛾1 + 𝛾2 +⋯+ 𝛾𝑘
𝐴1 = 𝛾1 + 2𝛾2 +⋯+ 𝑘𝛾𝑘 − 2(𝜓0 + 𝜓1 + 𝜓2 +⋯+𝜓𝑘)

.

.

.

𝐴𝑞 =
1

𝑞!
(𝛾1 + 2

𝑞𝛾2 +⋯+ 𝑘
𝑞𝛾𝑘) −

2

(𝑞−1)!
(𝜓1 + 2

𝑞−1𝜓2 +⋯+ 𝑘
𝑞−1𝜓𝑘)}

  
 

  
 

         (14) 

𝑞 = 2,3,……… 

For 𝑞 = 0(1)6, we have 
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By the above definition 3.1, we conclude that the diagonally implicit extended 2-point super class of 
block BDF with two off-step points is found to be of order 5 with error constant given by: 
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4 STABILITY OF THE METHOD 

This section presents the stability analysis of the method (10) in terms of zero and absolute 
stability. The formulae (10) are represented as: 
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      (15) 

The absolute stability region of the DIE2OSBBDF is determined by applying linear test differential 
equation of the form 𝑦′ = 𝜆𝑦  (where 𝜆 < 0 is complex) into (15). This leads to: 
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Let ℎ̅ = 𝜆ℎ in (16) to obtain 
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(17) 

Let the number of block be r  and the number of points in the block be m , then rmn = . where 

2=m and rn 2= . By [16], we let  
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Equation (17) is equivalent to 

𝐴𝑌𝑚 = 𝐵𝑌𝑚−1                  (18) 

where, 
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The evaluation of 𝑅(𝑡, ℎ̅) = 𝑑𝑒t(𝐴𝑡 − 𝐵) leads to the stability polynomial of the DIE2OSBBDF as: 

 𝑅(𝑡, ℎ̅) =
7543685

63236789
𝑡2 +

22931115

252947156
𝑡2ℎ̅ +

5887899

252947156
𝑡2ℎ̅2 −

95982151

126473578
𝑡3ℎ̅ −

973605

2941246
𝑡3ℎ̅2 +

                                
1175400

63236789
𝑡3ℎ̅3 −

276930845

252947156
𝑡4ℎ̅ +

112715775

252947156
𝑡4ℎ̅2 −

722250

9033827
𝑡4ℎ̅3 +

2295

9033827
𝑡ℎ̅3 −

                               
540

63236789
𝑡ℎ4 +

104800

63236789
𝑡ℎ̅ +

1647

1470623
𝑡ℎ̅2 −

205875

63236789
𝑡2ℎ̅3 +

337500

63236789
𝑡4ℎ̅4 +

                               𝑡4 −
70780474

63236789
𝑡3              (19) 

The region of absolute stability of the method (10) is drawn by plotting the graph of 

𝑅(𝑡, ℎ̅) = 0.                 (20) 

𝑅(𝑡, ℎ̅) =
7543685

63236789
𝑡2 +

22931115

252947156
𝑡2ℎ̅ +

5887899

252947156
𝑡2ℎ̅2 −

95982151

126473578
𝑡3ℎ̅ −

973605

2941246
𝑡3ℎ̅2 +

1175400

63236789
𝑡3ℎ̅3 −

276930845

252947156
𝑡4ℎ̅ +

112715775

252947156
𝑡4ℎ̅2 −

722250

9033827
𝑡4ℎ̅3 +

2295

9033827
𝑡ℎ̅3 −

540

63236789
𝑡ℎ4 +
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104800

63236789
𝑡ℎ̅ +

1647

1470623
𝑡ℎ̅2 −

205875

63236789
𝑡2ℎ̅3 +

337500

63236789
𝑡4ℎ̅4 + 𝑡4 −

70780474

63236789
𝑡3=0.   

 (21) 

Letting ℎ̅ = 0 in equation (21) to obtain the first characteristics polynomial given by: 
 

𝑡4 + 
7543685

63236789
𝑡2 −

70780474

63236789
𝑡3 = 0.              (22)  

 
The following roots of the first characteristic polynomial (22) are obtained after solving (22) as: 
 

𝑡 = 0, 𝑡 = 0, 𝑡 = 1, 𝑡 =
7543685

63236789
 

 
Definition 4.1: a block method (10) is said to be zero stable if no root of the first characteristics 
polynomial has modulus greater than one and any root with modulus one is simple [3]. 
 
Thus, by the definition 4.1, the DIE2OSBBDF is zero-stable since no modulus of any of the root is >
1and the root 𝑡 = 1 is simple. 
 
Definition 4.2: a block method (10) is said to be A-stable if its region of absolute stability covers 
the whole of the left-hand half-plane 𝑅𝑒(ℎ𝜆) < 0 [20]. 
 

The stability region of the method is plotted using a boundary locus by setting𝑡 = 𝑒𝑖θin (21). 
Therefore, the graph of absolute stability region for the DIE2OSBBDF method is plotted using Maple 
18 software as given below. 

 
Figure 1: Stability region of the DIE2OSBBDF method 

 
The stability region covers the whole left half plane. Therefore, by the definition 4.2, the method is 
A-stable and hence it is suitable for the numerical integration of first order stiff IVPs. 
 
 
 
 

Stable 

Stable 

Unstable 

Unstable 

Stable 
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5 CONVERGENCE OF THE METHOD 

This section presents the convergence of the DIE2OSBBDF method. According to theorem stated by 
[1], the necessary and sufficient conditions for a numerical integration method for solving initial 
value problems to be convergent is that it has to be both consistent and zero-stable. 

Definition 5.1: the DIE2OSBBDF method is said to be consistent if it has order 𝑝 ≥ 1. It follows that 
the method is consistent if the following conditions are satisfied: 

i. ∑ 𝛾𝑗
7
𝑗=0 = 0 

ii. ∑ 𝑗𝛾𝑗
7
𝑗=0 = ∑ Ψ𝑗

7
𝑗=0  

 

Based on this definition, we have already shown in section 2 that the order of DIE2OSBBDF is five 
which is clearly greater than one. Thus by the definition of consistency, we deduced that the 
method (10) is consistent. 

Let 𝛾0,𝛾1,𝛾2,𝛾3,𝛾4,𝛾5,𝛾6,𝛾7and Ψ0,Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6,Ψ7 be as previously defined. Then 

i. ∑ 𝛾𝑗
7
𝑗=0 = 𝛾0 + 𝛾1 + 𝛾2 + 𝛾3 + 𝛾4 + 𝛾5 + 𝛾6 + 𝛾7 
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ii. ∑ 𝑗𝛾𝑗
7
𝑗=0 = (0)𝛾0 + (1)𝛾1 + (2)𝛾2 + (3)𝛾3 + (4)𝛾4 + (5)𝛾5 + (6)𝛾6 + (7)𝛾7 
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Since the first and second conditions of consistency are satisfied, therefore, we conclude that the 
proposed method is consistent. However, having satisfied both the conditions of consistent and that 
of zero-stability, then we also conclude that the diagonally implicit extended 2-point super class of 
block BDF with two off-step points converges and is suitable for the numerical integration of first 
order stiff initial value problems. 
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6 IMPLEMENTATION OF THE METHOD 

 Newton’s iteration is used to implement the diagonally implicit extended 2-point super class of 

block BDF with two off-step points. We consider the implementation when 𝜌 =
1

5
. The iteration is 

given below. 

Definition 6.1: 

Let 𝑦𝑖  and 𝑦(𝑥𝑖) be the theoretical and approximate solutions of (1). Then the absolute error is 
defined by  

(𝑒𝑟𝑟𝑜𝑟𝑖)𝑡 = |(𝑦𝑖)𝑡 − (𝑦(𝑥𝑖))𝑡|               (23) 

The maximum error is defined by: 

𝑀𝐴𝑋𝐸 = 𝑚𝑎𝑥⏟
1≤𝑖≤𝑇

(𝑚𝑎𝑥(𝑒𝑟𝑟𝑜𝑟𝑖)𝑡⏟        
1≤𝑖≤𝑇

),              (24)  

where, T is the total number of steps and N is the number of equations. 

Define 

𝐹1
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3

2

+
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1

2

−
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2
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308

269
𝑦
𝑛+

1

2

+
513
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2844

1345
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−
60

269
ℎ𝑓𝑛+2 +

12

269
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𝑛+
1
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− 𝜀2}
 
 
 

 
 
 

         (25) 

where, 

𝜀1
2

= −
5

22
𝑦𝑛−1 +

27

22
𝑦𝑛

𝜀1 = −
1

213
𝑦𝑛−1 −
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71
𝑦𝑛
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301
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𝜀2 =
21
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               (26) 

are the back values. 

Let 𝑦𝑛+𝑗
(𝑖+1)

,        𝑗 =
1

2
, 1,

3

2
, 2, denote the (𝑖 + 1)𝑡ℎ iterative values of 𝑦𝑛+𝑗 and define  

𝑒𝑛+𝑗
(𝑖+1) = 𝑦𝑛+𝑗

(𝑖+1)
− 𝑦𝑛+𝑗

(𝑖)
,             𝑗 =

1

2
, 1,

3

2
, 2             (27) 

Newton’s iteration for the DIE2OSBBDF method takes the form: 

𝑦𝑛+𝑗
(𝑖+1)

= 𝑦𝑛+𝑗
(𝑖)

− (𝐹′𝑗 (𝑦𝑛+𝑗
(𝑖)
))
−1

(𝐹𝑗 (𝑦𝑛+𝑗
(𝑖)
)) ,     𝑗 =

1

2
, 1,

3

2
, 2           (28) 
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 ⇒  

(𝐹′𝑗 (𝑦𝑛+𝑗
(𝑖)
)) 𝑒𝑛+𝑗

(𝑖+1)
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, 2            (29) 

Equation (29) is equivalently written in matrix form as: 
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(30) 

A programme in C language is written to implement the equation (30). 
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7. PROBLEMS TESTED 

To demonstrate the effectiveness and efficiency of the method, the following stiff IVPs in ordinary 
differential equations are solved: 

Problem 1 

𝑦′ = −10𝑥𝑦, 𝑦(0) = 1,0,              0 ≤ 𝑥 ≤ 10. 

Exact solution:   𝑦(𝑥) = 𝑒−5𝑥
2
. 

Source: [13] 

Problem 2 

𝑦′1 = −100𝑦1 + 9.901𝑦2, 𝑦1(0) = 1,0,        0 ≤ 𝑥 ≤ 10. 

𝑦′2 = −0.1𝑦1 − 𝑦2, 𝑦2(0) = 10, 

Exact solution: 

𝑦1(𝑥) = 𝑒
−0.99𝑥, 

𝑦2(𝑥) = 10𝑒
−0.99𝑥. 

Eigenvalues: 𝜆 = −0.99 and 𝜆 = −100.01. 

Source: [3]. 

Problem 3 

𝑦′1 = −𝑦1 + 95𝑦2,        𝑦1(0) = 1,0,         0 ≤ 𝑥 ≤ 10. 

𝑦′2 = −𝑦1 − 97𝑦2,                     𝑦2(0) = 1, 

Exact solution: 

𝑦1(𝑥) =
1

47
(95𝑒−2𝑥 − 48𝑒−2𝑥), 

𝑦2(𝑥) =
1

47
(48𝑒−96𝑥 − 𝑒−2𝑥). 

Eigenvalues: 𝜆 = −2 and 𝜆 = −96. 

Source: [3]. 

Problem 4 

𝑦′1 = 198𝑦1 + 199𝑦2          𝑦1(0) = 1,0,        0 ≤ 𝑥 ≤ 10. 

   𝑦′2 = −398𝑦1 − 399𝑦2,         𝑦2(0) = −1, 

Exact solution: 

𝑦1(𝑥) = 𝑒
−𝑥, 
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𝑦2(𝑥) = −𝑒
−𝑥. 

Eigenvalues: 𝜆 = −1 and 𝜆 = −200. 

Source: [13] 

 

8 NUMERICAL RESULTS 

The numerical results for the problems tested are presented in Table 1-4. The tested problems are 
solved with the developed DIE2OSBBDF method and compared with the existing DI2BBDF and 
E2OSBBDF methods in terms of total number of steps taken to complete the integrations, maximum 
error and execution time. The notations used in the tables are described below: 

𝐻: Step Size. 

𝑁𝑆: Total Number of Steps. 

𝑀𝐴𝑋𝐸: Maximum Error. 

𝑇𝐼𝑀𝐸: Computation time (seconds). 

𝐷𝐼2𝐵𝐵𝐷𝐹: Diagonally implicit 2-point block BDF method of order 2. 

𝐸2𝑂𝑆𝐵𝐵𝐷𝐹: Extended 2-point super class of block BDF with off-step points method of order 5. 

𝐷𝐼𝐸2𝑂𝑆𝐵𝐵𝐷𝐹: Diagonally implicit Extended 2-point super class of block BDF with two off-step 
points method. 

Table 1: Comparison of Maximum error and Computation Time for Problem 1 

𝐻 𝑀𝐸𝑇𝐻𝑂𝐷 𝑁𝑆 𝑀𝐴𝑋𝐸 𝑇𝐼𝑀𝐸 

 
10−2 

𝐷𝐼2𝐵𝐵𝐷𝐹 
𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 
𝐷𝐼𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 

500 
500 
500 

2.46470𝑒 − 002 
9.99654𝑒 − 004 
8.63160𝑒 − 004 

2.27900𝑒 − 001 
2.57400𝑒 − 002 
1.48900𝑒 − 002 

310−

 𝐷𝐼2𝐵𝐵𝐷𝐹 
𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 
𝐷𝐼𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 

5000 
5000 
5000 

2.86495𝑒 − 003 
1.04543𝑒 − 005 
8.84045𝑒 − 006 

1.41800𝑒 − 001 
3.56900𝑒 − 002 
3.47100𝑒 − 002 

410−

 𝐷𝐼2𝐵𝐵𝐷𝐹 
𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 
𝐷𝐼𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 

50000 
50000 
50000 

2.90509𝑒 − 004 
1.04676𝑒 − 007 
8.84532𝑒 − 008 

2.44600𝑒 − 001 
2.76000𝑒 − 001 
2.74500𝑒 − 001 

510−

 𝐷𝐼2𝐵𝐵𝐷𝐹 
𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 
𝐷𝐼𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 

500000 
500000 
500000 

2.90910𝑒 − 005 
1.04682𝑒 − 009 
8.84539𝑒 − 010 

5.33100𝑒 + 000 
2.49800𝑒 + 000 
2.48900𝑒 + 000 

610−

 𝐷𝐼2𝐵𝐵𝐷𝐹 
𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 
𝐷𝐼𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 

5000000 
5000000 
5000000 

2.90950𝑒 − 006 
4.98775𝑒 − 011 
5.11539𝑒 − 011 

3.35500𝑒 + 000 
2.44500𝑒 + 001 
2.42800𝑒 + 001 
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Table 2: Comparison of Maximum error and Computation Time for Problem 2 

𝐻 𝑀𝐸𝑇𝐻𝑂𝐷 𝑁𝑆 𝑀𝐴𝑋𝐸 𝑇𝐼𝑀𝐸 

 
10−2 

𝐷𝐼2𝐵𝐵𝐷𝐹 
𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 
𝐷𝐼𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 

500 
500 
500 

7.10925𝑒 − 002 
9.43228𝑒 − 004 
8.17317𝑒 − 004 

1.72000𝑒 − 001 
2.29400𝑒 − 002 
2.39200𝑒 − 001 

310−

 𝐷𝐼2𝐵𝐵𝐷𝐹 
𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 
𝐷𝐼𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 

5000 
5000 
5000 

7.26651𝑒 − 003 
1.01369𝑒 − 005 
8.60081𝑒 − 006 

1.76300𝑒 − 001 
1.38500𝑒 − 001 
1.62400𝑒 − 001 

410−

 𝐷𝐼2𝐵𝐵𝐷𝐹 
𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 
𝐷𝐼𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 

50000 
50000 
50000 

7.28226𝑒 − 004 
1.02434𝑒 − 007 
8.66072𝑒 − 008 

1.82900𝑒 − 001 
1.18200𝑒 + 000 
1.18800𝑒 + 000 

510−

 𝐷𝐼2𝐵𝐵𝐷𝐹 
𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 
𝐷𝐼𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 

500000 
500000 
500000 

7.28384𝑒 − 005 
1.02573𝑒 − 009 
8.66864𝑒 − 010 

5.62800𝑒 − 001 
1.14600𝑒 + 001 
1.15400𝑒 + 001 

610−

 𝐷𝐼2𝐵𝐵𝐷𝐹 
𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 
𝐷𝐼𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 

5000000 
5000000 
5000000 

7.28409𝑒 − 006 
7.86802𝑒 − 010 
1.14690𝑒 − 009 

4.28800𝑒 + 000 
1.15500𝑒 + 002 
1.16300𝑒 + 002 

 
Table 3: Comparison of Maximum error and Computation Time for Problem 3 

𝐻 𝑀𝐸𝑇𝐻𝑂𝐷 𝑁𝑆 𝑀𝐴𝑋𝐸 𝑇𝐼𝑀𝐸 

 
10−2 

𝐷𝐼2𝐵𝐵𝐷𝐹 
𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 
𝐷𝐼𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 

500 
500 
500 

9.37034𝑒 + 005 
2.64316𝑒 − 002 
2.59017𝑒 − 002 

2.51600𝑒 − 001 
2.66900𝑒 − 002 
3.44700𝑒 − 002 

310−

 𝐷𝐼2𝐵𝐵𝐷𝐹 
𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 
𝐷𝐼𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 

5000 
5000 
5000 

5.58180𝑒 − 002 
5.96783𝑒 − 003 
5.63595𝑒 − 003 

2.43700𝑒 − 001 
1.50300𝑒 − 001 
1.56200𝑒 − 001 

410−

 𝐷𝐼2𝐵𝐵𝐷𝐹 
𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 
𝐷𝐼𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 

50000 
50000 
50000 

7.04562𝑒 − 003 
9.07731𝑒 − 005 
7.86030𝑒 − 005 

2.61300𝑒 − 001 
1.23500𝑒 + 000 
1.22400𝑒 + 000 

510−

 𝐷𝐼2𝐵𝐵𝐷𝐹 
𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 
𝐷𝐼𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 

500000 
500000 
500000 

7.19659𝑒 − 004 
9.73764𝑒 − 007 
8.26124𝑒 − 007 

7.92400𝑒 − 001 
1.18300𝑒 + 001 
1.18500𝑒 + 001 

610−

 𝐷𝐼2𝐵𝐵𝐷𝐹 
𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 
𝐷𝐼𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 

5000000 
5000000 
5000000 

7.21171𝑒 − 005 
9.83728𝑒 − 009 
8.31721𝑒 − 011 

5.05000𝑒 + 000 
1.19900𝑒 + 002 
1.20000𝑒 + 002 
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Table 4: Comparison of Maximum error and Computation Time for Problem 4 

𝐻 𝑀𝐸𝑇𝐻𝑂𝐷 𝑁𝑆 𝑀𝐴𝑋𝐸 𝑇𝐼𝑀𝐸 

 
10−2 

𝐷𝐼2𝐵𝐵𝐷𝐹 
𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 
𝐷𝐼𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 

500 
500 
500 

1.26860𝑒 + 021 
9.61694𝑒 − 005 
8.33504𝑒 − 005 

1.69600𝑒 − 001 
3.51200𝑒 − 002 
3.50000𝑒 − 002 

310−

 𝐷𝐼2𝐵𝐵𝐷𝐹 
𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 
𝐷𝐼𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 

5000 
5000 
5000 

7.33973𝑒 − 004 
1.03416𝑒 − 006 
8.77480𝑒 − 007 

1.39200𝑒 − 001 
1.44900𝑒 − 001 
1.41500𝑒 − 001 

410−

 𝐷𝐼2𝐵𝐵𝐷𝐹 
𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 
𝐷𝐼𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 

50000 
50000 
50000 

7.35580𝑒 − 005 
1.04513𝑒 − 008 
8.83649𝑒 − 009 

2.64300𝑒 − 001 
1.20600𝑒 + 001 
1.21800𝑒 + 001 

510−

 𝐷𝐼2𝐵𝐵𝐷𝐹 
𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 
𝐷𝐼𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 

500000 
500000 
500000 

7.35741𝑒 − 006 
1.04655𝑒 − 010 
8.84469𝑒 − 011 

5.57000𝑒 − 001 
1.15700𝑒 + 001 
1.16900𝑒 + 001 

610−

 𝐷𝐼2𝐵𝐵𝐷𝐹 
𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 
𝐷𝐼𝐸2𝑂𝑆𝐵𝐵𝐷𝐹 

5000000 
5000000 
5000000 

7.35765𝑒 − 007 
7.72708𝑒 − 011 
1.14009𝑒 − 010 

4.18100𝑒 + 000 
1.16300𝑒 + 002 
1.18500𝑒 + 002 

 
In order to give visual impact on the reliability and efficiency of the method, the efficiency curves of 

( )MAXELog10  against 𝐻 for the tested problems are plotted. The graphs of the scaled maximum 

error for different problems tested are given below. 

 

Figure 2: Efficiency Curves for Problem 1 
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Figure 3: Efficiency Curves for Problem 2 

 

Figure 4: Efficiency Curves for Problem 3 
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Figure 5: Efficiency Curves for Problem 4 

 

9  DISCUSSION OF RESULT 
 
From the Tables 1− 4 prsented, it is observed that the DIE2OSBBDF gives a better accuracy than the 
existing DI2BBDF and E2OSBBDF methods. Convergence is noticeable in the developed new 
method by the decrease in maximum error as the mesh size 𝐻 approaches zero. The accuracy of the 
developed method at any fixed point keeps improving as the step size keeps reducing. Therefore, 
the numerically computed approximation approaches the theoretical solution as 𝐻 tends to zero. 
Thus, the execution time of the developed method is competing with those computational times in 
DI2BBDF and E2OSBBDF methods.  The efficiency curves in Figure 2 – 5 also show that the scaled 
maximum error for the DIE2OSBBDF is less when compared with that in the existing DI2BBDFand 
E2OSBBDF. This is the reason why the efficiency curves of the DIE2OSBBDF are below that of the 
DI2BBDF and E2OSBBDF methods. 
 
10 CONCLUSION 
 
A new diagonally implicit extended 2-point super class of block BDF with off-step points is 
developed. The method is of order 5. The stability properties of the method have shown that the 
method is consistent, zero-stable and convergent.  The region of absolute stability is plotted and it 
indicates that the proposed method is A-stable.  When the DIE2OSBBDF method is compared with 
the existing DI2BBDF and E2OSBBDF methods, the results obtained show that the new method is 
better than DI2BBDF and E2OSBBDF in terms of accuracy.  However, the new method is competing 
with existing methods in terms of computational time. Therefore, we conclude that the method is a 
good alternative solver for stiff initial value problems. 
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