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ABSTRACT 

Classical Principal Component Analysis (CPCA) is widely used for dimensionality reduction, but it is 

highly sensitive to the presence of outliers, leading to distorted covariance estimates and unreliable 

principal components. To address this, Robust PCA (ROBPCA) integrates robust covariance 

estimation and projection pursuit to minimize the effects of outliers. Although CPCA and ROBPCA 

are often utilized for high-dimensional data (𝑝 > 𝑛), it is equally effective in low-dimensional 

settings, particularly when handling large datasets. This research illustrates the benefit of ROBPCA 

over CPCA by analyzing a large-scale gene expression dataset with 22 features and 47231 

observations (𝑝 < 𝑛) to demonstrate its efficiency in identifying and classifying outliers using 

outlier maps. Findings reveal that CPCA misidentifies outliers, leading to inflated variance 

structures and poor principal component estimation, whereas ROBPCA successfully isolates 

outliers, preserving data integrity and enhancing interpretability. This research emphasizes how 

ROBPCA improves data reliability and offers a reliable method for identifying outliers. 

Keywords: Outliers, Classical Principal Component Analysis (CPCA), Robust PCA (ROBPCA). 

1 INTRODUCTION 

Data preprocessing is important in ensuring that analytical models capture meaningful patterns 

while minimizing distortions. Both, high-dimensional and low-dimensional datasets are prone to 

noise, missing values and outliers, which can obscure structural relationships. Proper preprocessing 

techniques improve data representation, interpretability and stability in subsequent analyses. 

Without these steps, dimensionality reduction methods like CPCA may yield misleading or biased 

results.  

Data dimensionality pertains to the number of variables or features in a dataset. High-dimensional 

data, where the number of features exceeds the number of observations (𝑝 > 𝑛), poses challenges 

for traditional statistical methods [1]. The challenges include the curse of dimensionality, model 

overfitting, and high generalization errors [2]-[3]. The curse of dimensionality occurs when data 

becomes sparse and meaningful patterns are difficult to detect as dimensionality increases [4], while 

model overfitting occurs when models built on high-dimensional data fit noise rather than 
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underlying patterns [5]. Additionally, generalization error refers to the difference between a model’s 

performance on training and test data [6]. A model with low generalization error performs well not 

only on the data it was trained on, but also on the new dataset.  Conversely, high generalization error 

indicates that the model has overfitted to the training data [7].  

To address these issues, dimensionality reduction techniques like CPCA help reduce the number of 

features while preserving the most important information [8]. This process enhances computational 

efficiency, reduces overfitting, assists machine learning models to perform better on unseen data, 

and helps mitigate generalization errors [9]-[10].  

CPCA is popular due to its simplicity and low computational cost; however, a clear understanding of 

its theoretical foundations and limitations is required for effective implementation [11]. Additionally, 

CPCA plays an important role in dimensionality reduction; nevertheless, it focuses on data 

visualization, noise reduction, feature extraction and data preprocessing, in low-dimensional cases. 

CPCA is widely used in diverse fields, including machine learning, bioinformatics, image processing and 

medicine [12]-[15]. 

Despite the aforementioned advantages, its results are sensitive to outliers because CPCA relies on 

covariance matrices, which are significantly influenced by outliers [16]. When data contains extreme 

values, the accuracy of CPCA may be compromised. Researchers have proposed various robust 

alternatives to mitigate this issue, including Robust Principal Component Analysis (ROBPCA). 

ROBPCA was introduced by combining projection pursuit with robust scatter matrix estimation, 

yielding improved estimation in both contaminated and noncontaminated datasets [17]. 

Additionally, due to the presence of outliers, a diagnostic plot for outlier classification was also 

proposed in [17], complementing the ROBPCA in improving the reliability of CPCA. This approach 

has improved dimension reduction, data preprocessing, and classification results [14]. 

ROBPCA has appeared as an alternative approach that aims to minimize the effects of outliers, 

providing a more stable and accurate framework for data analysis. Although CPCA and ROBPCA are 

often utilized for high-dimensional data (𝑝 > 𝑛), it is equally effective in low-dimensional settings, 

particularly when handling large datasets. The primary research question of this study is: How does 

ROBPCA perform compared to CPCA in handling outliers and identifying reliable principal 

components? To investigate this question, this research utilized a publicly available gene expression 

dataset focused on understanding the regulatory role of the KDM3A histone demethylase enzyme in 

estrogen receptor (ER) signalling within breast cancer cells. A full description of the dataset and the 

methodologies involved will be discussed thoroughly in the next section.  

2 METHODS 

2.1 Classical PCA 

Classical PCA (CPCA) is a statistical approach that reconstructs the original set of variables Xj into a 
smaller number of uncorrelated and orthogonal variables 𝑃̃𝑗, called principal components. Basically, 

𝑃̃𝑗  represents the linear combinations of the mean-centred variables 𝑋̃𝑗 = 𝑋𝑗 − 𝑋̅ . It should be 

emphasized that these components align with the eigenvectors of the sample covariance matrix  𝑆 =
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1/ (𝑛 − 1) ∑ (𝑥𝑖 − 𝑥̅)(𝑥𝑖 − 𝑥̅)′𝑛
𝑖=1  of the data. For each component vector 𝑃̃𝑗, the corresponding 

eigenvalue 𝑙𝑗 of S indicates the amount of the data's variability that is explained by 𝑃̃𝑗 trough the 

relation 𝑙𝑗̃= Var (𝑃̃𝑗). Usually, these component vectors are arranged in descending order of the 

eigenvalues. Therefore, the first 𝑘 principal components describe most of the data's variability. 

In CPCA process, after 𝑘 is selected, the p-dimensional data points can be projected onto the subspace 
formed by the 𝑘 component vectors, and their coordinates can be calculated with respect to these 𝑃̃𝑗; 

This produces the score vector for observation 𝑖, 𝑡̃𝑖 

𝑡̃𝑖 = 𝑃̃′(𝑥𝑖 − 𝑥̅)                                                                                          (1) 

For each i = 1, …, n, which naturally have a zero mean and 𝑃̃′ is the transpose of the component vector 
𝑃̃𝑗. In the original coordinate system, the projected data point is calculated as the fitted value.  

𝑥𝑖 = 𝑥̅ + 𝑃̃ 𝑡̃𝑖                                                                                                    (2) 

Note that the (p × k) component matrix 𝑃̃ comprises the components in columns. The (k × k) diagonal 

matrix 𝐿̃ = (𝑙𝑗)
𝑗
 will be used to represent the eigenvalues (in descending order). Many criteria exist 

to select the suitable number of components k. A common graphical method is based on the scree 
plot, where eigenvalues representing the variance explained by each component are plotted in 
decreasing order. The plot is examined for a point where the curve flattens, known as the “elbow,” 
which marks the last significant component to retain [20]. Components after this point explain little 
additional variance and are typically excluded, as they contribute minimally to the analysis. A more 
structured approach considers the total variation accounted by the first k components, and 
necessitates, approximately,  

(∑ 𝑙𝑗
𝑘
𝑗=1 )/(∑ 𝑙𝑗

𝑝
𝑗=1 ) ≥ 80%                                                                                        (3) 

CPCA is unreliable with the presence of outliers because the sample covariance matrix S and mean 
vector are easily affected by outliers. Furthermore, from the score plot, the groups of outliers can be 
distinguished, but several undesirable effects are foreseen. The plot has superimposed the 97.5% 
tolerance ellipse, defined by the set of vectors whose squared Mahalanobis distance is the 0.975 
quantile of the 𝜒.

2– distribution with k degrees of freedom:         

 𝐸0.975 = {𝑡 ∈ 𝑅𝑘; 𝑀𝐷(𝑡) = √ 𝜒𝑘,0.975
2 } , 

with 

𝑀𝐷(𝑡) = √𝑡 ′̃ 𝐿̃−1 𝑡̃                                         (4) 

Typically, the inner region of the ellipse, where the tolerance ellipse represents a 97.5% confidence 
region for the data center µ, illustrates the covariance structure among variables, when data points 
are normally distributed with k-dimensions. Additionally, the coordinate axes (the components) 
aligned with the primary axes of the ellipse due to the uncorrelated nature of the scores. Data points 
are classified as regular if they fall inside the ellipse, because the different variances of the 
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components caused them to be allocated not too far from the estimated center. Contradict to this, 
when data points fall in the remaining 0.025 tail probability outside the ellipse, it represents potential 
outliers. 

2.2  Robust PCA 

A brief description of the Robust PCA (ROBPCA) algorithm is provided here, with more details 
available in Robust PCA and classification in biosciences [21]. Minimum Covariance Determinant 
(MCD) is popular because of the development of the fast algorithm to perform its calculations and 
the strong resistance to outliers [22]. 

In defining the MCD estimator, subsets of size h from the complete dataset of size n are considered. 
The number h determines the robustness of the estimator and should be no less than [(𝑛 + 𝑝 +
1)/2]. Then, the MCD estimator identifies the h-subset with the covariance matrix 𝑆 has the smallest 
determinant. The MCD location estimate, 𝜇̂𝑀𝐶𝐷 is given by the average of this optimal h-subset, while 
the MCD scatter estimate, 𝛴̂𝑀𝐶𝐷 is given by its covariance matrix, multiplied by a consistency factor. 
Following the raw MCD estimation, a step of reweighting can be added to considerably improve the 
efficiency of the finite-sample estimator considerably. A weight of 1 is received by each data point xi 
if its robust distance is defined as 

𝑅𝐷(𝒙𝒊) = √(𝑥𝑖 − 𝜇̂𝑀𝐶𝐷)′𝛴̂𝑀𝐶𝐷
−1 (𝑥𝑖 − 𝜇̂𝑀𝐶𝐷)                                                     (5) 

is lesser than  𝑐 = √𝜒𝑝,0.975
2   and assigned a weight of zero. The reweighted MCD estimator is then 

equal to the average of data points and covariance matrix 𝑆. The first k eigenvectors of the MCD 
covariance matrix, ordered by decreasing eigenvalues, yield robust components. 

In technical terms, the MCD estimator has a breakdown value of (n−h+1)/n, meaning that at least 
n−h+1 outliers are needed to render the estimates ineffective. Due to this, it is understood that the 
MCD estimator can resist n−h outliers. Typically, h is set to approximately 0.75n, allowing up to 25% 
of the data to be outliers. 

When dealing with high-dimensional regressors (𝑝 > 𝑛), the covariance matrix for ℎ < 𝑝 
observations will always be zero, which cannot be minimized, hence the MCD method cannot be 
applied [21]. In such cases, ROBPCA proceeds differently. First, the x-data are preprocessed by 
reducing the data space to the affine subspace spanned by the n observations. This reduction is not 
difficult to achieve through a singular value decomposition (SVD) of the data matrix X, allowing the 
data to be represented using up to 𝑛 − 1 = 𝑟𝑎𝑛𝑘(𝑋̃) variables, preserving all relevant information. 

In the next step of the ROBPCA algorithm, a measure of "outlyingness" is calculated for each data 
point by projecting high-dimensional data points onto several univariate directions, v. For each 
direction, a robust center and scale of the projected data points 𝒙𝒊

′𝒗 are calculated, namely the 
univariate MCD estimator for location 𝑚𝑀𝐶𝐷 and 𝑠𝑀𝐶𝐷. Then, the standardized distance of each data 
point from this center is measured, and the maximum distance across all directions is selected for 
each point. This yields the outlyingness 
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𝑜𝑢𝑡𝑙(𝒙𝒊) = max
𝑣

|𝒙𝒊
′𝒗−𝑚𝑀𝐶𝐷(𝒙𝒊

′𝒗)|

𝑠𝑀𝐶𝐷
                                                            (6) 

In ROBPCA, the h data points with the minimum outlyingness are retained, and from the covariance 
matrix 𝛴1 of this h-subset, the number of principal components to retain, k, is selected. In the final 
stage of ROBPCA, data points are projected onto the k-dimensional subspace defined by the largest k 
eigenvectors of 𝛴1 and of calculating their shape and center using the reweighted MCD estimator. The 
resulting eigenvectors form the robust principal components and the MCD location estimate 
providing a robust data center. The outcome of the ROBPCA method is thus a robust estimate of the 
data center, 𝝁̂ , a set of robust components, P, and eigenvalues, 𝑙𝑗 (for j=1,..., k) and, similar to (1) 

robust scores 

𝑡𝑖 = 𝑃′(𝑥𝑖 − 𝜇̂)                                                                                              (7) 

2.3  Outlier Map 

The results of the CPCA analysis can also be visualized in a diagnostic plot, often called an "outlier 

map." This map identifies and categorizes outliers based on their locations relative to the primary 

data. In CPCA terms, an outlier is any observation that either lies far from the subspace defined by 

the k principal components or is located distant from the majority of data in the subspace [20]. The 
orthogonal distance (OD) and the score distance (SD) are used to evaluate the outlyingness. The OD 

measures how far an observation is from its projection in the k-dimensional CPCA subspace.  

𝑂𝐷𝑖 = ||𝒙𝒊 − 𝒙̂𝒊||                                                                                                     (8) 

Eigenvalues provide information of the score’s covariance structure, while SD measures the distance 

within the CPCA subspace and is defined as 

 𝑆𝐷𝑖 = √𝑡𝑖
′𝐿−1𝑡𝑖 = √∑ (𝑡𝑖𝑗

2 ∕ 𝑙𝑗)
𝑘

𝑗=1
                                                             (9) 

When employing CPCA, the score distance aligns precisely with Mahalanobis distance, making it a 

crucial measure for detecting outliers. The OD and SD together classify observations into four distinct 

categories, as illustrated in Figure 1a.  

Regular observations exhibit both small OD and SD values, indicating that they lie within the principal 

component subspace and conform to the general data structure. In contrast, good leverage points are 

data points with large SD but small OD. These observations lie near the principal component 

subspace but remain somewhat distinct from the main data cluster. Observations 1 and 4 in Figure 

1a fall in this category, suggesting that their influence is limited, while they differ from most data 

points. Since only a small amount of information is lost when they are replaced by their estimated 

values in the CPCA subspace, their presence does not significantly distort the PCA results.  

Another category, orthogonal outliers, consists of observations with large OD but small SD. These 

data points lie outside the principal component subspace but appear similar to regular observations 

when projected onto it. Observation 5 in Figure 1a is an example of this type. Because orthogonal 
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outliers do not deviate significantly in the principal component space, they can be mistaken for 

regular observations. However, their actual distance from the subspace suggests their projected 

values should not replace them, as this would conceal their outlier nature.  

The fourth category, bad leverage points, includes observations with both large OD and large SD. 

These data points are far from both the subspace and the main data cluster, often influencing CPCA 

results by shifting eigenvectors toward them. Observations 2 and 3 in Figure 1a belong to this 

category and are considered the most problematic outliers, as they can distort the principal 

component structure and affect the overall analysis. 

Figure 1b, provides an outlier map, where each observation’s orthogonal distance (ODi) is plotted 

against its score distance (SDi), allowing the classification of observations. In this figure, the boundary 

lines are drawn to differentiate between observations with small and large OD and SD values, helping 

to categorize them based on their deviation from the main data structure. The cut-off for SD is derived 

from the chi-squared (χ²) distribution with 𝑘 degrees of freedom, as normally distributed data lead 

to normally distributed scores, whose squared Mahalanobis distances follow a chi-squared (χ²) 

distribution. Hence the cut-off value  𝑐 = √𝑋𝑝,0.975
2   is used, while the cut-off for OD follows an 

approximation introduced in theorems on quadratic forms applied in the study of analysis of variance 

[24], where the squared OD values can be approximated by a scaled chi-squared (χ²) distribution 

with 𝑔1 degrees of freedom, 𝑂𝐷2~𝑔2𝑥𝑔1
2 . Estimates for 𝑔1 and 𝑔2 are obtained using the Wilson–

Hilferty transformation, which transforms chi-squared distributed data into a form that 

approximates normality (see Hubert et al., 2004, http://www.wis.kuleuven.ac.be/stat/robust.html).  

 

Figure 1: (a) Different types of outliers when a three-dimensional dataset is projected on a robust two-
dimensional CPCA-subspace. (b) The corresponding outlier map [21]. 
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3 RESULTS 

Normalizing data by dividing each row by its maximum value is not robust, as it hinges on the largest 
value measured [21]. To avoid this issue, this study only caters for missing values in the 
preprocessing part and analyzes the raw data without normalization.  

The dataset used in this study was obtained from the Gene Expression Omnibus (GEO) repository, 
specifically GSE68918 published in Nucleic Acids Research [27]. It comprises gene expression 
profiles of the human breast cancer cell line MCF-7, where an RNA interference (RNAi) screen 
identified the histone demethylase enzyme KDM3A as a key regulator of estrogen (E2) signalling. 
This dataset has 22 features (𝑝 = 22) and 47231 observations (𝑛 =  47231), including a group of 
outliers (1-5) in Figure 2a. The first six eigenvalues describe nearly 100% of the total variation, so 
six principal components (k = 6) were selected for analysis.  

Figure 2a illustrates distinguishable outlier groups, but several undesirable effects are foreseen. 
Although CPCA scores have a zero mean, biased mean estimation shifts regular data points away from 
zero. This moved the data center toward the outlying group, causing the origin to fall outside the 
regular data cluster. Furthermore, outliers 1-5 remain within the 97.5% tolerance ellipse, as 
Mahalanobis distance fails to detect them, leading to inflated variance and misclassification. 

Figure 2b displays the score of the KDM3A data as determined by ROBPCA. It is now evident that the 
center has been accurately estimated, and positioned among the regular observations. The 97.5% 
tolerance ellipse effectively encloses these points while excluding all 5 outliers. 

 

Figure 2: Score plot and 97.5% tolerance ellipse of the KDM3A dataset acquired with (a) CPCA and (b) 
ROBPCA. 

Additionally, Figure 3 compares CPCA and ROBPCA in detecting outliers using score distance (SD) 
and orthogonal distance (OD). CPCA which is sensitive to outliers, misclassifies more outliers, 
particularly those classified as bad leverage points, due to its inability to handle them effectively. In 
contrast, ROBPCA minimizes outlier influence, resulting in fewer misclassifications of such points 
and demonstrating its superior ability to manage outliers.  
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Figure 3: The outlier map of the KDM3A dataset, based on two principal components obtained with (a) CPCA 
and (b) ROBPCA. 

4 DISCUSSION 

The results from the study demonstrate the advantages of ROBPCA in handling data containing 
outliers, particularly when compared to CPCA. A detailed analysis proved that while CPCA is 
significantly influenced by outliers, leading to inflated variance-covariance structures and inaccurate 
data representations, ROBPCA employs advanced techniques such as projection pursuit and robust 
covariance estimation to rectify this problem effectively. The use of outlier maps in the study further 
highlighted ROBPCA’s ability to accurately identify and classify outliers based on score and 
orthogonal distances, resulting in a more precise data analysis framework. This distinction is 
particularly critical in datasets like the KDM3A case, where CPCA struggled to handle outliers, leading 
to distorted eigenvectors and inaccurate data center estimation. In contrast, ROBPCA delivered 
stable results by efficiently excluding the outliers from the main cluster. These findings highlight 
ROBPCA’s potential to improve the reliability and interpretability of analysis, particularly when 
dealing with complex datasets that consist of outliers. 

5 CONCLUSION 

ROBPCA is demonstrated to be a superior alternative to CPCA for datasets affected by outliers, 
particularly for large, complex datasets.  While both methods are commonly applied to high-
dimensional data (𝑝 > 𝑛), they remain equally effective in low-dimensional settings, especially when 
handling large datasets. By employing robust covariance estimation, ROBPCA preserves the data 
structure and improves the accuracy of principal components. This makes ROBPCA particularly 
valuable in fields like bioinformatics, finance, and engineering, where outliers can significantly 
distort analytical results and compromise reliability. 
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