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ABSTRACT

Cipher Trigraphic Polyfunction (CTriPoly) developed by previous researchers is a modification
of the Hill Cipher technique in modern cryptography. It was built on the system using three
symbols or letters and more than one transformation of the original message. The modular
arithmetic of a key matrix plays an important role in the encryption and decryption processes.
A crucial aspect of the decryption process is to get the inverse matrix for involutory matrices.
The objective of this paper is to obtain some solution of L2

2×2 ≡ A2×2 (mod N) and
subsequently generate suitable involutory matrices which will be used as an encryption key in
CTriPoly. This definitely reduces the computational time of finding the decryption key.
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1 INTRODUCTION

Cryptography comes from two Greek words, which are ’Kryptos’ and ’Graphein’. ’Kryptos’
means hidden while ’Graphein’ means writing [1]. Basically, the meaning itself encounter us what
cryptography is all about. Cryptography started in the year 1400, and for the next 450 years,
this field was dominated by the nomenclator in which each letter is replaced by a different letter
(called cipher) according to a fixed table of substitute letter [2]. Many decades ago proved that
cryptography has been widely used to secure communication. Normally, it is used to protect
corporate secrets, secure classified information and protect personal information from identity theft.

There are two classifications of cryptography which are symmetric key cryptography and asymmetric
key cryptography. Symmetric key cryptography was then divided into classical and modern
cryptography. Under classical cryptography, we have transposition cipher and substitution cipher.
On the other hand, the modern cipher is divided into stream cipher and block cipher. Symmetric
key cryptography uses the same secret key for both encryptions of plaintext and decryption of
ciphertext. The keys may be identical, but there may be some simple transformation to go between
the two keys. For example, Hill Cipher is a well-known symmetric key scheme which is, in effect, a
linear transformation on a message space, consisting of m-dimensional vectors of integers [3]. That
is, a plaintext string over an alphabet of order m is rewritten as a vector over Zm using a natural
correspondence [4].
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Based on [5], the numerical form of plaintext in Hill Cipher usually will be written as matrix P
with d rows, where d is an arbitrarily chosen positive integer. A matrix K is chosen to be the key
matrix, and C is the ciphertext after performing the encryption process to the plaintext as follows:

C ≡ KP (mod N),

where N is a positive integer, rewriting the resulting matrix as a string over the same alphabet.
Meanwhile, decryption is performed as follows:

P ≡ K−1C (mod N),

where K−1 is the inverse of L in modulo N .

If the key matrix is invertible, the process of decrypting the ciphertext would be harder because the
inverse of the key matrix should be found first. Normally, we use the elementary row operations
method and modular multiplicative inverse concept in modular arithmetic to get the inverse of a
square matrix [6],[7]. By using involutory matrices as a secret key of Hill Cipher, the process of
finding the inverse of the key in the decryption process can be eliminated because the inverse of such
a key is itself. [8] have unfolded some methods of generating any dimension of an involutory matrix
to be used in Hill Cipher. This method was also implemented in modified Hill Cipher systems such
as in [9],[10],[11],[12],[13],[14],[15].

Here, [10] proposed an involutory, permuted and reiterative key matrix generation method for the
Hill Cipher system to enhance the security of Hill Cipher as this scheme can generate different
patterns of key for each block of data encryption.

Apart from that, [11] proposed a technique for securing biometric traits using the modified Hill
Cipher with an involutory key and a robust cryptosystem. They used the Modified Hill Cipher
proposed by [16] to solve the drawbacks of conventional Hill ciphers using iteration and interlacing.

Meanwhile, [12] proposed SD-AEI for image encryption, which applies an extended Hill Cipher
technique using an involutory matrix. This matrix was generated by the same passwords used in
previous encryption to make it more secure. He also mentioned that this technique could be further
extended by adding bit manipulation to the extended Hill Cipher to strengthen the encryption
algorithm.

On the other hand, [13] proposed a two-stage Hill Cipher, which includes selecting square blocks to
manipulate the involutory matrix. This proposition aimed to control the amount of encryption of
pixel changing rate. They used Latin Square Image Cipher technique to generate a basic block of
the involutory matrix. They also compared the amount of information encrypted between two-stage
and four-stage Hill cipher to enhance the smartness of the camera and increase the application
fields.

Elliptic Curve Cryptography (ECC) is a complex asymmetric key encryption, while Hill Cipher
uses simple symmetrical encryption. An image encryption technique that combines ECC with Hill
Cipher (ECCHC) has been proposed in [17] to convert Hill Cipher from symmetrical techniques
to asymmetry and improve its security and efficiency to counter hackers. The self-invertible key
matrix comes from the elliptical curve parameter Ep : y

2 ≡ x3 + ax+ b (mod p) over a prime field
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Fp used to generate secret encryption and decryption keys. Therefore, finding the inverse matrix
during the decryption process is unnecessary. Entropy, Peak Signal to Noise Ratio (PSNR), and
Unified Average Changing Intensity (UACI) have been used to assess the efficiency of the proposed
encryption technique for the grayscale image. Through these measurements, ECCHC proved to be
better than the previous cryptosystem developed by [13]. Furthermore, [14] found some solutions
for L3

2×2 ≡ A2×2 (mod N), where L2×2 act as a generator key for involutory encryption key L4×4

in the form of

L4×4 ≡
[

L2×2 (I − L2×2)k
(I + L2×2)k

−1 −L2×2

]
(mod N).

To enhance the security of Cipher Tetragraphic Trifunction (CTetraTri), some patterns of L2×2 as
generator key should be avoided before implementing CTetraTri since there are easy to be attacked
by a third party. Meanwhile, [15] also faced the same effects on Cipher Hexagraphic Polyfuntion
(CHexaPoly) while they implemented some involutory encryption key in the form of

L6×6 ≡
[

L3x3 (I − L3x3)k
(I + L3x3)k

−1 −L3x3

]
(mod N),

where L3×3 (such that L2
3x3 = A3×3) act as a generator key of L6×6.

To protect a grayscale image, [18] modified the ECCHC system and named as MECCHC. Hill Cipher
in ECCHC requires the original image to be mapped to a numerical value before implementing
encryption. Still, for the case of image encryption in MECCHC, the plaintext is an image pixel
that is already in numerical form and does not require a mapping function. The analysis proved
that the calculation time for image encryption and decryption is faster than the ECCHC method.
Efficiency assessments using Entropy, PSNR and UACI showed equivalent effects such as ECCHC.

The highlights of the above study focused on the use of involutory keys for the purpose of reducing the
time to obtain inverse keys and improving the security system in Hill Cipher and its extension. In this
paper, we have re-examined the evidence arguments in finding the solution of L2

2×2 ≡ A2×2 (mod N)
from [14]. The problem arises is that if there are any more generators that can be implemented before
performing involutory matrices of L3×3 as an encryption key in Cipher Trigraphic Polyfunction
(CTriPoly)? Therefore, this paper is intended to obtain as many patterns of L2×2 as possible by
involving six categories of A2×2.

The organization of this paper is as follows. Section 1 describes the implementation of the involutory
matrix in Hill cipher and its variant with some advantages. In Section 2, the preliminaries of this
study are presented. Meanwhile, Section 3 gives some solution for L2

2×2 ≡ A2×2 (mod N). Followed
by a discussion on how to generate an involutory matrix from L2×2 in Section 4. The effect of
using this new involutory matrix as an encryption key in CTriPoly is discussed in Section 5. The
concluding section contains a summary of the paper.

2 PRELIMINARIES

The following are some notations considered in this paper.
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Plaintext is the ordinary message that will be delivered to the receiver [19]. P is the corresponding
number in the plaintext, such as A = 0, B = 1, C = 2,..., Z = 25. The plaintext would be arranged
in matrix form Pi×j . For example, the corresponding number sequence of plaintext T R I G O
N O M E T R Y is 19 17 08 06 14 13 14 12 04 19 17 24 are arranged by matrix 3 by 4 such as

P3×4 =

19 17 08 06
14 13 14 12
04 19 17 24

 .

Ciphertext is the encrypted message sent to the recipient [20]. C
(t)
i×j is equivalent numbers sequence

with ciphertext based on ith row and jth column matrix at t - transformation for t = 1, 2, 3, . . . .

Let C
(1)
i×j = Ci×j [14],[15]. For example, the corresponding number of ciphertext G U T V K D

produced by the third transformation is 06 20 19 21 10 03 arranged by matrix 3 rows and 2 columns

such that C
(3)
3×2 =

06 20
19 21
10 03

 .

Encryption is the process of performing necessary changes to the text to create the ciphertext
according to the cipher and the key chosen. Encryption key Ei×i is arranged based on matrix ith

row and ith column while E−1
i×i is the inverse matrix for Ei×i such that |Ei×i| ≠ 0 [14], [15]. On the

other hand, decryption is the process on how to revert the ciphertext back into the plaintext using
the ciphertext and key [20]. Here, a public key is used to encrypt plaintext into ciphertext, while a
secret key is a special key that is needed to revert the process, which is to decrypt the ciphertext
into plaintext [19].

CTriPoly, which we will focus on this research, is constructed based on Cipher Polygraphic
Polyfuntion as follows:

Theorem 1. [15], [21] Let Cipher Polygraphic Polyfunction Transformation be defined as:

C
(t)
i×j ≡ Et

i×iPi×j (mod N) where t ∈ Z+,

where Ei×i act as an encryption key. Provided that the determinant for Ei×i is not zero, (|Ei×i|, N) =
1, so Pi×j have a unique solution, in which the decryption algorithm is as follows:

Pi×j ≡ (E−1
i×i)

tC
(t)
i×j (mod N).

Here, the decryption key E−1
i×i is the inverse matrix of Ei×i.

Remark:
If i = 3, i = 4, i = 5, and i = 6, then the above system refers to Cipher Trigraphic Polyfunction
(CTriPoly), Cipher Tetragraphic Polyfunction (CTetraPoly), Cipher Pentagraphic Polyfunction
(CPentaPoly) and Cipher Hexagraphic Polyfunction (CHexaPoly), respectively.

If Ei×i ≡ E−1
i×i (mod N), then Ei×i is an involutory matrix, where E−1

i×i is an inverse of Ei×i (mod N)
[14], [15].

The following concept of modular arithmetic in Number Theory [22], [23], [24], [25] plays an
important role in solving linear and quadratic congruences equations in Section 3.
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Linear Congruence is when ax ≡ b (mod N), where a, b and N are positive integers and x is a
variable. One of its properties is as follows:

Theorem 2. [23] If (a,N) = 1, then ax ≡ b (mod N) has exactly one solution in modulo N.

An integer a is called a quadratic residue modulo N if x2 ≡ a (mod N), where a and N are positive
integers and x is a variable. Otherwise, a is called a quadratic non-residue modulo N . There are
some ways to determine whether an integer a is a quadratic residue modulo N , given as follows:

Theorem 3. [24] If a is a positive integer, then (a,N) = 1 and the congruence x2 ≡ a (mod N)
has a solution. Hence, integer a is a quadratic residue modulo N .

The following lemma is an Euler’s Criterion which is suitable to be used to determine whether
x2 ≡ a (mod N) has a solution or not.

Lemma 1. [22] If N is an odd prime and N ∤ a, then equation x2 ≡ a (mod N),

1. has a solution if a
N−1
2 ≡ 1 (mod N),

2. has no solution if a
N−1
2 ≡ −1 (mod N).

Since Euler’s Criterion is unsuitable if a and N are in a large size, then we can use Legendre’s
symbol to check whether the integer is a quadratic residue modulo prime.

Lemma 2. [25] Let N ̸= 2 be a prime and a be an integer such that N ∤ a. The Legendre symbol( a

N

)
is defined by

1. a is quadratic residue modulo N if
(
a
N

)
= 1 if a

N−1
2 ≡ 1 (mod N),

2. a is quadratic non-residue modulo N if
(
a
N

)
= −1 if a

N−1
2 ≡ −1 (mod N).

3 SOME SOLUTIONS FOR L2
2×2 ≡ A2×2 (mod N)

In this section, we give some solution for L2
2×2 ≡ A2×2 (mod N), where matrix A2×2 act as public

key have six categories. There are zero matrices given by

[
e f
0 0

]
,

[
0 f
0 h

]
,

[
e 0
0 0

]
,

[
0 0
0 h

]
and

[
e f
0 h

]
mod N . We assume A2×2 =

[
e f
g h

]
and L2×2 =

[
a b
c d

]
with a, b, c, d are

integers such that L2
2×2 ≡ A2×2 (mod N) and have simultaneous equations as follows:

a2 + bc ≡ e (mod N), (1)

ab + bd ≡ f (mod N), (2)

ac + cd ≡ g (mod N), (3)

bc + d2 ≡ h (mod N). (4)
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Using the concept in Number Theory, we produced the following propositions, which discussed how
to find all solutions of the above equations involving six categories of A2×2. The cases we consider
in each of the proof arguments are based on the following: c = 0 and a+ d ̸= 0; c ̸= 0 and a+ d =
0; c = 0 and a+ d = 0.

Proposition 1. Let L2×2 ≡
[
a b
c d

]
(mod N) where a = −d. The solution to L2

2×2 ≡[
0 0
0 0

]
(mod N) is

[
(−bc)

1
2 b

c −(−bc)
1
2

]
.

Proof. Let e = f = g = h = 0 and substitute it into (1)-(4). From (3), we have c (a+ d) ≡
0 (mod N). Now, we consider three cases as follows:

Case 1 : For c = 0 and a+ d ̸= 0.

Substituting c = 0 into (1) and (4), we have a ≡ d ≡ 0 (mod N). This is contradicted because of
a ̸= −d.

Case 2 : For c ̸= 0 and a+ d = 0.

Substituting c ̸= 0 in (1), we have

a ≡ (−bc)
1
2 (mod N) for

(
−bc

N

)
= 1, and (bc,N) = 1. (5)

Substituting a = −d into (5), we have

d ≡ −(−bc)
1
2 (mod N). (6)

Since c ̸= 0, and (bc,N) = 1, then

b ̸≡ 0 (mod N). (7)

Hence, from (5), (6), and (7), we get L2×2 ≡

[
(−bc)

1
2 b

c −(−bc)
1
2

]
(mod N).

Case 3 : For c = 0 and a+ d = 0.

Substituting c = 0 in (1), we have

a ≡ 0 (mod N). (8)

Since a = −d, we have

d ≡ 0 (mod N). (9)

Hence, from (8) and (9), we get L2×2 ≡
[
0 b
0 0

]
(mod N).

For this proposition, we take results from Cases 2 and 3 and conclude that

L2×2 ≡

[
(−bc)

1
2 b

c −(−bc)
1
2

]
(mod N).
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Proposition 2. Let L2×2 ≡
[
a b
c d

]
(mod N) where a ̸= −d. The solution to L2

2×2 ≡
[
e 0
0 0

]
(mod N) is

[
e

1
2 0
0 0

]
where (e

1
2 , N) = 1, and

(
e
N

)
= 1.

Proof. Let g = f = h = 0 and substitute it into (2)-(4), we now have c(a+ d) ≡ 0 (mod N). Now,
we consider three cases as follows:

Case 1 : For c = 0 and a+ d ̸= 0.

Substituting c = 0 into (1), we have

a ≡ e
1
2 (mod N), for

( e

N

)
= 1, and (e,N) = 1. (10)

Substituting c = 0 into (4), we have

d ≡ 0 (mod N). (11)

Substituting (10) and (11) into (2), we have

b (a+ d) ≡ b
(
e

1
2

)
≡ 0 (mod N). (12)

From (12), since e ̸= 0, then

b ≡ 0 (mod N). (13)

Hence, from (10), (11) and (13), we get L2×2 ≡
[
e

1
2 0
0 0

]
(mod N).

Case 2 : For c ̸= 0 and a+ d = 0.

The result from this case is similar to Proposition 1.

Case 3 : For c = 0 and a+ d = 0.

Substituting c = 0 in (1), we have a ≡ e
1
2 mod N for

( e

N

)
= 1, and (e,N) = 1.

Since a = −d, then d ≡ −
(
e

1
2

)
(mod N).

From (2), since a+ d = 0, we have b(a+ d) ≡ b(0) ≡ 0 (mod N).
Substituting c = 0 into (4), we have e ≡ 0 (mod N). This contradicts with e ̸= 0.

For this proposition, we just consider Case 1 for the conclusion.

Proposition 3. Let L2×2 ≡
[
a b
c d

]
(mod N). The solution to L2

2×2 ≡
[
0 0
0 h

]
(mod N) is[

0 0

0 h
1
2

]
where (h

1
2 , N) = 1 and

(
h
N

)
= 1.

Proof. Upon substituting e = f = g = 0 into (1)-(3), we obtain c(a + d) ≡ 0 (mod N) from (3).
Therefore, three cases are considered as follows:
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Case 1: For c = 0 and a+ d ̸= 0.

Substituting c = 0 into (1), we have

a ≡ 0 mod N. (14)

Since a ̸= −d and d ̸= 0, then from (2), we have

b ≡ 0 (mod N). (15)

Substituting (15) into (4), we have

d ≡ h
1
2 (mod N), where

(
h

N

)
= 1. (16)

Hence, from (14), (15) and (16), we get L2×2 ≡
[
0 0

0 h
1
2

]
(mod N).

Case 2 : For c ̸= 0 and a+ d = 0.

The result from this case is similar to Proposition 1.
Case 3 : For c = 0 and a+ d = 0

The result from this case is similar to Proposition 1.
For this proposition, we take the result from Case 1 as a conclusion.

Proposition 4. Let L2×2 =

[
a b
c d

]
(mod N),

( e

N

)
= 1, (e,N) = 1, and (e

1
2 , N) = 1.The

solution to L2
2×2 ≡

[
e f
0 0

]
(mod N) are

[
e

1
2 (e−

1
2 )f

0 0

]
if c = 0 and a ̸= −d.

Proof. Let g = h = 0 and substitute it into (3) and (4). From (3), we have c(a+ d) ≡ 0 (mod N).
Now, we consider three cases as follows:

Case 1 : For c = 0 and a+ d ̸= 0

Substituting c = 0 into (1), we have

a ≡ e
1
2 (mod N) for

( e

N

)
= 1, and (e,N) = 1. (17)

Substituting c = 0 into (4), we have

d ≡ 0 (mod N). (18)

Substituting (17) and (18) into (2), we have

b ≡ e−
1
2 f (mod N) where

(
e

1
2 , N

)
= 1. (19)

Hence, from (17), (18) and (19), we get L2×2 ≡
[
e

1
2 e−

1
2 f

0 0

]
(mod N).

Case 2 : For c ̸= 0 and a+ d = 0
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The result from this case is similar to Proposition 1.

Case 3 : For c = 0 and a+ d = 0

Substituting c = 0 in (1), we have

a ≡ e
1
2 (mod N) for

( e

N

)
= 1, and (e,N) = 1. (20)

Since a = −d, we then have

d ≡ −e
1
2 (mod N) (21)

Since a+ d = 0, from (2), we get

f ≡ b (a+ d) ≡ b (0) ≡ 0 (mod N). (22)

Hence, from (20) and (21), we get

L2×2 ≡

[
e

1
2 b

0 −e
1
2

]
(mod N). (23)

However, L2
2×2 ≡

[
e 0
0 e

]
(mod N).

This contradicts our assumption that h = 0 and (e,N) = 1. Thus, (23) is not the solution for

L2
2×2 ≡

[
e f
0 0

]
(mod N).

For this proposition, we take the result for Case 1 as a conclusion.

Proposition 5. Let L2×2 ≡
[
a b
c d

]
(mod N) where c = 0 and a ̸= −d. The solution to L2

2×2 ≡[
0 f
0 h

]
(mod N) is

[
0 fh−

1
2

0 h
1
2

]
where (h

1
2 , N),

(
h
N

)
= 1, and (h,N) = 1.

Proof. Substituting g = e = 0 into (1) and (3), we have c(a+ d) ≡ 0 (mod N).
Now, we consider three cases as follows:

Case 1 : For c = 0 and a+ d ̸= 0

Substituting c = 0 into (1), we have

a ≡ 0 (mod N). (24)

Substituting c = 0 into (4), we obtain

d ≡ h
1
2 (mod N) where

(
h

N

)
= 1, and (h,N) . (25)

Substituting (24) and (25) into (2), we have

b ≡ fh−
1
2 (mod N) where

(
h

1
2 , N

)
= 1. (26)
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Hence, from (24), (25) and (26), we get L2×2 ≡

[
0 fh−

1
2

0 h
1
2

]
(mod N).

Case 2 : For c ̸= 0 and a+ d = 0.

The result from this case is similar to Proposition 1.

Case 3 : For c = 0 and a+ d = 0.

The result from this case is similar to Proposition 1.
For this proposition, we take the result for Case 1 as a conclusion.

Proposition 6. Let L2×2 ≡
[
a b
c d

]
(mod N). The solution to L2

2×2 ≡
[
e f
0 h

]
(mod N) are

1.

[
e

1
2 f(e

1
2 + h

1
2 )−1

0 h
1
2

]
where a ̸= −d, (e

1
2 + h

1
2 , N) = 1,

(
e
N

)
= 1 and

(
h
N

)
= 1.

2.

[
(e− bc)

1
2 b

c −(e− bc)
1
2

]
where a = −d, e = h, f = 0,

(
e−bc
N

)
= 1 and (e− bc,N) = 1.

Proof. Substituting g = 0 into (3), we have c(a+ d) ≡ 0 (mod N). Now, we consider three cases as
given below:
Case 1 : For c = 0 and a+ d ̸= 0

Substituting c = 0 into (1), we have

a ≡ e
1
2 (mod N) where (

e

N
) = 1, and (e,N) = 1. (27)

Substituting c = 0 into (4), we obtain

d ≡ h
1
2 mod N where (

h

N
) = 1, and(h,N) = 1. (28)

Substituting a+ d ̸= 0 into (2), we have

b ≡ f(e
1
2 + h

1
2 )−1 mod Nwhere

(
e

1
2 + h

1
2 , N

)
= 1. (29)

Hence, from (27), (28) and (29), we get L2×2 ≡

[
e

1
2 f(e

1
2 + h

1
2 )−1

0 h
1
2

]
(mod N).

This is the proof for Proposition 6 Part 1.

Case 2: For c ̸= 0 and a+ d = 0

Substituting c ̸= 0 in (1), we have

a ≡ (e− bc)
1
2 (mod N) for

(
e− bc

N

)
= 1, and (e− bc,N) = 1. (30)
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Substituting a = −d into (30), we have

d ≡ −(e− bc)
1
2 (mod N). (31)

Substituting a+ d = 0 in (2), we get

f ≡ b (a+ d) ≡ b (0) ≡ 0 (mod N). (32)

Substituting (31) in (4), we have

e ≡ h (mod N). (33)

Hence, from (30) and (31), we get L2×2 ≡

[
(e− bc)

1
2 b

c −(e− bc)
1
2

]
(mod N).

This is the proof for Proposition 6 Part 2.

Case 3: For c = 0 and a+ d = 0

Substituting c = 0 in (1), we have

a ≡ e
1
2 (mod N) where (

e

N
) = 1, and (e,N) = 1. (34)

Since a = −d, we then obtain

d ≡ −e
1
2 (mod N). (35)

Substituting (34) and (34) into (2), we get

f ≡ b(a+ d) ≡ b(0) ≡ 0 (mod N). (36)

Substituting c = 0 in (4), we have

e ≡ h (mod N). (37)

Hence, from (34) and (35), we get L2×2 ≡

[
e

1
2 b

0 −e
1
2

]
(mod N).

This is the proof for Proposition 6 Part 2.

4 GENERATION OF INVOLUTORY MATRIX

In this section, we recall the method for generating an involutory matrix that was presented in [8]
as follows:

LetA =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann

 be an n×n involutory matrix partitioned toA =

[
A11 A12

A21 A22

]
,

where A11 = [a11] is a 1 × 1 matrix, A12 =
[
a12 a13 · · · a1n

]
is a 1 × (n − 1) matrix,
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A21 =


a21
a31
· · ·
an1

 is a (n−1)×1 matrix, A22 =


a22 a23 · · · a2n
a32 a33 · · · a3n
· · · · · · · · · · · ·
an2 an3 · · · ann

 is a (n−1)×(n−1) matrix.

Since A is involutory, it satisfies A2 = I. Therefore

A12A21 = 1−A2
11 = 1− a211, (38)

and

A12(a11I +A22) = 0. (39)

Also, a11 = −(one of the eigenvalues of A22 other than 1). Since A21A12 is a singular matrix having
the rank 1 and

A21A12 = I −A2
22, (40)

then A22 must have eigenvalues ±1. It can also be proved that the consistent solution obtained for
matrix A21 and A12 by solving (40) term by term will also satisfy (38).

Algorithm 1 has been introduced in [8] to give general steps in order to generate an involutory
matrix.

Algorithm 1.

1. Select A22, a non-singular (n− 1)×(n− 1) matrix which has (n− 2) number of eigenvalue of
either +1 or −1 or both. The method for calculating an eigenvalue from |λI −A22| = 0 can
be referred to [26].

2. Determine the other eigenvalue λ of A22.

3. Set a11 = −λ.

4. Obtain the consistent solution of all elements of A21 and A12 by using (40).

5. Formulate the matrix A.

To align with our study, we take A11 = L1×1, A22 = L2×2, A12 = L1×2, A21 = L2×1 to formulate
A, which is L3×3. The first step in Algorithm 1 requires a non-singular L2×2 matrix. Therefore,
we only consider L2×2 from Proposition 6. The steps below were employed to generate involutory
matrix L3×3 from Proposition 6 Part 1.

Step 1: Let L2×2 =

[
e

1
2 f(e

1
2 + h

1
2 )−1

0 h
1
2 ,

]
which has eigenvalues λ1 = h

1
2 and λ2 = e

1
2 . We assume

that λ1 ≡ 1 (mod N).

Step 2: Therefore, we can choose any λ2 ̸= 1.

Step 3: Set a11 ≡ −λ2 (mod N).
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Step 4: Obtain the consistent solution of all elements of L1×2 and L2×1 by using (40) as follows:

L2×1L1×2 = I − L2
2×2 =

[
1− e −f
0 0

]
. (41)

This matrix is proven to be singular such that L2×2 has an eigenvalue 1 or −1. All consistent

solutions is L2×1 =

[
k
0

]
and L1×2 =

[
(1− e)k−1 −fk−1

]
, where (k,N) = 1.

Step 5: Thus, we get

L3×3 ≡

−e
1
2 (1− e)k−1 −fk−1

k e
1
2 (e

1
2 + 1)−1f

0 0 1

 (mod N). (42)

Meanwhile, we can find another involutory matrix when λ1 ̸= 1 and λ2 = 1 i.e.

L3×3 ≡

 −h
1
2 0 k

−fk−1 1 (h
1
2 + 1)−1f

(1− h)k−1 0 h
1
2

 (mod N). (43)

On the other hand, the following are several reasons why we are unable to generate an involutory

matrix from L2×2 in Proposition 6 Part 2: Let L2×2 =

[
(e− bc)

1
2 b

c −(e− bc)
1
2

]
which has

repeated eigenvalue λ1 = λ2 = e
1
2 . Now, if we consider λ1 = 1, then L2×1L1×2 is singular. However,

we need to setup L1×1 = −λ2 for λ2 ̸= 1. This contradicts since λ1 = λ2. Furthermore, if we take
λ1 = −1, then L2×1L1×2 is non singular.

5 EFFECT OF INVOLUTORY KEY IN CTRIPOLY

In this section, we show the effect of applying the involutory matrix, L3×3 (mod N) as a secret key
in CTriPoly as follows:

Example 1.

Let L2×2 =

[
2 5
0 1

]
act as secret key is solution of L2

2×2 ≡
[
4 2
0 1

]
(mod 13) by applying

Proposition 6 Part 1. This is followed by generating L3×3 ≡

11 10 11
1 2 5
0 0 1

 (mod 13) using

formula (42) when e = 4, f = 2, h = 1 and k = 1. Let L3×3 act as an encryption key while
encrypting a plaintext to ciphertext. The message ”ALGORITHM” will be used as plaintext and
can be written as

P3×3 ≡

A L G
O R I
T H M

 ≡

0 11 6
1 4 8
6 7 12

 (mod 13).
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Since gcd(|L3×3|, 13) = 1, then there exist a unique solution for plaintext, P3×3. Now, we are using

algorithm for encryption from P3×3 to C
(4)
3×3 that was mentioned in Theorem 1 as follows:

C
(1)
3×3 ≡ L3×3P3×3 ≡

11 4 5
6 2 4
6 7 12

 (mod 13).

C
(2)
3×3 ≡ L3×3C

(1)
3×3 ≡

0 11 6
1 4 8
6 7 12

 (mod 13).

C
(3)
3×3 ≡ L3×3C

(2)
3×3 ≡

11 4 5
6 2 4
6 7 12

 (mod 13).

C
(4)
3×3 ≡ L3×3C

(3)
3×3 ≡

0 11 6
1 4 8
6 7 12

 (mod 13).

From the algorithm above, the odd-th and even-th transformations result will produce the secret
message ”LEFGCEGHM” and plaintext ”ALGORITHM”, respectively. Since L3×3 is self-invertible,
the receiver easily gets the original text via the decryption process as follows:

C
(3)
3×3 ≡ L3×3C

(4)
3×3 ≡

11 4 5
6 2 4
6 7 12

 (mod 13).

C
(2)
3×3 ≡ L3×3C

(3)
3×3 ≡

0 11 6
1 4 8
6 7 12

 (mod 13).

C
(1)
3×3 ≡ L3×3C

(2)
3×3 ≡

11 4 5
6 2 4
6 7 12

 (mod 13).

P3×3 ≡ L3×3C
(1)
3×3 ≡

0 11 6
1 4 8
6 7 12

 (mod 13).

From the encryption algorithm in the example above, the result for the second and fourth transfor-
mations are similar to plaintext. In contrast, the result from the third transformation is the same
as the first transformation. Generally, for n ∈ Z+,

C2n
3×3 ≡ L2n

3×3P3×3 ≡ (L2
3×3)

nP3×3 ≡ InP3×3 ≡ P3×3 (mod N) (44)

whereas

C2n+1
3×3 ≡ L2n+1

3×3 P3×3 ≡ L3×3(L
2
3×3)

nP3×3 ≡ L3×3I
nP3×3 ≡ L3×3P3×3 ≡ C

(1)
3×3 (mod N). (45)
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Therefore, the result of the odd-th and even-th transformations will produce the secret message
and plaintext, respectively. In other words, the sender of the original message should only send a
message until the second transformation if the encryption key is involutory. Thus, Theorem 1 is
only used for t = 1, 2 with the involutory Ei×i key. However, future studies can be further expanded
using different Ei×i, which is involutory for each transformation.

From Section 3, we have obtained one pattern of L2×2 (i.e. from Proposition (6) Part 1.) matrix that
can be fulfilled all criteria to generate the involutory L3×3 matrices as in (42) and (43). However,
the third parties can analyze the ciphertext using the patterns of involutory matrices mentioned
above even though they do not know the decryption keys. There are about 2N3 combinations of
(42) and (43) that need to be tested before deriving the actual value of the plaintext. Nevertheless,
it is possible to get it so fast with the appropriate algorithm and high-performance computer.

6 CONCLUSION

In conclusion, we obtained some solutions of L2
2×2 ≡ A2×2 (mod N) with six criteria of A2×2. As

a result, we choose one pattern of L2×2 that was produced by Proposition (6) Part 1. This will
generate two type of involutory matrices L3×3 in the form of (42) and (43). Its use in the CTriPoly’s
system can solve the problem of obtaining the inverse of the encryption key. In addition, the
benefits of this pattern can also be further refined because the third party’s ability to find the right
key may be limited as the matrix dimensions increase.
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