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ABSTRACT 

Cure fraction models are usually meant for survival data that contains a proportion of non-
subject individuals for the event under study. In order to get an accurate estimate of the cure 
fraction model, researchers often used one of two models: the mixture model or the non-mixture 
model. This study presents both mixture and non-mixed cure fraction models, together with a 
survival data format that is based on the beta-Weibull distribution. In this body of work, an 
alternative extension to the Weibull distribution was devised for the purpose of analyzing 
lifetime data. The beta-Weibull distribution is a four-parameter distribution established in this 
study as an alternate extension to the Weibull distribution in lifetime data analysis. The 
suggested addition allows for the inclusion of covariate analysis in the model, with parameter 
estimation performed using a Bayesian approach and Gibbs sampling methods. In addition, a 
simulation study was carried out to emphasize the benefits of the new development. 

Keywords: Bayesian analysis, Beta-Weibull distribution, Cure fraction models, Survival 
analysis, MCMC algorithm. 

1 INTRODUCTION 

A suitable distribution is often of interest in the analysis of survival data proposed by [1], as it 
provides insight into characteristics of failure times and hazard functions such as Weibull, Beta and 
Gamma distributions respectively given by the probability density function of the 2-parameter 
Weibull distribution is:  

𝑓0(𝑡) = 𝛾𝜆𝑡𝛾−1𝑒−𝜆𝑡𝛾
, 𝑡 ≥ 𝛾, 𝜆 > 0  (1) 

 

where 𝛾 is the model shape parameter and 𝜆 is the model scale parameter [2]. Also, the density 
function of the general Beta distribution is: 
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𝑓0(𝑡) =
(𝑡 − 𝑎)𝑝−1(𝑏 − 𝑡)𝑞−1

𝐵(𝛼, 𝛽)(𝑏 − 1)𝑝+𝑞−1
, 𝑎 ≤ 𝑡 ≤ 𝑏; 𝛼, 𝛽 ≥ 0 

(2) 

where 𝛼 and 𝛽 are the fitted shape parameters, with the lower and upper bounds, given by, 𝑎 and 𝑏 
respectively, of the distribution. We denote 𝐵(𝛼, 𝛽) as the corresponding parametric beta function 
[1]. 

Similarly, the density function for the generalized Gamma distribution is given by: 

𝑓0(𝑡) =
(

𝑡 − 𝜇
𝛽

)
𝛾−1

exp (
−𝑡 − 𝜇

𝛽
)

𝛾−1

𝛽Γ(𝛾)
, 𝑡 ≥ 𝜇; 𝛽, 𝛾 ≥ 0 

(3) 

where 𝛾 is the shape parameter, 𝜇 is the location parameter, 𝛽 is the scale parameter, and Γ is the 
gamma function [3] and 𝛼, 𝛽, 𝜆 are positive. Weibull distribution is regarded as a well-known 
distribution, named after its inventor, Waloddi Weibull [2], in 1951 a Swedish physicist. In 1939, 
Weibull used his proposed model to conduct an analysis on the breaking strength of various materials 
[4]. Since its inception, it has seen widespread application for the purpose of lifetime data analysis 
on account of the relative adaptability of its hazard function and the simplicity with which its 
parameters can be estimated. It is one of the families that is utilized the most frequently for modeling 
these kinds of data. However, the traditional Weibull distribution with two parameters can only be 
used to construct hazard functions that are either monotonically increasing or monotonically 
decreasing [4]. One of the disadvantages of the Beta-Weibull distribution is that both the survival 
function and hazard function cannot be written in a closed form, especially when more covariates are 
involved; hence, a numerical approach, namely integration techniques, is required to estimate the 
parameters in the model. 

1.1 Cure rate model 

 The cure fraction model [5] is an extension to classic survival models that accounts for the number 
of individuals who will not witness the event of interest. In terms of the type of event specified, cure 
fraction models are also known as long-term survival models [6]. The mixture and non-mixing types 
are indeed the two cure models that are used most frequently. The standard cure rate model or 
simply the mixture cure rate model, assumes that the studied population is a mix of predisposed 
individuals who experience the event of interest "p" which is the proportion of "long-term survivors" 
or "cured patients" regarding the event of interest (0 < 𝑝 < 1)  and non-susceptible individuals who 
will never exposed to it ”(1 − 𝑝)”. 

𝑆(𝑡) denote the survival function for the studied population and is given by 

𝑆(𝑡) = 𝑝 + (1 − 𝑝)𝑆0(𝑡), 𝑡 > 0 (4) 

where 𝑆0(𝑡) is the standard survival curve function for the vulnerable individuals. The non-mixture 
cure rate model establishes an asymptote for the cumulative hazard and, thus, for the cure 
proportion. [7]. Then the survival function is given as: 
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𝑆(𝑡) = 𝑝𝐹𝑐(𝑡) = exp (ln(𝑝) 𝐹𝑐(𝑡)), 𝑡 > 0 (5) 

1.2 Related Work 

Normally in any parametric distribution can be incorporated into larger families of distribution 
through probability integral transform procedures [8], [9]. Thus, the BW density can be re-expressed 
as a mixture of Weibull density as proposed by [10] who further drive an expression for their moment 
generating function. He further investigated the potential application of the BW distribution in 
censored survival data modelling for breast cancer research. A recent research identify some novel 
extension of the beta-Weibull distribution [11]. The beta modified Weibull distribution is another 
generalization of the Weibull distribution [10]. The distribution has an  edge due to its flexibility upon 
accommodation of multiple forms of risk function while handling various problems in survival data 
modeling [8]. Several literature suggest Bayesian formulation of the cure fraction model [5], [12]. 
Numerous attempt in the literature on new techniques for estimation of cure rates consider the 
context for the partially observed or missing covariate [9], [13]–[17]. 

2 MATERIAL AND METHODS 

2.1 Model and Distributional Assumptions. 

We denote 𝐺0(𝑡) as the cumulative distribution function (cdf) of a random variable T is given by:  

𝐺0(𝑡) = 𝐼𝐺0(𝑡)(𝛼, 𝛽) =
𝐵𝐺0(𝑡)(𝛼, 𝛽)

𝐵(𝛼, 𝛽)
=

∫ 𝑤𝛼−1(1 − 𝑤)𝛽−1𝑑𝑤
𝐺0(𝑡)

0

𝐵(𝑎, 𝑏)
 (6) 

Where 𝛼 > 0, 𝛽 > 0, 𝐵(𝛼, 𝛽) =
Γ(𝛼)Γ(𝛽)

Γ(𝛼,𝛽)
 is the beta function, with associated gamma function given by 

Γ(𝛼) = ∫ 𝑧𝛼−1𝑒−𝑧𝑑𝑧
∞

0
  and 𝐵𝐺0(𝑡)(𝛼, 𝛽) is the incomplete beta function. If 𝐺0(𝑡) in Equation (6) 

assumes a cdf of a gausian distribution with mean 𝜇 and variance 𝜎2, we then have an expression for 
beta-normal distribution [18]. A model based on the cdf of the Weibull distribution with shape and 
scale parameters of 𝛾 and  𝜆 respectively will assumes: 

𝐺0(𝑡) = 1 − exp [− (
𝑡

𝜆
)

𝛾
], 𝑡 > 0 (7) 

And from Equation (6), we substitute Equation (7) to have 

𝐹0(𝑡) =
1

𝐵(𝛼,𝛽)
∫ 𝑤𝛼−1(1 − 𝑤)𝛽−1𝑑𝑤

1−exp [−(
𝑡

𝜆
)

𝛾
]

0
, 𝑡 > 0 (8) 

Now, in a survival analysis modelling framework, the baseline survival function for the susceptible 
individuals is given by 

𝑆0(𝑡) = 1 − 𝐹0(𝑡). (9) 

We observed that the closed form of the function is undefined with reference to the limitation of the 
given expression. The baseline pdf of the four parameter BW distribution is of the form 
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𝑓0(𝑡) =
𝛾

𝜆𝛾𝐵(𝛼, 𝛽)
exp [−𝛽 (

𝑡

𝜆
)

𝛾

] {1 − exp [−𝛽 (
𝑡

𝜆
)

𝛾

]}

𝛼−1

, 𝑡 > 0 (10) 

where 𝛼, 𝛽, 𝛾 and 𝜆 are positive numbers. The corresponding hazard expression is given by 

ℎ(𝑡) =
𝑓0(𝑡)

𝑆0(𝑡)
=

γ𝑡𝛾−1𝜆𝛾exp [−𝛽 (
𝑡
𝜆

)
𝛾

] {1 − exp [−𝛽 (
𝑡
𝜆

)
𝛾

]}
𝛼−1

𝐵(𝛼, 𝛽) ∫ 𝑤𝛼−1(1 − 𝑤)𝛽−1𝑑𝑤
1−exp [−(

𝑡
𝜆

)
𝛾

]

0

, 𝑡 > 0 (11) 

In the context of mixture model, the likelihood expression for 𝜃 = (𝛼, 𝛽, 𝛾, 𝜆, 𝑝) is given by 

𝐿𝐼(𝜃) = ∏ [
(1 − 𝑝)𝛾

𝜆𝛾𝐵(𝛼, 𝛽)
𝑡𝑖

𝛾−1
exp (−𝛽 (

𝑡𝑖

𝜆
)

𝛾
) (1 − exp [−𝛽 (

𝑡𝑖

𝜆
)

𝛾
]

𝛼−1

)
𝛿𝑖

]

𝑛

𝑖=1

× ∏[𝑝 + (1 − 𝑝)𝑆0(𝑡𝑖)]1−𝛿𝑖

𝑛

𝑖=1

. 

(12) 

While for the non-mixture model, the likelihood function for 𝜃 = (𝛼, 𝛽, 𝛾, 𝜆, 𝑝) is given by 

𝐿𝐼𝐼(𝜃) = ∏ [−
𝛾ln (𝑝)

𝜆𝛾𝐵(𝛼, 𝛽)
𝑡𝑖

𝛾−1
exp (−𝛽 (

𝑡𝑖

𝜆
)

𝛾
) (1 − exp [−𝛽 (

𝑡𝑖

𝜆
)

𝛾
]

𝛼−1

)
𝛿𝑖

]

𝑛

𝑖=1

× ∏[𝑝 + (1 − 𝑝)𝑆0(𝑡𝑖)]1−𝛿𝑖

𝑛

𝑖=1

. 

 

(13) 

 

2.2 Further Incorporation 

Implementation of the conventional estimation methods especially maximization or direct methods 
on the likelihood functions 𝐿𝐼(𝜃) and 𝐿𝐼𝐼(𝜃) are tedious and usually computationally expensive due 
to complexity of some distributional expressions. Bayesian Inference based on Markov Chain Monte 
Carlo (MCMC) estimation methods bring down those complexities without compromise to precision 
and thus utilized in our implementation in this work which was appropriately justified in . The vector 
of covariate 𝑋𝑖  which are closely related with proportion 𝑝 of cure rate fraction models were 
incorporated by replacing 𝑝 in the likelihood function expressions 𝐿𝐼(𝜃) and 𝐿𝐼𝐼(𝜃) with 

𝑝𝑖(𝑡) =
exp (𝑥𝑖

′𝜂′)

1 − exp (𝑥𝑖
′𝜂′)

. (14) 

where 𝑥𝑖
′ = (1, 𝑥1,…,𝑥𝑛) is J covariates’s vector of observations for the ith individual and 𝜂′ =

(𝜂0, 𝜂1, … , 𝜂𝑛) is the unknown parameters vector. To study the effect of vector of covariates 𝑊𝑖 on the 
parameter 𝜆, 𝜆 is replaced in both mixture and non-mixture expression of the likelihood function 
𝐿𝐼(𝜃) and 𝐿𝐼𝐼(𝜃) by 
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𝜆𝑖(𝑡) = exp (𝑤𝑖
′𝜁′) (15) 

where 𝒘𝒊
′ = (𝟏, 𝒘𝟏,…,𝒘𝒏) represent the vector form of K covariates corresponding to the i-th 

individual and 𝜻′ = (𝜻𝟏, 𝜻𝟐, … , 𝜻𝒏) is the vector of unknown parameters. 

2.3 Bayesian Analysis  

We begin with a Bayesian analysis of the long-term survival models without considering covariates 
[19], we also assume the beta prior for the specified probability of proportion ”𝑝” of cure models 
which is denoted by by 𝑝~𝐵(𝑎, 𝑏) where 𝑎 and 𝑏 are known hyper parameters [12] [5]. We also 
assume a gamma prior distribution for the parameters 𝛼, 𝛽, 𝛾 𝑎𝑛𝑑 𝜆. That is 

𝛼~Γ(𝑐𝛼, 𝑑𝛼), 𝛽~Γ(𝑐𝛽 , 𝑑𝛽), 𝛾~Γ(𝑐𝛾, 𝑑𝛾), 𝜆~Γ(𝑐𝜆, 𝑑𝜆) where 𝑐𝛼 , 𝑑𝛼 , 𝑐𝛽 , 𝑑𝛽 , 𝑐𝛾 , 𝑑𝛾𝑐𝜆, 𝑑𝜆 are known 

hyperparameters and Γ(𝑐, 𝑑) denotes a gamma distribution with mean 𝑐 

𝑑
 and variance 𝑐

𝑑2. The joint 

prior distribution is then established in all circumstances by assuming prior independence between 
the parameters, 

𝜋(𝜃) = 𝜋(𝛼), 𝜋(𝛽), 𝜋(𝛾), 𝜋(𝜆)

∝ 𝛼𝑐𝛼−1𝛽𝑐𝛽−1𝜆𝑐𝜆−1𝛾𝑐𝛾−1exp (−
𝛼

𝑑𝛼
−

𝛽

𝑑𝛽
−

𝜆

𝑑𝜆
−

𝛾

𝑑𝛾
) 𝑝𝛼−1(1 − 𝑝)𝑏−1 (16) 

the following covariates for models incorporating are the assumed prior distribution for the 

unknown parameters: 𝛼~Γ(𝑐𝛼, 𝑑𝛼), 𝛽~Γ(𝑐𝛽 , 𝑑𝛽), 𝛾~Γ(𝑐𝛾, 𝑑𝛾), 𝜆~Γ(𝑐𝜆, 𝑑𝜆), 𝜻𝒋~𝑁(𝑐𝜁𝑗
, 𝑑𝜁𝑗

2 ), 𝑗 =

0,1, … , 𝐽,  and 𝜂𝑘~ 𝑁(𝑐𝜁𝑘
, 𝑑𝜁𝑘

2 ), 𝑘 = 0,1, … . , 𝐾. where 𝑁(𝑐, 𝑑2) denotes a gaussian distribution with c 

and 𝑑2 as the mean and variance respectively, normally referred as the hyper parameters. The 
situation necessitate to focus solely on the independence among the prior distributions as 
implemented by [19]. 

2.4 Log Pseudo Maximum Likelihood 

Log Psuedo Marginal Likelihood (LPML) and the Pseudo Factor is an efficient tool for comparison of 
mixture and non-mixture models based on varied distributional assumption. The derivation of LPML 
𝑫, 𝑫[𝒊] is done through conditional predictive ordinate (CPO) statistics [20]. That is, for the ith 
observation, 𝑪𝑷𝑶𝒊 is given by 

𝑓(𝐷𝑖/𝑦|𝑖|𝑡) = ∫ 𝑓(𝐷𝑖/Θ)𝑓(𝑓(Θ/𝐷𝑖)𝑑Θ (17) 

where Θ is the incomplete parametric vector, 𝐷𝑖 is each instance of the data 𝐷 without the current 
observation 𝑖, and 𝑓(Θ/𝐷𝑖)  is the posterior density 𝐷[𝑖];  𝑖 =  1,2, … , 𝑛: An MCMC estimate of  𝐶𝑃𝑂𝑖 
is given by 

𝐶𝑃𝑂�̂� = [
1

𝐵
∑

1

𝑓(𝐷𝑖/Θ(𝑏))

𝑏

𝑏=1

]

−1

, 𝑖 = 1,2, … , 𝑛 (18) 
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such that, B is the iteration count for the MCMC implementation procedure after burn-in period and 
Θ(𝑏) is vector of the obtained samples at 4th and 5th iterations [13]. Thus, for a given model, the LPML 

value is given by 

𝐿𝑃𝑀�̂� = ∑ log(𝐶𝑃𝑂𝑖)̂

𝑛

𝑖=1

, 𝑖 = 1,2, … , 𝑛 (19) 

For an increase value of LPML, we have a better fit for the model [20]. Alternatively, the drived 
Pseudo Bayes factor (PMF) for comparing multiple models 𝑚 and 𝑚’ is 

𝑃𝐵𝐹𝑚𝑚′ = exp (𝐿𝑃𝑀�̂�𝑚 − 𝐿𝑃𝑀�̂�𝑚′) (20) 

So also, each parameter of interest require an estimate for the highest probability density (HPD) 
intervals  [20]. Assuming 100(1 − 𝜔)% HPD interval associated with a generic parameter 𝜃 an 
arbitrary subset of the parametric space 𝐶Θ given by 𝐶 = {𝜃; 𝜋(𝜃/𝐷) ≥ 𝑘} where 𝜋(𝜃/𝐷). Then the 
posterior distribution for 𝜃 given the data 𝐷 and k as the largest number such that the expression  

∫ 𝜋(𝜃/𝐷)

𝜋(𝜃/𝐷)≥𝑘

= 1 − 𝜔 (21) 

3 RESULTS AND DISCUSSION 

3.1 Simulation Study for the Analysis of Result 

A sample of 30,000 was generated for each parameter of interest based on each cases under 
consideration. Assuming a burn-in sample of 10,000 data size which can minimize the initialization 
effect on the simulation process. However, a 15,000 sample size, with each of the 200th sample 
having approximately uncorrelated values was utilized to achieve a posterior summaries of interest. 

In the estimation procedure we use the MCMC estimation with Bayesian Approach where the LMPL 
considers the highest value to be the best models parameter selectionin described in Table 1 and 
Table 2. The simulation process utilizes some R-code implementation using the baseline model that 
is Beta Weibull distribution and an optimization package ‘optim‘ in R. As starting values we used the 
estimator obtained from a Weibull model based on the censoring indicator (as a surrogate for the 
unobserved cure indicator). However, due to the non-concavity of our likelihood function and due to 
the inconsistency of this vector of starting values, the procedure optim often endsup in a local 
maximum instead of the global maximum. To avoid this problem, we added the some intermediate 
step to the estimation procedure on the initial starting values, we then estimate all the parameters 
from a BW model based on the  parametric estimate that maximize the log-likelihood globally. Since 
this log-likelihood  as starting value for our likelihood function of BW model having a close form 
property.  

Table 1 demonstrate results according to the described simulation  procedure. For the generated 
samples, the result show the bias and mean squared error (MSE) of model for several values of c, 
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namely c = 2, 3 and 4. However, the cross-validation(CV) procedure proposed by [19] for MCMC 
bootstrap estimators indicate that the convergence of the MCMC algorithm was not obtainable for 
values less than 1 for the selected hyper parameters, even when using very large burn-in -period for 
the algorithm. Considering the beta-Weibull (BW), exponentiated Weibull (EW), beta-Exponentiated 
(BE) and Weibull distributions respectively in Table1 and Table2. Estimated parameters were 
obtained as median estimate of Gibbs samples drawn as a join posterior distribution. Median is 
preferred here over mean due to the skewed nature of the distribution in the simulation process. The 
p values from Heidelberger and Welch (HW) convergence diagnostic criteria do not reject the null 
hypothesis of stationary of the chains, for being larger or equal than 0.10.  In the case of Geweke's p 
value which also suggests convergence. The result further suggests that, among the models in 
consideration, Weibull distribution has the lowest Log pseudo marginal likelihood (LPML) value 
unlike BW, BE and EW distributions all having similar LPML value. 

Table 1: The posterior summaries of the model parameters excluding a cure fraction while considering GBC 
study dataset. 

Model Parameter Posterior 

median 

95% 𝐻𝐷𝑃𝑎  𝐿𝑃𝑀𝐿𝑏  𝐻𝑊𝑐  p 

value 

Geweke’s p 

value 

BW 

𝛼 3.8116   (1.5334,6.7999) -864.148  0.314  0.112 

𝛽 0.0806  (0.0166,0.2681)  0.392  0.251 

𝛾 0.9084  (0.5611,1.2922)  0.618  0.307 

𝜆 2.3126  (1.1376,4.3364)  0.099  0.223 

EW 

𝛼 7.4618  (4.5975,11.2487)  -835.774  0.232  0.076 

𝛾 0.4409  (0.3456,0.5518)  0.324  0.234 

𝜆 4.0185  (1.4213,7.6297)  0.122  0.166 

BE 

𝛼 3.3499  (1,9664,5.2017)  -844.909  0.463  0.334 

𝛽 0.0590  (0.0250,0.1167)  0.818  0.772 

𝜆 2.2978  (1.2235,4.1378)  0.699  0.394 

Weibull 
𝛾 1.654  (1.4712,1.8571)  -825.444  0.736  0.757 

𝜆 3.850  (2.788,3.293)  0.710  0.842 

 

However, an additional evidence of a better fit is the non-convergence of the MCMC estimation on 
fitting BW distribution in presence of cure fraction as against standard Weibull distribution [21]. 

The inferences for the non-mixture and mixture model which are based on the Beta-Weibull 
distribution with its special cases are clearly demonstrated in Table 2. Based on highest LPML of the 
models, mixture models get a better fit [22]. Furthermore, the 95% credible interval for 𝜂2 based on 
its non zero value inclusion suggest that the subjects in the AML high risk and low risk groups have 
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contrasting cure fractions. The Bayesian estimates for the cure fractions for every risk group can be 
obtain by considering the simulated samples for 𝜂0, 𝜂1 and 𝜂2 and the relation 

 𝑃(𝐴𝑀𝐿 𝑙𝑜𝑤𝑟𝑖𝑠𝑘) = 𝑒𝑥𝑝(𝜂0),  𝑃(𝐴𝑀𝐿 ℎ𝑖𝑔ℎ𝑟𝑖𝑠𝑘) = 𝑒𝑥𝑝(𝜂0 + 𝜂1) and  

𝑃(𝑎𝑙𝑙) = 𝑒𝑥𝑝(𝜂0 + 𝜂2). 

Therefore, the estimated results obtained for the cure fractions of the patients classified as AML low 
risk, ALL and AML high risk are shown above respectively. The graphs in Figure 2, show that Kaplan 
- Meier survival curves for bone marrow transplant patients based on the BW distribution fit the 
mixture model at all levels of risks. Note that the  curves obtained from the model are close to those 
estimated by Kaplan-Meier method, a great indication of good fit based on the models for the [22]. 

Table 2: The posterior summaries assuming the mixture model with covariate and considering the data set of 
137 bone marrow transplant patients 

Model Parameter Posterior median 95% 𝐻𝐷𝑃𝑎  𝐿𝑃𝑀𝐿𝑏  𝐻𝑊𝑐  p value Geweke’s p value 

BW 

𝛼 1.0129 (0.3684,2.1799) 

-67.403 

0.453 0.729 

𝛽 1.2932 (0.1107,3.2681) 0.224 0.251 

𝛾 1.0381 (0.5337,1.6854) 0.338 0.607 

𝜁0 -0.3526 (-1.1376,0.3364) 0.069 0.533 

𝜁1 -0.6706 (-0.0166,0.2681) 0.152 0.651 

𝜁2 -0.9889 (-0.5611,-.2922) 0.148 0.307 

𝜂0 -0.1337 (-1.1376,0.3364) 0.799 0.343 

𝜂1 -0.4843 (-0.2611,0.2922) 0.618 0.707 

𝜂2 -0.9124 (-1.1376, 0.3364) 0.779 0.243 

EW 

𝛼 0.9930 (4.5975,11.2487) 

-67.374 

0.232 0.076 

𝛾 1.0456 (0.5611,1.2922) 0.618 0.307 

𝜁0 -0.5640 (1.1376,0.3364) 0.099 0.223 

𝜁1 -0.6876 (0.0166,0.2681) 0.372 0.351 

𝜁2 -1.0025 (0.5611,1.2922) 0.618 0.307 

𝜂0 -0.1466 (-1.1376,1.3364) 0.099 0.256 

𝜂1 -0.4688 (-0.0350,1.1427) 0.834 0.435 

𝜂2 -0.9530 (0.0150,0.2147) 0.568 0.872 

BE 𝛼 1.0649 (1,9664,5.2017) -66.561 0.483 0.007 
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𝛽 1.2006 (0.0166,0.2681) 0.392 0.251 

𝜁0 -0.4126 (-1.1376,0.3364) 0.099 0.223 

𝜁1 -0.6561 (-.0166,0.2681) 0.692 0.281 

𝜁2 -0.9876 (-1.5611,1.2922) 0.618 0.307 

𝜂0 -0.1365 (-0.1376,1.9864) 0.099 0.223 

𝜂1 -0.4753 (-.5611,1.2922) 0.618 0.337 

𝜂2 -0.9146 (-1.1376,0.2324) 0.099 0.223 

Weibull  

𝛾 1.654 (1.4712,1.8571) 

-65.557 

0.10 0.265 

𝜁0 -0.3126 (-1.1376,4.3364) 0.023 0.123 

𝜁1 -0.0806 (-1.0166,-0.2881) 0.362 0.281 

𝜁2 -1.9084 (-1.5611,-0.4922) 0.618 0.237 

𝜂0 -0.3126 (-0.1376,0.3364) 0.099 0.243 

𝜂1 -0.9084 (-1.4621,0.2322) 0.228 0.417 

𝜂2 -0.3126 (-1.2346,-0.5364) 0.565 0.287 
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Figure 1: A Kaplan-Meier estimates for survival function plotted against respective values generated from the 
parametric mixture models for each of the distribution of interest: (a) BW (b) Weibull, (c) EW, (d) BE. 

 

3.2 Application to German Breast Cancer and Bone Marrow Transplant Data 

We first consider the case where the cure fraction parameter and covariates are not included in the 
model which can favorably be applied to the popular data set from the German Breast Cancer (GBC) 
study dataset [23]. The data set comprises 686 patients under 65 years of age where 299 had an 
event recurrence-free survival and 171 died. We used the time to death as the event of interest. It is 
estimated that the maximum follow-up time available was 7 years. Figure 2(a) is the plots of the 
survival functions estimated by Kaplan - Meier method and from the models based on the BW and 
Weibull distributions. While in Figure 2(b) shows the hazard functions based on the Bone-Marrow 

Transplant data [23], where (AML) indicate a low risk scenario. 
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Figure 2: The panel (a), plots of the survival functions estimated by Kaplan - Meier method and from the 
models based on the BW and Wiebull distributions Panel (b), shows the hazard functions based on the Bone-

Marrow Transplant data. 

4 CONCLUSION 

The cure fraction model and covariates analysis are strong features of a lifetime data analysis. 
Deployment of different parametric formulations for the analysis of such data can be done as mixture 
or non-mixture models. This paper establish a parametric models approach based on BW distribution 
with special cases useful in analyzing medical data set [8]. Also, the Bayesian methodology using 
MCMC methods was demonstrated in this work as a suitable tool to establish certain inferences about 
parameters of the model. As highlighted by [24], the limitation of the BW distribution is that the 
survival function has no closed form of expression and thus numerical integration techniques were 
utilize for parameter estimate of the model. Same limitations were more critical in terms of covariates 
because the likelihood function became more complex. An advantage of Bayesian approach over 
other conventional methods is it explicit incorporation of an expert prior opinion for the parameters. 
In clinical application, the knowledge of a specialist of the expected proportion of patience who are 
immune to the event of interest can be added into a prior distribution for the cure fraction p to have 
a more precise inference. 
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