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ABSTRACT

Conjugate gradient (CG) methods are an important enhancement to the category of techniques
utilized for resolving unconstrained optimization problems. However, some of the existing CG
algorithms are not the most effective solution for all different kinds of problems. Particularly,
for some problems, traditional CG techniques may show slower convergence rates or even
fail to converge. These inefficiencies frequently result from large-scale issues’ incapacity
to maintain suitable descent directions or to accurately approximate the Hessian matrix.
Hence, this paper introduces a new hybrid CG method for solving unconstrained optimization
problems. The method proposed in this study incorporates two parameters, as proposed by
Hassan and Alashoor, and aligns with the memoryless Broyden-Fletcher-Goldfarb-Shanno
(BFGS) quasi-Newton approach. This approach satisfies the descent requirement and has the
potential to achieve global convergence, presuming that the Wolfe and Armijo-like conditions
and any other prerequisite assumptions are satisfied. Numerical experiments on certain
benchmark test issues are performed, and the results show that the proposed method is more
efficient than other existing methods.

Keywords: Global convergence, Line search, Memoryless BFGS, Three-term conjugate
gradient method, Unconstrained optimization problem.

1 INTRODUCTION

Consider unconstrained optimization problem as follows:

min
x∈Rn

f(x), (1)

where f : Rn → R is continuously differentiable function. Then, the conjugate gradient (CG)
method would build incrementally in accordance with

xk+1 = xk + αkdk, k = 0, 1, 2, . . . (2)

This indicates that, scaled by the factor αk, the method gradually improves the solution by moving
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steps from the current point αk in the direction dk. With each iteration, the objective is to get
closer to the best solution, which improves the estimate progressively.

The search direction, denoted as dk, is defined by

dk =

{
−gk, if k = 0,

−gk + βkdk−1, if k ≥ 1.
(3)

In addition, xk is the current iterate point, αk is positive stepsize, gk assigned as gradient coefficient
and βk denotes as CG coefficient. Besides, the sufficient descent property described by

gTk dk ≤ −c||gk||2, c > 0. (4)

There are several well-known formulas for the CG coefficient. The formulas presented in the
literature [1], [2], [3], [4], [5], [6] and [7] exhibit variations primarily in the selection of the coefficient,
denoted as βk, as indicated below:

βHS
k =

rTk yk−1

dTk−1yk−1
, βPRP

k =
rTk yk−1

rTk−1rk−1
, βLS

k =
rTk yk−1

−dTk−1rk−1
, (5)

βDY
k =

rTk rk

dTk−1yk−1
, βFR

k =
rTk rk

rTk−1rk−1
, βCD

k =
rTk rk

−dTk−1rk−1
, (6)

where yk−1 = gk − gk−1 and || · || is the Euclidean Norm.

For the purpose of making advancements on the traditional two-term CG approaches described
above, three-term and hybrid CG techniques were developed. For instance, Andrei [8] suggested a
three-term CG approach to addressing (1). The BFGS formula of the inverse Hessian approximation
was modified in order to develop the proposed approach. The requirements for conjugacy and
descent are met by the search direction. Assumptions like the boundedness of the level set and the
Lipschitz continuity of the gradient were used to obtain the convergence. Liu and Li [9] suggested a
new hybrid CG approach as a way to solve (1). Utilising a convex combination approach allows for
the LS and DY procedures to be combined together in such a way as to get the desired results. In
addition to meeting the Newton direction conditions, the search direction is also designed to satisfy
the Dai-Liao (DL) conjugacy conditions. This dual capability ensures that the search direction
not only approximates the Newton direction effectively but also maintains the desirable properties
of conjugacy, which is crucial for achieving efficient and reliable convergence in unconstrained
optimization problems. In order to achieve a global convergence with the hybrid strategy, it was
important to make use of a strong Wolfe line search.

A hybrid CG technique to solve (1) based on earlier classical methods was also proposed by Jian et
al. [10] which generates a descent direction at each iteration and is independent of any line search.
To achieve global convergence, the consideration of the Wolfe condition and the incorporation of
medium-scale concerns were deemed necessary for the numerical experiments.
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A three-term PRP CG method with a search direction similar to the memoryless BFGS quasi-Newton
method was developed by Li [11]. When the consideration of an exact line search is incorporated,
the approach converges to the standard PRP method. The approach meets the descent requirement
without the need for any line searches. For the purpose of determining the global convergence, an
appropriate line search was performed. The strategy was effective for the typical unconstrained
optimization issues in the CUTEr library based on the numerical findings.

Li [12] also suggested a nonlinear CG approach that produces a search direction similar to the
memoryless BFGS quasi-Newton method. Additionally, the search direction meets the requirement
for descent. Under the strong Wolfe line search, global convergence for both strongly convex and
non-convex functions was established. For the purpose of solving (1), the modified Dai-Kou (DK)
approach was proposed by Liu et al.[13]. A quasi-Newton approach was created in the paper
to enhance the orthogonality of the gradient. In order to demonstrate global convergence, the
researchers made fundamental assumptions and provided numerical results.

Furthermore, Iiduka and Narushima [14] and Hassan [15] have proposed a new CG method that
utilizes both gradient and function values to enhance accuracy in approximating curvature. These
algorithms demonstrate an impressive level of computational efficiency that exhibit a highly effective
method in various application. Both study reports an enhancement in unconstrained problem
performance through a quadratic model modification with the aim of optimizing the benefits of the
original CG methods.

Recent work by Hassan and Alashoor [16] resulted in the development of new coefficients that are
known as BNC and BTC. The βk are defined as follows:

βBNC
k =

||gk||2

(fk − fk−1)/αk − 3/2dTk−1gk−1
, (7)

βBTC
k =

||gk||2

(fk − fk−1)/αk + 3/2dTk−1yk−1
. (8)

This method employs an alternative denominator approach based on the quadratic model of the
noise function. The proposed methodology demonstrated significant improvements in numerical
performance and efficiency for image restoration.

The proposed method integrates both the BNC and BTC parameters, as introduced by [16], and is
inspired by the works of [11, 12] on modified and three-parameter conjugate gradient methods for
addressing unconstrained optimization problems. This method meets the descent condition and is
able to achieve global convergence, provided the Wolfe condition and other necessary assumptions
are satisfied. Numerous studies have been conducted in prior research, which has mostly resulted in
noteworthy enhancements. Therefore, the concept of scaled memoryless Broyden-Fletcher-Goldfarb-
Shanno (BFGS) is applied. Consequently, the implementation of the newly developed three-term
algorithm is expected to significantly improve numerical outcomes, including reduced iteration
count and computational time. The following section presents the derivation of the hybrid method
and its convergence. In section 3, numerical experimental results are presented.
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2 ALGORITHM AND THEORETICAL RESULTS

In this section, the three-term CG method determines the search direction in the following manner:

dk =

{
−gk, if k = 0,

−gk + βkdk−1 + γkgk, if k ≥ 1,
(9)

where βk, γk are parameters.

The direction in the memoryless BFGS method [17, 18] is determined by

dBFGS
k = −Hkgk,

where the value of Hk is derived using the memoryless BFGS formula.

Hk =

(
I −

sk−1y
T
k−1

sk−1y
T
k−1

)(
I −

yTk−1sk−1

sk−1y
T
k−1

)
+

sk−1s
T
k−1

sk−1y
T
k−1

,

where I stands for the identity matrix. It is worth noting that the direction dk of the memoryless
BFGS technique can be expressed as a linear combination of gk.dk−1 and yk−1. Given that
sk−1 = xk − xk−1 = αk−1dk−1 and yk−1 = gk − gk−1. The direction dBFGS

k can therefore be
expressed as

dBFGS
k = −gk +

(
βHS
k −

||yk−1||2gTk dk−1

(dTk−1yk−1)2

)
dk−1 +

gTk dk−1

dTk−1yk−1
(yk−1 − sk−1). (10)

The replacement of βHS
k is carried out using βBNC

k and βBTC
k , respectively. Besides,

||yk−1||2gTk dk−1

(dTk−1yk−1)2

is also replace with
||gk||2gTk dk−1

((fk−fk−1)/αk+3/2dTk−1gk−1)
2 and

||gk||2gTk dk−1

((fk−fk−1)/αk+3/2dTk−1yk−1)
2 , respectively. By

replacing these, the following is the definition of a three-term search direction:

dTTBNC
k =− gk +

(
βBNC
k − ||gk||2gTk dk−1(

(fk − fk−1)/αk − 3/2dTk−1gk−1

)2
)
dk−1

+

[
tk

gTk dk−1(
(fk − fk−1)/αk − 3/2dTk−1gk−1

)2
]
gk,

(11)

dTTBTC
k =− gk +

(
βBTC
k − ||gk||2gTk dk−1(

(fk − fk−1)/αk + 3/2dTk−1yk−1

)2
)
dk−1

+

[
tk

gTk dk−1(
(fk − fk−1)/αk + 3/2dTk−1yk−1

)2
]
gk.

(12)
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To ensure sufficient descent in the search direction, a restriction is imposed on the range of tk such
that 0 ≤ tk ≤ t < 1 where t is a predefined upper bound that limits tk to ensure stability and
convergence. Therefore, tk has been chosen as

tk = min
{
t,max

{
0,

gTk (yk−1 − sk−1)

||gk||2
}}

, (13)

which is the solution to the given univariate problem:

min||(yk−1 − sk−1)− tkgk||2, t ∈ R.

Hence, inspired by the three-term CG directions established in (11) and (12), a hybrid three-term
CG-based method is presented for solving equation (1), wherein the search direction is specified as

dk =

{
−gk, if k = 0,

−gk + βTTBNTC
k dk−1 + γkgk, if k ≥ 1,

(14)

where

βTTBNTC
k =

||gk||2

wk
−

||gk||2gTk dk−1

w2
k

, γk = −tk

[
gTk dk−1

wk

]
, (15)

and

wk = max
{
µ||dk−1||||gk||,

(fk − fk−1)

αk
− 3

2
dTk−1gk−1,

(fk − fk−1)

αk
+

3

2
dTk−1yk−1

}
. (16)

At this juncture, a novel algorithm, denoted as TTBNTC is being delineated.

Algorithm 1 An algorithm for TTBNTC

Step 1 Given constants 0 < ρ < σ < 1, µ ≥ 0, ε > 0. Choose an initial point x0 ∈ Rn. Let k := 0.
Step 2 If ||gk|| ≤ ε, where ε = 10−6 then the algorithm stops. Otherwise, continue to Step 3
Step 3 Calculate the search direction dk:

dk =

{
−gk, if k = 0,

−gk + βkdk−1 + γkgk, if k ≥ 1.
(17)

Step 4 Determine a steplength αk > 0 such that the Strong Wolfe line search conditions hold{
f(xk + αkdk)− f(xk) ≤ ραkg

T
k dk,

|g(xk + αkdk)
Tdk| ≥ σ|gTk dk|.

Step 5 Set xk+1 := xk + αkdk, and k := k + 1. Return to step 2.
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Remark 2.1. It can be observed that the parameter βk in equations (11) and (12) is a hybrid of the

βBNC
k − ||gk||2gTk dk−1

((fk−fk−1)/αk−3/2dTk−1gk−1)
2 and βBTC

k − ||gk||2gTk dk−1

((fk−fk−1)/αk+3/2dTk−1yk−1)
2 methods. Additionally,

the path indicated by equation (14) closely aligns with the direction of the memoryless BFGS

algorithm as tk =
gTk (yk−1−sk−1)

||gk||2
.

Remark 2.2. It should be noted that the selection of the first component of Equation (16) was
done with great consideration in order to ensure that the direction exhibits a descending property,
as discussed in Lemma 2.7. This property remains irrespective of the line search procedure.

Remark 2.3. The structure of dk in equation (17) is inspired by the work of [19], as evidenced by
the inclusion of gk in both the first and third terms. To prove the sufficient descent properties and
establish an upper bound, it is necessary to separate the third term, as demonstrated in Lemmas
2.4 and 2.8. Specifically, in Lemma 2.4, the second term will undergo a ’completing the square’
process to effectively cancel out the third term, thereby ensuring the sufficient descent properties.
By designating the third term as gk, the algorithm can satisfy these properties. However, using
other terms such as gk−1, yk−1, sk−1, dk, or dk−1 would prevent the algorithm from meeting the
necessary conditions.

Lemma 2.4. The search direction dk, as described by equation (14), satisfies equation (4) with the
constant c = 3

4 .

Proof. By performing the operation of multiplication on both sides of the equation (14) with gTk , it
can be deduced that

gTk dk = −||gk||2 + βTTBNTC
k gTk dk−1 + γkg

T
k gk

= −||gk||2 +
||gk||2

wk
gTk dk−1 −

||gk||2

w2
k

(gTk dk−1)
2 − tk

(
||gk||2

wk

)
gTk dk−1

≤ −||gk||2 + (1− tk)
||gk||2

wk
gTk dk−1 −

||gk||2

w2
k

(gTk dk−1)
2

= −||gk||2 + 2

(
(1− tk)

2
gTk

)
gk
w2
k

gTk dk−1 −
||gk||2

w2
k

(gTk dk−1)
2

≤ −||gk||2 +
(1− tk)

2

4
||gk||2 +

||gk||2

w2
k

(gTk dk−1)
2 − ||gk||2

w2
k

(gTk dk−1)
2

= −||gk||2 +
(1− tk)

2

4
||gk||2

= −
(
1− (1− tk)

2

4

)
||gk||2

≤ −3

4
||gk||2.
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2.1 Convergence analysis

In the subsequent analysis, the focus will be directed towards verifying the convergence of the
suggested scheme. This will be accomplished by initially examining the strong Wolfe line search
conditions.

f(xk + αkdk)− f(xk) ≤ ραkg
T
k dk, (18)

|g(xk + αkdk)
Tdk| ≥ σ|gTk dk|, (19)

where 0 < ρ < σ < 1.Furthermore, it is assumed that

Assumption 2.5. The level set

M = {x ∈ Rn : f(x) ≤ f(x0)}

is bounded.

Assumption 2.6. In a given neighbourhood N of M , the function f is continuously differentiable
and its gradient exhibits Lipschitz continuity. This implies the existence of a positive constant
L > 0 such that the following condition holds:

||g(x)− g(x)|| ≤ L||x− x||, ∀x ∈ N. (20)

Based on Assumptions 2.5 and 2.6, it can be concluded that for all x ∈ M there are positive
constants B1 and B2 that satisfy the given condition

||x|| ≤ l1,

and

||g(x)|| ≤ l2,

Moreover, it can be concluded that the sequence xk in M is due to the fact that the sequence f(xk)
exhibits a decreasing pattern. Moving forward, it will be considered that Assumptions 2.5 and 2.6
are valid and that the objective function has a lower bound. In this section, the convergence result
will be demonstrated.

Theorem 2.7. Assume that (18) and (19) are true. If

∞∑
k=0

1

||dk||2
= +∞, (21)

then

lim
k→∞

inf ||gk|| = 0. (22)
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Proof. For the purpose of contradiction, let’s say that Equation (22) is not met. In this case, there
is a scalar ε that is nonnegative, such that

||gk|| ≥ ε, ∀k ∈ N (23)

From Lemma 2.4 and (18),

f(xk + αkdk) ≤ f(xk) + ραkg
T
k dk ≤ f(xk)− ραkg

T
k dk ≤ f(xk) ≤ f(xk−1) ≤ ... ≤ f(x0).

Similarly, according to Lemma 2.4, condition (19), and Assumption 2.6, it may be inferred that

−(1− σ)gTk dk ≤ (gk+1 − gk)
Tdk ≤ ||gk+1 − gk||||dk|| ≤ αL||dk||2.

By using the aforementioned inequality with equation (18), The derivation is obtained.

ρ(1− σ)

L

(gTk dk)
2

||dk||2
≤ f(xk)− f(xk+1)

and

ρ(1− σ)

L

∞∑
k=0

(gTk dk)
2

||dk||2
≤ (f(x0)− f(x1)) + (f(x1)− f(x2)) + . . . ≤ f(x0) < +∞.

Given that the sequence f(xk) is bounded. The statement above suggests that

∞∑
k=0

(gTk dk)
2

||dk||2
< +∞. (24)

From (23) and (4), it can be deduced that

gTk dk ≤ −3

4
||gk||2

≤ −3

4
ε2. (25)

Next,

∞∑
k=0

(gTk dk)
2

||dk||2
≥ 9

16

∞∑
k=0

ε2

||dk||2
= +∞. (26)

This statement is in contradiction with the information presented in (24). Hence, it may be inferred
that the conclusion of the theorem is valid.
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In the following section, we will examine the convergence of the proposed approach using the
Armijo-type backtracking line search procedure. This procedure is defined by the parameters ϕ and
ρ, both of which lie within the open interval (0, 1). The step size αk is determined as ϕi, where i s
the smallest nonnegative integer that satisfies the line search criteria.

f(xk + αkdk) ≤ f(xk) + ρα2
k||dk||2 (27)

satisfied. Based on equation (27) and the observed decreasing character of the sequence f(xk), it
may be inferred that

∞∑
k=0

α2
k||dk||2 < +∞.

This finding suggests that

lim
k→∞

αk||dk|| = 0. (28)

Lemma 2.8. If the sequence dk is defined by equation (14), then there exists a positive value G1

such that ||dk|| ≤ K1.

Proof. From (15),

|βTTBNTC
k | =

∣∣∣∣ ||gk||2wk
−

||gk||2gTk dk−1

w2
k

∣∣∣∣
≤ ||gk||2

µ||dk−1||||gk||
− ||gk||3||dk−1||

(µ||dk−1||||gk||)2

=

(
1

µ
+

1

µ2

)
||gk||

||dk−1||
. (29)

Also,

|γk| =
∣∣∣∣− tk

gTk dk−1

wk

∣∣∣∣
= tk

∣∣∣∣gTk dk−1

wk

∣∣∣∣
≤ t

||gk||||dk−1||
wk

≤ t
||gk||||dk−1||
µ||dk−1||||gk||

=
t

µ
. (30)
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Hence, based on equations (14), (29), and (30), it can be inferred that

||dk|| = || − gk + βTTBNTC
k dk−1 + γkgk||

≤ ||gk||+ |βTTBNTC
k |||dk−1||+ ||γk||||gk||

≤ ||gk||+
(
1

µ
+

1

µ2

)
||gk||

||dk−1||
||dk−1||+

t

µ
||gk||

=

(
1 +

1 + t

µ
+

1

µ2

)
||gk|| (31)

=

(
1 +

1 + t

µ
+

1

µ2

)
l2. (32)

By letting K1 = (1 + 1+t
µ + 1

µ2 )l2, it can be observed that

||dk|| ≤ K1. (33)

Theorem 2.9. If the value of the step size αk is such that equation (27) is satisfied,

lim
k→∞

inf ||gk|| = 0. (34)

Proof. Let it be assumed by the method of contradiction, that equation (34) is false. For any given
value of k, it is possible to identify a positive value of q such that

||gk|| ≥ q. (35)

By defining αk = ϕ−1αk, it becomes evident that αk does not satisfy equation (27). This statement
signifies

f(xk + ϕ−1αkdk) > f(xk)− ρϕ−2α2
k||dk||2. (36)

By utilising the mean value theorem in conjunction with Lemma 2.8, equations (4) and (20), it can
be concluded that there exists a value zk within the interval (0, 1).

f(xk + ϕ−1αkdk)− f(xk) = ϕ−1αkg(xk + zkϕ
−1αkdk)

= ϕ−1αkg
T
k dk + ϕ−1αk(g(xk + zkϕ

−1αkdk)− gk)
Tdk

≤ ϕ−1αkg
T
k dk + Lϕ−2α2

k||dk||2.

By substituting the aforementioned relation in equation (36), along with equations (33) and (35), it
can be inferred that

αk ≥ ϕ||gk||2

(L+ ρ)||dk||2
≥ ϕz2

(L+ ρ)K2
1

> 0.

Together, this and (28) results in

lim
k→∞

||dk|| = 0. (37)

28



Applied Mathematics and Computational Intelligence
Volume 14, No. 2, 2025 [19 – 36]

However, by utilising the backward Cauchy-Schwartz inequality on equation (4), it can be concluded
that

||dk|| ≥
3

4
||gk||.

As a result, limk→∞ ||gk|| = 0. This contradicts the assumption in (35), and thus, confirming that
indeed limk→∞ inf ||gk|| = 0.

3 NUMERICAL RESULTS

In this section, the computational efficiency of the proposed TTBNTC method is examined. A
common approach for evaluating the efficiency of a method is to employ the test function. The test
function plays a crucial role in validating and comparing newly developed optimization methods.
The comparison is made between TTBNTC with BNC and BTC by [16], FR [6], and TTRMIL [20]
methods. The FR method is a classical and widely used conjugate gradient approach, making it
a benchmark for assessing the performance of new algorithms. On the other hand, the TTRMIL
method represents a more recent advancement in optimization techniques, providing a modern
reference point. Comparing TTBNTC with both traditional and contemporary methods ensures a
robust analysis of its effectiveness and efficiency. The methods were coded in Matlab R2023a and
run on a personal computer (PC) with AMD Ryzen 3 processor, 12 GB RAM, 64 bit Windows 10
operating system.

The 48 test functions, encompassing a total of 119 problems are derived from the works of [21],
[22], and [23]. These test functions are widely recognized in the field of optimization and provide a
comprehensive benchmark for evaluating the performance of the proposed method. The full list of
test problems is presented along with the results in Tables 1 and 2. In order to provide evidence
of the efficiency of the method, test problems were carried out utilizing low, medium, and high
dimensions ranging from 2 to 1,000,000 respectively. All parameters of the BNC, BTC, FR, and
TTRMIL approaches are kept the same to enable objective comparison between them. Particularly
for the TTBNTC, the parameters were set at θ = 0.0001, σ = 0.009, t = 0.3 and µ = 0.01.

The comparison of the numerical results is done based on the number of iterations (NOI), and the
amount of time spent by the CPU in seconds (CPU). In the conducted experiment, the stopping
condition ||gk|| ≤ 10−6 is considered.

Tables 1 and 2 present the numerical results of all the methods. If the NOI exceeds 10,000 or if this
approach never reaches the ideal value, the algorithm will be considered as failed which is denoted
by ”-” in its place.

Table 1 : The numerical results for TTBNTC, BNC & BTC

No Functions
TTBNTC BNC BTC

NOI CPU NOI CPU NOI CPU
1 Extended White & Holst 16 1.9919 99 9.4229 30 3.0931
2 Extended White & Holst 16 4.0182 108 18.0254 29 5.9673
3 Extended White & Holst 17 42.3818 - - 34 60.5813
4 Extended Rosenbrock 31 1.6438 - - 46 1.894
5 Extended Rosenbrock 31 3.2097 - - 46 3.6231
6 Extended Rosenbrock 35 36.7358 - - 46 32.1314
7 Extended Beale 95 0.3251 456 1.1144 47 0.1827
(continued on next page)
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Table 1 – (continued)

No Functions
TTBNTC BNC BTC

NOI CPU NOI CPU NOI CPU
8 Extended Beale 106 9.9221 548 55.6499 52 4.9762
9 Extended Beale 107 20.3603 566 91.7813 52 10.0978
10 Raydan 1 19 0.0102 19 0.0032 19 0.0157
11 Raydan 1 47 0.0347 47 0.0095 47 0.0088
12 Raydan 1 68 0.0414 68 0.0332 69 0.0219
13 Extended Tridiagonal 1 14 0.0158 49 0.0058 41 0.0188
14 Extended Tridiagonal 1 22 0.0098 64 0.013 55 0.0292
15 Extended Tridiagonal 1 22 0.0235 79 0.0317 70 0.039
16 Diagonal 4 2 0.0345 2 0.0052 2 0.0203
17 Diagonal 4 2 0.0205 2 0.0189 2 0.1123
18 Diagonal 4 2 0.0952 2 0.0917 2 0.0901
19 Extended Himmelblau 10 0.0444 - - 21 0.078
20 Extended Himmelblau 11 0.5157 - - 22 1.1808
21 Extended Himmelblau 11 0.996 - - 22 2.5221
22 FLETCHCR 39 0.024 - - 42 0.0467
23 FLETCHCR 37 0.2894 - - 41 0.3072
24 FLETCHCR 33 1.7382 - - 43 1.9986
25 NONSCOMP 1027 0.0557 - - 186 0.0187
26 Extended Penalty Function U52 13 0.0156 58 0.005 18 0.0194
27 Extended Penalty Function U52 15 0.006 18 0.0026 62 0.0186
28 Hager 9 0.0113 9 0.0004561 9 0.0195
29 Hager 11 0.0006607 11 0.0012 11 0.0027
30 Hager 20 0.0095 20 0.0032 20 0.0059
31 Cube 24 0.0037 36 0.0042 21 0.0026
32 Extended Maratos 46 0.0212 - - 64 0.0505
33 Extended Maratos 46 0.0274 - - - -
34 Extended Maratos 46 0.0311 - - - -
35 Six Hump Camel 6 0.011 21 0.0027 12 0.0019
36 Six Hump Camel 10 0.001 20 0.0011 10 0.0007152
37 Three Hump Camel 10 0.0036 - - - -
38 Three Hump Camel 15 0.0034 - - - -
39 Booth 2 0.0001403 2 0.0001595 2 0.0002708
40 Booth 2 0.0069 2 0.0073 2 0.0003551
41 Trecanni 1 0.0058 1 0.0013 1 0.0045
42 Trecanni 9 0.0007807 29 0.0016 17 0.0009675
43 Zettl 1 0.0001616 2 0.0001674 2 0.0001657
44 Zettl 11 0.0007833 - - 22 0.007
45 Shallow 3 0.0098 3 0.0067 3 0.0223
46 Shallow 4 0.2162 4 0.2146 4 0.1994
47 Shallow 4 0.3914 4 0.3856 4 0.3451
48 Generalized Quartic 6827 6.2308 - - - -
49 Generalized Quartic 1956 32.0205 - - - -
50 Quadratic QF2 173 0.0499 - - 98 0.0264
51 Quadratic QF2 453 0.5062 - - 284 0.4948
52 Leon 15 0.0008656 - - 39 0.0015
53 Leon 477 0.0393 - - - -
54 Generalized Tridiagonal 1 33 0.0193 50 0.0038 26 0.0188
55 Generalized Tridiagonal 1 32 0.0056 47 0.0044 33 0.0059
56 Generalized Tridiagonal 1 38 0.0293 - - 34 0.0228
57 Generalized Tridiagonal 2 106 0.0219 - - - -
58 Generalized Tridiagonal 2 104 0.0194 - - - -
59 POWER 10 0.0064 10 0.0005597 10 0.008
60 POWER 66 0.0188 65 0.0096 65 0.014
61 Quadratic QF1 56 0.0331 56 0.0145 56 0.0323
62 Quadratic QF1 187 0.2332 187 0.2576 187 0.229
63 Quadratic QF1 606 4.6706 606 4.6666 606 4.1022
64 Extended Quadratic Penalty QP2 302 0.1713 - - 88 0.0289
65 Extended Quadratic Penalty QP2 728 1.3224 - - - -
66 Extended Quadratic Penalty QP1 14 0.0077 - - 33 0.0118
67 Extended Quadratic Penalty QP1 15 0.0024 19 0.001 18 0.0025
68 Quartic 45 0.0224 - - 134 0.0339
69 Quartic 11 0.0008424 52 0.0054 48 0.0397
70 Matyas 1 0.0002056 1 0.0001583 1 0.0235
71 Matyas 1 0.0002417 1 0.0002029 1 0.000226
72 Colville 17 0.0012 57 0.0063 35 0.02
73 Colville 60 0.0162 - - 47 0.0021
74 Dixon and Price 93 0.1871 171 0.2559 86 0.1244
75 Dixon and Price 93 0.8054 171 1.6125 86 0.6616
76 Dixon and Price 93 6.7615 171 10.8141 86 5.2843
77 Sphere 1 0.0038 1 0.0033 1 0.013
78 Sphere 1 0.017 1 0.0187 1 0.0167
79 Sphere 1 0.0919 1 0.1066 1 0.0857
80 Sum Squares 178 0.2448 178 0.2613 178 0.2434
81 Sum Squares 578 4.3451 578 4.1716 578 4.6117
82 Sum Squares 1310 44.5184 1310 45.5226 1310 44.8238
83 DENSCHNA 14 0.0639 11 0.0326 15 0.0735
84 DENSCHNA 16 0.2859 13 0.2344 15 0.2604
85 DENSCHNA 16 2.4835 13 1.8789 17 2.3966
86 DENSCHNB 18 0.024 19 0.0062 11 0.0244
87 DENSCHNB 19 0.1201 21 0.1224 12 0.1151
88 DENSCHNB 20 0.8964 10 0.9297 12 0.5461
89 DENSCHNC 22 0.0358 33 0.0143 27 0.0415
90 DENSCHNC 23 0.2729 - - 28 0.3495
91 DENSCHNC 25 2.4985 - - - -
92 Extended Block-Diagonal BD1 18 0.0209 - - 61 0.0458
(continued on next page)
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Table 1 – (continued)

No Functions
TTBNTC BNC BTC

NOI CPU NOI CPU NOI CPU
93 Extended Block-Diagonal BD1 20 0.1485 - - 68 0.4008
94 Extended Block-Diagonal BD1 21 0.9693 - - 70 3.3075
95 HIMMELBG 1 0.0177 1 0.0009967 1 0.0195
96 HIMMELBG 1 0.0036 1 0.0041 1 0.0056
97 HIMMELBG 1 0.0106 1 0.0063 1 0.0094
98 HIMMELBH 6 0.0112 6 0.0005468 6 0.0142
99 HIMMELBH 7 0.0025 7 0.0025 7 0.0023
100 HIMMELBH 7 0.0066 7 0.0024 7 0.003
101 Extended Hiebert 36 0.1851 - - - -
102 Extended Hiebert 37 0.665 - - - -
103 Extended Hiebert 37 5.3553 - - - -
104 Linear Perturbed 54 0.0377 54 0.021 54 0.0412
105 Linear Perturbed 406 1.8376 406 1.9088 406 1.548
106 QUARTICM 32 0.2869 35 0.2777 33 0.2767
107 Zirilli or Aluffi-Pentini’s 4 0.0074 4 0.0001531 4 0.0086
108 Zirilli or Aluffi-Pentini’s 4 0.0002128 4 0.0001511 4 0.000218
109 Extended Quadratic Penalty QP3 16 0.0181 21 0.0015 26 0.0226
110 Extended Quadratic Penalty QP3 21 0.0097 22 0.0018 - -
111 Extended Quadratic Penalty QP3 23 0.0296 28 0.0093 5 0.0083
112 DIAG-AUP1 4 0.0036 16 0.0019 18 0.014
113 DIAG-AUP1 4 0.0199 18 0.0361 20 0.0545
114 DIAG-AUP1 4 0.0947 20 0.2287 22 0.3398
115 Strait 17 0.0451 52 0.0981 36 0.059
116 Strait 16 1.6526 18 1.7959 39 3.0996
117 Strait 15 15.1503 18 17.1426 36 28.6742
118 Perturbed Quadratic 2 0.0002076 2 0.0002208 2 0.0029
119 Perturbed Quadratic 2 0.000195 2 0.0001587 2 0.0003016

Table 2 : The numerical results for TTBNTC, FR & TTRMIL

No Functions
TTBNTC FR TTRMIL

NOI CPU NOI CPU NOI CPU
1 Extended White & Holst 16 1.9919 59 4.801 15 1.5989
2 Extended White & Holst 16 4.0182 58 9.5997 15 2.8469
3 Extended White & Holst 17 42.3818 40 68.9642 15 28.4067
4 Extended Rosenbrock 31 1.6438 73 2.6959 24 1.1387
5 Extended Rosenbrock 31 3.2097 142 9.7789 24 1.8668
6 Extended Rosenbrock 35 36.7358 - - 24 19.15
7 Extended Beale 95 0.3251 104 0.2689 35 0.1158
8 Extended Beale 106 9.9221 119 9.2643 35 2.9919
9 Extended Beale 107 20.3603 120 19.0151 35 5.8235
10 Raydan 1 19 0.0102 19 0.0113 19 0.0027
11 Raydan 1 47 0.0347 49 0.0099 58 0.008
12 Raydan 1 68 0.0414 68 0.0591 101 0.0785
13 Extended Tridiagonal 1 14 0.0158 50 0.0185 6 0.0014
14 Extended Tridiagonal 1 22 0.0098 79 0.0224 16 0.0057
15 Extended Tridiagonal 1 22 0.0235 95 0.043 19 0.0356
16 Diagonal 4 2 0.0345 2 0.0153 2 0.0158
17 Diagonal 4 2 0.0205 2 0.2785 2 0.0227
18 Diagonal 4 2 0.0952 2 0.0803 2 0.0925
19 Extended Himmelblau 10 0.0444 154 0.2702 16 0.0566
20 Extended Himmelblau 11 0.5157 164 6.4544 17 0.6928
21 Extended Himmelblau 11 0.996 166 13.2781 17 1.4242
22 FLETCHCR 39 0.024 37 0.036 47 0.0368
23 FLETCHCR 37 0.2894 61 0.3206 43 0.2824
24 FLETCHCR 33 1.7382 55 2.0232 42 1.5731
25 NONSCOMP 1027 0.0557 9184 0.3438 1697 0.0512
26 Extended Penalty Function U52 13 0.0156 17 0.0163 18 0.0124
27 Extended Penalty Function U52 15 0.006 271 0.0867 26 0.0041
28 Hager 9 0.0113 9 0.0095 9 0.0075
29 Hager 11 0.0006607 11 0.0008157 12 0.0009293
30 Hager 20 0.0095 20 0.0048 20 0.0041
31 Cube 24 0.0037 1094 0.0554 21 0.0032
32 Extended Maratos 46 0.0212 125 0.0257 103 0.0195
33 Extended Maratos 46 0.0274 - - 110 0.5922
34 Extended Maratos 46 0.0311 - - 102 0.0762
35 Six Hump Camel 6 0.011 16 0.01 8 0.0073
36 Six Hump Camel 10 0.001 35 0.0015 10 0.0007031
37 Three Hump Camel 10 0.0036 - - - -
38 Three Hump Camel 15 0.0034 - - 21 0.001
39 Booth 2 0.0001403 2 0.00017 2 0.0001457
40 Booth 2 0.0069 2 0.014 2 0.0078
41 Trecanni 1 0.0058 1 0.007 1 0.0395
42 Trecanni 9 0.0007807 181 0.0083 13 0.0072
43 Zettl 1 0.0001616 2 0.0001769 2 0.0018
44 Zettl 11 0.0007833 21 0.0191 19 0.0017
45 Shallow 3 0.0098 3 0.0193 3 0.0229
46 Shallow 4 0.2162 4 0.2117 3 0.1409
(continued on next page)
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Table 2 – (continued)

No Functions
TTBNTC FR TTRMIL

NOI CPU NOI CPU NOI CPU
47 Shallow 4 0.3914 4 0.3626 3 0.2741
48 Generalized Quartic 6827 6.2308 - - - -
49 Generalized Quartic 1956 32.0205 - - - -
50 Quadratic QF2 173 0.0499 231 0.0707 136 0.1043
51 Quadratic QF2 453 0.5062 759 0.7131 1051 1.2613
52 Leon 15 0.0008656 67 0.0093 60 0.0132
53 Leon 477 0.0393 870 0.1052 156 0.0093
54 Generalized Tridiagonal 1 33 0.0193 21 0.0177 24 0.0154
55 Generalized Tridiagonal 1 32 0.0056 45 0.0054 31 0.003
56 Generalized Tridiagonal 1 38 0.0293 50 0.0297 34 0.0494
57 Generalized Tridiagonal 2 106 0.0219 - - - -
58 Generalized Tridiagonal 2 104 0.0194 - - - -
59 POWER 10 0.0064 10 0.0094 130 0.0176
60 POWER 66 0.0188 66 0.0128 2583 1.0392
61 Quadratic QF1 56 0.0331 56 0.0264 123 0.0605
62 Quadratic QF1 187 0.2332 187 0.2122 940 1.0322
63 Quadratic QF1 606 4.6706 606 3.7859 9407 70.9183
64 Extended Quadratic Penalty QP2 302 0.1713 - - 341 0.0721
65 Extended Quadratic Penalty QP2 728 1.3224 5648 9.4561 68 0.2453
66 Extended Quadratic Penalty QP1 14 0.0077 18 0.0145 9 0.012
67 Extended Quadratic Penalty QP1 15 0.0024 20 0.0027 17 0.0012
68 Quartic 45 0.0224 583 0.0423 758 0.0566
69 Quartic 11 0.0008424 46 0.0025 137 0.008
70 Matyas 1 0.0002056 1 0.0099 1 0.0081
71 Matyas 1 0.0002417 1 0.0002097 1 0.000239
72 Colville 17 0.0012 183 0.0083 199 0.0154
73 Colville 60 0.0162 168 0.0209 386 0.0259
74 Dixon and Price 93 0.1871 98 0.103 4832 5.8391
75 Dixon and Price 93 0.8054 98 0.6169 - -
76 Dixon and Price 93 6.7615 98 5.7976 - -
77 Sphere 1 0.0038 1 0.0121 1 0.0103
78 Sphere 1 0.017 1 0.0158 1 0.0205
79 Sphere 1 0.0919 1 0.0906 1 0.078
80 Sum Squares 178 0.2448 178 0.2064 834 0.9395
81 Sum Squares 578 4.3451 578 3.4987 8507 62.9604
82 Sum Squares 1310 44.5184 1310 35.9132 - -
83 DENSCHNA 14 0.0639 19 0.0699 9 0.052
84 DENSCHNA 16 0.2859 19 0.2911 9 0.1601
85 DENSCHNA 16 2.4835 21 2.6787 10 1.3422
86 DENSCHNB 18 0.024 132 0.063 11 0.0258
87 DENSCHNB 19 0.1201 145 0.7759 11 0.0659
88 DENSCHNB 20 0.8964 155 5.7595 11 0.4505
89 DENSCHNC 22 0.0358 12 0.029 19 0.0403
90 DENSCHNC 23 0.2729 75 6.9901 - -
91 DENSCHNC 25 2.4985 - - - -
92 Extended Block-Diagonal BD1 18 0.0209 25 0.0288 16 0.0268
93 Extended Block-Diagonal BD1 20 0.1485 28 0.1556 18 0.1281
94 Extended Block-Diagonal BD1 21 0.9693 29 1.2047 19 0.9095
95 HIMMELBG 1 0.0177 1 0.0177 1 0.0176
96 HIMMELBG 1 0.0036 1 0.0037 1 0.0362
97 HIMMELBG 1 0.0106 1 0.0065 1 0.0211
98 HIMMELBH 6 0.0112 7 0.014 5 0.0122
99 HIMMELBH 7 0.0025 7 0.002 5 0.0211
100 HIMMELBH 7 0.0066 7 0.0043 5 0.0074
101 Extended Hiebert 36 0.1851 8531 9.7725 38 0.0983
102 Extended Hiebert 37 0.665 6894 47.7664 39 0.458
103 Extended Hiebert 37 5.3553 160 11.0264 39 3.7912
104 Linear Perturbed 54 0.0377 54 0.0308 111 0.0724
105 Linear Perturbed 406 1.8376 406 1.4496 4259 15.0115
106 QUARTICM 32 0.2869 35 0.2633 31 0.282
107 Zirilli or Aluffi-Pentini’s 4 0.0074 4 0.012 4 0.0111
108 Zirilli or Aluffi-Pentini’s 4 0.0002128 4 0.000114 4 0.0001648
109 Extended Quadratic Penalty QP3 16 0.0181 14 0.0193 15 0.0154
110 Extended Quadratic Penalty QP3 21 0.0097 - - 19 0.002
111 Extended Quadratic Penalty QP3 23 0.0296 - - 36 0.0103
112 DIAG-AUP1 4 0.0036 16 0.0134 22 0.0155
113 DIAG-AUP1 4 0.0199 19 0.0501 25 0.0668
114 DIAG-AUP1 4 0.0947 20 0.2365 26 0.2717
115 Strait 17 0.0451 25 0.0688 31 0.0961
116 Strait 16 1.6526 32 2.5726 49 3.6429
117 Strait 15 15.1503 27 22.3355 49 37.0309
118 Perturbed Quadratic 2 0.0002076 2 0.0002082 2 0.0008204
119 Perturbed Quadratic 2 0.000195 2 0.0002325 2 0.0002161

In accordance with Tables 1 and 2, the performance profile of each approach can be constructed.
Figures 1 and 2 provide the findings, with each figure representing a performance profile based on
NOI, and CPU times. In the performance profile plot, the uppermost curve represents the method
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that successfully resolved the most number of problems within a specified time factor of the optimal
time. The left side of the plot illustrates the proportion of test problems in which a particular
approach demonstrates the fastest convergence. Conversely, the right side of the plot displays the
percentage of test problems that are effectively resolved by each of the methods.

Figure 1 : Performance profile in terms of the number of iterations

Figure 2 : Performance profile in terms of CPU time

Upon comparing all approaches with respect to the number of iterations, it is evident from Figures
1 and 2 that TTBNTC outperformed the other ways in 119 problems, as it consistently attained
the fewest number of iterations in these instances. TTBNTC is able to solve 100% (119 out of
119) of the problems. TTRMIL, on the other hand, solves 92% of the problems (109 out of 119),
whereas FR solves 89% (106 out of 119), BTC solves 84% (104 out of 119), and BNC solves 67%
(80 out of 119).
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Figure 1 and 2 show the TTBNTC curves exhibit rapid convergence, whereas the BNC, BTC, FR,
and TTRMIL methods demonstrate a gradual approach towards a value of 1.0. When evaluating
the TTBNTC method in comparison to the BNC, BTC, FR, and TTRMIL methods using the
CPU time measure, it becomes evident that TTBNTC outperforms the other approaches in terms
of success rate and robustness. It can be observed from Figure 2 that the BTC, BNC, FR and
TTRMIL curves exhibit a high degree of proximity, indicating inferior performance compared to
the TTBNTC curve.

There exists a significant level of competition between TTBNTC and the other methods, however,
it has been observed that the other approaches demonstrate comparatively slower performance
in certain instances. Hence, TTBNTC demonstrates superior performance, effectively resolving
approximately 100% of the 119 test problems with the lowest CPU time.

Last but not least, it is evident from the findings shown in Tables 1 and 2 as well as Figures 1 and
2 that TTBNTC achieves the best performance in terms of generating the optimal search direction
and achieving the most favourable steplength when considering the average outcomes.

4 CONCLUSIONS

In this study, an effective conjugate gradient approach was introduced. Furthermore, aside from
satisfying the sufficient descent condition, the suggested technique exhibits global convergence. The
key contributions of this paper include the integration of BNC and BTC parameters within a hybrid
framework, inspired by the memoryless BFGS quasi-Newton method. This combination ensures
both the descent requirement and the potential for global convergence. Based on numerical results,
the proposed method demonstrates outstanding performance and exhibits superiority over existing
methods such as BNC, BTC, FR, and TTRMIL. These results highlight the practical applicability
and efficiency of the TTBNTC method in solving unconstrained optimization problems, thereby
advancing the field of optimization techniques.
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