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ABSTRACT 
 

A comprehensive study has been made to investigate the effects of thermal radiation and 
internal heat generation/absorption on nonlinear hydromagnetic flow and heat transfer 
over a stretching/shrinking surface with variable surface temperature embedded in a 
porous medium. Using the similarity transformations, the governing equations are 
transformed into nonlinear ordinary differential equations. Then the numerical solution of 
the nonlinear boundary value problem is found using Nachtsheim Swigert shooting iteration 
scheme for the satisfaction of asymptotic boundary conditions along with Fourth Order 
Runge Kutta method.  The effects of different physical parameters governing the flow and 
heat transfer characteristics such as magnetic parameter, suction parameter, 
stretching/shrinking parameter, permeability parameter, prandtl number, heat 
generation/absorption parameter, radiation parameter and w all temperature parameter 
are discussed.  Favourable comparisons of present numerical result with previous published 
work on various special cases of the problem are obtained. Numerical solutions obtained are 
also validated by comparing with the closed form solutions.  

 
Keywords: Boundary Layer, Heat Transfer, Internal Heat Generation/Absorption, MHD, 
Stretching/ Shrinking Surface and Thermal Radiation. 

 
  

1.  INTRODUCTION  
 
Flow and heat transfer aspects of a continuously moving surface is of considerable interest in 
many industrial applications such as metal extrusion, glass production, hot rolling, continuous 
casting, manufacturing of plastic and rubber sheets and crystal growing.  The pioneering work 
was carried out by Sakiadis. Sakiadis [1, 2] analyzed the boundary layer assumptions and 
boundary layer flow on a continuously stretching sheet with constant speed. Many authors have 
reported flow and heat transfer by considering various physical situations. Crane [3] initiated the 
flow past a stretching plate.  Chakrabarti and Gupta [4] reported hydromagnetic flow and heat 
transfer over a stretching sheet. Non-Newtonian flow past a stretching sheet was studied by 
Siddappa and Subhash [5]. The flow and heat transfer of a viscoelastic fluid over a stretching sheet 
has been explored by Danpat et al. [6]. Radiation effect on heat transfer over a stretching surface 
was examined by Elbashbeshy [7].  Liao [8] analyzed a new branch of solution of boundary layer 
flows over a stretching flat plate. Ishak et al. [9] presented hydromagnetic flow and heat transfer 
adjacent to stretching vertical sheet. Prasad et al. [10] considered mixed convection heat transfer 
over a nonlinear stretching surface with variable fluid properties. Anjali devi et al. [11] analyzed 
the radiation effects on MHD boundary layer flow and heat transfer over a nonlinear stretching 
surface with variable wall temperature in the presence of non-uniform heat source/sink.  
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Shrinking sheet is a surface which decreases in size to a certain area due to an imposed suction 
or external heat. For this flow configuration, the sheet is shrunk towards a slot. It is also shown 
that the mass suction is needed generally to maintain the flow over a shrinking surface.   The 
investigation of flow over a shrinking sheet has lot of application in industries. One of the most 
common applications of shrinking sheet problems in industries is shrinking film. The applications 
of shrinking surface motivated the investigators to deal with the problems of flow over a 
shrinking surface. The existence and uniqueness of the solution of viscous flow over a shrinking 
sheet was determined by Micklavcic and Wang [12]. Boundary layer flow over a shrinking sheet 
with power law velocity was explored by Fang [13]. Yao and Chen [14] obtained a new analytical 
solution branch for the Blasius equation with a shrinking sheet. Thermal boundary layer flow 
over a shrinking sheet was investigated by Fang and Zhang [15]. Boundary layer flow and heat 
transfer over an exponentially shrinking vertical sheet with suction was addressed by Rohini et 
al. [16].  Flow over shrinking sheet under different physical aspects have been discussed in the 
literature [17- 25]. 
 
A new dimension has been made to study the viscous, electrically conducting fluid flow over 
stretching/shrinking surface, which is the consideration of effects of thermal radiation and 
internal heat generation/absorption. Thermal radiation effects play a significant role in 
controlling heat transfer in polymer industry where the quality of the final product depends on 
the heat controlling factors to some extent.  Recently, Krishnendu Bhattacharyya and Layek [26] 
studied the effect of suction/blowing on steady boundary layer stagnation point flow and heat 
transfer towards a shrinking sheet with thermal radiation.  To the best of our knowledge, there 
are only few published papers on viscous flow and heat transfer due to a shrinking surface with 
radiation and internal heat generation/absorption effects [27-30], wherein the effect of internal 
heat generation/absorption on heat transfer of a radiating fluid through a porous medium over a 
stretching/shrinking surface with variable temperature were not considered. 

The objective of the present study is two fold: first to include the effects of thermal radiation and 
internal heat generation/absorption in heat transfer equation, secondly to carry out heat transfer 
analysis, when the surface embedded in a porous medium is prescribed with variable 
temperature.  The numerical results of the flow and heat transfer characteristics are presented 
graphically. 
 
 
2.  MATHEMATICAL FORMULATION 
 
2.1 Flow Analysis 
 

Consider a steady, nonlinear, laminar, two-dimensional boundary layer forced convective flow of 
a viscous, incompressible, electrically conducting and radiating fluid over a continuous 
stretching/shrinking surface coinciding with the plane y = 0 and is embedded in a porous medium 
where the flow being confined to y > 0.  
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The fluid is considered to be grey, absorbing and emitting but non-scattering medium. The x-
coordinate is measured along the stretching/shrinking surface and y coordinate is measured 
perpendicular to it in the outward direction.  The fluid properties are assumed to be constant.  A 
magnetic field B0 of uniform strength is applied transversely to the direction of the flow. The 
magnetic Reynolds number of the flow is taken to be sufficiently small enough, so that the induced 
magnetic field can be neglected in comparison with the applied magnetic field so that B = B0  𝑗̂ . 
Since the flow is steady curl E = 0. Also div E = 0 in the absence of surface charge density and hence 
E = 0 is assumed. The viscous and Joule’s dissipation terms in the energy equation are neglected.   
 
Within the framework and the above assumptions, the boundary layer equations of mass and 
momentum can be described by the following conservation equations 
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Here, u and v denotes the fluid velocity respectively in the x and y directions, ν is the kinematic 
viscosity, σ is electrical conductivity of the fluid, B0 is the applied magnetic field,  ρ is the density 
of the fluid and kp is the permeability of the medium.  
 
The boundary conditions corresponding to the continuity and momentum equations are given 
below 
 
u = ε uw,     v = -v0    at   y = 0     ,     u →0              as y → ∞                                                (3)  
 
where ε is the stretching/shrinking parameter with ε > 0 for stretching and ε < 0 for shrinking, 
uw= a x is the stretching/shrinking surface velocity, a > 0 is a dimensional constant, v0 > 0 is the 
constant suction velocity. The equation of continuity is satisfied if a stream function 𝜓 is chosen 

such that 
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The following similarity transformations are introduced 
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Equations (1) and (2) admit self similar solution of the form 
 

)(Fxau  , )( Fav                                                                                              (5) 

  
Substituting equations (4) and (5), the momentum equation (2) and its boundary conditions in 
(3) become, 
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2.1.1 Skin friction coefficient 
 
The parameter of engineering interest is the skin friction coefficient. The skin friction coefficient 

is determined from 
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2.2 Heat Transfer Analysis         
 
The energy equation includes the effect of radiation and heat generation/absorption. It is 
assumed that the radiative heat flux in the x-axis is negligible in comparison to that in the y-axis. 

Further, it is assumed that the temperature of the surface Tw (x) varies as r
w xATxT  ∞)( where 

A is a constant which depends on thermal properties of the fluid, T∞  is the temperature far away 
from the sheet and r is the wall temperature parameter.  Considering the above mentioned effects 
and assumptions, the boundary layer energy equation is given by     
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where Cp is the specific heat at constant pressure, T is the fluid temperature, k is the thermal 
conductivity of the fluid, qr is the radiative heat flux, Q > 0 is the volumetric rate of heat generation 
and Q < 0 is the volumetric rate of heat absorption.  
The Rosseland approximation (Brewster [31]) is used to simplify the radiative heat flux in the 

energy equation which gives   
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 Here σ* and k* denotes the Stefan-Boltzmann constant and mean absorption coefficient 

respectively.  Assuming that the temperature variation within the flow is such that 4
T  can be 
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expanded in a Taylor series about T∞ (Raptis et al. [32]) as ...)(6)(4 22344   TTTTTTTT  

and neglecting the higher order terms beyond the first degree in )( TT , 4T can be given as   
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Substituting equations (10) and (11), energy equation takes the form  
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 with its corresponding boundary conditions,  
 

r
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The dimensionless temperature θ is defined as 
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temperature )(ηθ and the velocities u and v as given in equation (5), the energy equation in non-

dimensional form is obtained as  
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The boundary conditions in (13) take the nondimensional form as 
 
θ(η) = 1         at η = 0    and      θ(η) → 0      as η → ∞                                                   (15)  
  
2.2.1 Non-Dimensional Rate of Heat Transfer 
 
The dimensionless rate of heat transfer (Local Nusselt number) from the shrinking surface is 

derived from 
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in terms of the dimensionless temperature at the sheet surface as  
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3.  NUMERICAL SIMULATION 
 
The nonlinear differential equations (6) and (14), along with the boundary conditions (7) and 
(15) are solved numerically by converting the boundary value problem into an initial value 
problem, using the most efficient Nachtsheim Swigert shooting iteration scheme along with 
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Fourth Order Runge Kutta algorithm. To solve the boundary value problem constituting (6) and 

(14), the values of )0(F  and )0(  are needed. The initial guess values for )0(F  and )0( are 

chosen and the Nachtsheim Swigert shooting iteration scheme for satisfaction of asymptotic 

boundary conditions is applied to obtain the values of )0(F   and )0( . The process is repeated 

until the results are corrected up to the desired accuracy of 10-5 level, which fulfils the 
convergence criterion. Later, the numerical solutions are obtained utilizing Fourth Order Runge 
Kutta method. The convergence criterion largely depends on fairly good guesses of initial 
conditions in the shooting technique. Numerical results are obtained and presented for various 
values of physical parameters like Magnetic parameter, Suction parameter, Shrinking/Stretching 
parameter, Prandtl number, Heat generation/absorption parameter, Radiation parameter and 
Wall temperature parameter. 
 
 
4.  CLOSED FORM SOLUTION  
 
The closed form solution is obtained for Momentum and Energy equations in case of shrinking 
surface i.e.  ε =-1. 
  
4.1 Momentum Equation  
 
The equation (6) with its boundary condition in (7) admits the solution of the form (Following 
Chakrabarti and Gupta [4]):   
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4.2 Energy Equation 
 
 To obtain the solution of the energy equation (14), we introduce a new variable 
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Using the new independent variable defined in (18) we get the homogeneous confluent 
hypergeometric equation as  
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The solution of (19) may be expressed as follows 
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where Φ(𝑎, 𝑏; 𝑥) is the confluent hypergeometric function of first kind and .
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Expression for θ in terms of similarity variable η can be expressed as   
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5.  RESULTS AND DISCUSSION 
 
A mathematical modelling of steady, two-dimensional, nonlinear, hydromagnetic boundary layer 
flow over a stretching/shrinking surface with variable temperature embedded in a porous 
medium in the presence of radiation and internal heat generation/absorption is carried out. 
Numerical solution of the problem is obtained utilizing the efficient shooting method along with 
Nachtsheim Swigert iteration scheme to satisfy the asymptotic boundary conditions. Numerical 
solutions have been carried out to analyze the influence of physical parameters that arise in the 
study namely Magnetic parameter, Suction parameter, Permeability parameter, 
Stretching/Shrinking parameter Prandtl number, Heat generation/absorption parameter, 
Radiation parameter and Wall temperature parameter.  
 
Table 1 represents the comparison of skin friction coefficient for different values of S in the 
present study with the results of Muhaimin et al. [33] and Bhattacharyya [23]. In the case of two-
dimensional flow the results reduce to that of Muhaimin et al. [33].  It is also seen that in the 
absence of porous medium, the results for skin friction coefficient agree well with the results of 
Bhattacharyya [23].  
 
Table 2 depicts the skin friction coefficient for various values of Suction parameter, Magnetic 
parameter and Shrinking/Stretching parameter.  The table values show that the skin friction 
coefficient increases due to the increasing effect of Suction, Magnetic whereas it decreases with 
an increase in Stretching/Shrinking parameter. 
 
Table 3 shows the variation in non-dimensional rate of heat transfer for various values of the 
physical parameters involved in the study. It is clear that the effect of Suction parameter, Magnetic 
parameter, Stretching/Shrinking parameter, Prandtl number and Radiation parameter is to 
enhance the dimensionless rate of heat transfer while the effect of Heat generation parameter 
and Wall temperature parameter is to reduce the dimensionless rate of heat transfer for its 
increasing values. 
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Table 4 depicts the comparison of the present numerical results with the analytical results for the 
case of shrinking surface. The validity of the present numerical results along with the accuracy of 
the numerical technique is evident from the table. 
 

Table 1 Comparison of results for skin friction coefficient )0(F  when M2 = 2.0, ε = -1 
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Present 

study 
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Table 2 Skin friction coefficient for different S, M2 and ε when S = 2.5, M2 = 1, ε = -1, λ = 10 

 

S M2 ε )0(F   
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4.0 

1.0 -1.0 
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4.018121 

2.5 1.0 
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 0.5 

 1.0 

2.539800 

1.360272 
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-3.163766 

 

Figures 2 and 3 display the comparison of the results of )(′ηF and θ (η) for various values of S in 

the absence of porous medium (λ = 109), radiation effects (Rd = 109) and for the case of constant 
surface temperature (r = 0). The figures show that the results are in good agreement with that of 
Bhattacharyya [23], which guarantees the numerical scheme applied.   
 
Figure 4 elucidates the effect of Magnetic parameter over the dimensionless velocity.  Due to the 
presence of transverse magnetic field the velocity gets accelerated. This happens due to the force 
arising from the interaction of magnetic and electric fields during the motion of the electrically 
conducting fluid. The momentum boundary layer thickness is reduced due to enhancing values of 
Magnetic parameter.  
 
The effect of Suction parameter on flow field when the Magnetic parameter is fixed is shown in 
Figure 5. It is observed that the wall suction has the tendency to reduce the momentum boundary 
layer thickness.   Further it is noted that a steady raise in the velocity accompanies a rise in Suction 
parameter, with all profiles tending asymptotically to horizontal axis.   
 
Figure 6 demonstrates the effect of Stretching/Shrinking parameter on the velocity distribution. 
It is found that the effect of Stretching/ Shrinking parameter is to accelerate the dimensionless 
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velocity.  Variation in skin friction coefficient against Permeability parameter for different values 
of Magnetic parameter is demonstrated in Figure 7. The influence of Magnetic parameter over 
skin friction coefficient is to elevate it. Figure 8 presents the skin friction coefficient against 
Permeability parameter for various values of Suction parameter.  It is evident that the skin friction 
coefficient enhances due to raise in Suction parameter.  
 
The impact of Magnetic parameter over the non-dimensional temperature is portrayed in          
Figure 9.  It is clear from the figure that there is a fall in temperature accompanied with an 
increase in Magnetic parameter.   Figure 10 exhibits the effect of Suction parameter over the 
temperature distribution.  It is vivid that the porosity in the plate reduces the thermal boundary 
layer thickness, which causes a drop in the temperature of the fluid. Dimensionless temperature 
profiles for various values of Stretching/Shrinking parameter are depicted in Figure11. It is 
observed that an increase in Stretching/Shrinking parameter leads to thinning of boundary layer 
thickness.    
 

Table 3 Non-dimensional rate of heat transfer when S = 2.5, M2 = 1,  ε = -1,  λ = 10, Pr = 0.71, Rd = 2, Hs = 
0.1 and r = 2 
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Figure 13 reveals the variation in temperature distribution within the boundary layer for various 
values of Heat generation parameter.  The temperature of the fluid rises for higher values of Heat 
generation parameter. It is also noted that the thermal boundary layer thickness becomes thicker 
due to increase in Heat generation parameter. This is due to the fact that the thermal boundary 
layer generates energy which causes the temperature rise considerably with an increase in value 
of Heat generation parameter. Figure 14 shows the variation in temperature distribution for 
various values of Heat absorption parameter.  The temperature of the fluid decreases for higher 
values of Heat absorption parameter. The thermal boundary layer thickness reduces due to 
increase in Heat absorption parameter.  
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Figure 15 illustrates the typical temperature profiles for various values of the Radiation 

parameter. The effect of radiation becomes more significant as Rd → 0 (Rd ≠ 0) and can be 

neglected when Rd → ∞. The effect of radiation parameter is to reduce the temperature 

significantly in the flow region. By increasing the values of Radiation parameter, the fluid 

temperature decreases accompanied with a decrease in the thermal boundary layer thickness. 

This result can be explained by a fact that an increase in radiation parameter means the release 

of heat energy from the flow region which causes reduction in fluid temperature decreases as the 

thermal boundary layer thickness becomes thinner.  

The temperature of the fluid for different values of Wall temperature parameter when all other 
parameters are kept constant is presented in Figure 16.  It is evident from the graph that the 
increasing effect of wall temperature parameter gives rise to enhancement in temperature 
significantly.   
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Figure 15. Dimensionless temperature profiles for 
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0 2 4 6 8 10


0.0

0.2

0.4

0.6

0.8

1.0


(


)

S = 2.5

M2 = 1.0

  = 10.0



Pr = 0.71

Hs 0.1

Rd = 2.0

r = 0.0, 1.0, 2.0, 3.0, 4.0

Figure 16. Dimensionless temperature profiles for 
various r. 



Applied Mathematics and Computational Intelligence 
Volume 8, No.1, Dec 2019 [39-52] 

 

51 
 

6.  CONCLUSION 
 
In this paper, the effects of radiation and internal heat generation/absorption on nonlinear 
hydromagnetic boundary layer flow and heat transfer over a stretching/shrinking surface 
embedded in a porous medium have been investigated. The numerical results obtained have been 
validated by comparing it with the available results of shrinking sheet problems under some 
limiting cases. In the absence of porous medium, radiation effects and in the case of constant 
surface temperature, the results are in good agreement with that of Bhattacharyya [23].  The 
inclusion of Radiation and Heat generation/absorption effects has tremendous change on heat 
transfer characteristic. 
 
The following main conclusion can be drawn from the present study:  
 

 The effect of Radiation parameter declines the temperature and hence decreases the 
thermal boundary layer thickness when the shrinking sheet is prescribed with variable 
surface temperature.  It is seen clearly that the dimensionless rate of heat transfer grows 
high as the values of Radiation parameter goes up.  

 The effect of Heat generation parameter is to generate temperature for its increasing 
values. The dimensionless rate of heat transfer is reduced by increasing the value of Heat 
generation parameter.  While the opposite trend is observed due to increase in Heat 
absorption parameter. 

 The influence of Prandtl number is to reduce the temperature and the thermal boundary 
layer thickness. More amount of heat is transferred from the sheet to the fluid for 
increasing Prandtl number.  

 All the profiles satisfy the far field boundary conditions asymptotically thus supporting the 
numerical results obtained. 

 The study reveals that the reverse flow caused due to shrinking of the sheet can be 
controlled by applying a strong magnetic field. It is hoped that the present work will serve 
as a stimulus for needed experimental work on this problem. 

 This study has potential applications in understanding the complex dynamics of many 
engineering and industrial flow systems. The interdisciplinary nature of boundary layer 
flow research presents a great opportunity for exploration and discovery at the frontiers 
of science and technology. 
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