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ABSTRACT 
 

This research investigates the problem of stagnation point flow and heat transfer over a 
stretching/shrinking sheet past a porous medium with suction effect. Firstly, the 
mathematical model that governed the fluid flow and heat transfer were formulated. Then, 
the governing nonlinear partial differential equations were transformed into ordinary 
differential equations using similarity transformation. The system of ordinary differential 
equations is then solved numerically using bvp4c function in Matlab software. The effect of 
suction on the skin friction coefficient and the local Nusselt number, as well as the velocity 
and temperature profiles, are obtained and analysed. The numerical result obtained is 
presented in the form of graphs and tables. The dual solutions are obtained for a certain 
range of parameters. The stability analysis has been performed and the result shows that 
the upper branch solution is stable while the lower branch solution is unstable. 

 
Keywords: Stagnation Point Flow, Stretching/Shrinking Sheet, Suction Effect, Dual 
Solution. 
 
  

1.  INTRODUCTION  
 
A few decades ago, the study of flow near a stagnation point has grabbed much attention due to 
its wide range of application in many industrial manufacturing processes. Hiemenz [1] is the 
first person who has studied the two-dimensional stagnation point flow. In his study, the 
thickness of the boundary layer is constant and the distance from the stagnation point is 
proportional to the velocity in the outer flow. The Navier-Stokes equation was reduced to the 
ordinary differential equation by Hiemenz as stated by Abbas et al. [2]. 

 
The study done by Hiemenz [1] was extended by Crane [3] because Hiemenz is the first person 
who pioneered the study of flow over a stretching sheet by solving the steady two-dimensional 
flow past a linearly stretching sheet. The velocity is varying linearly with the distance from a 
fixed point, hence the study by Crane [3] focus on the steady boundary layer flow of an 
incompressible viscous liquid caused by the linear stretching of an elastic flat sheet. After that, 
Gupta and Gupta [4] extended the study by adding suction or blowing effect and they found that 
the stretching surface is not necessarily continuous. 

 
The study of suction on the boundary layer flow has important application in the fields of 
aerodynamics and space science. The unsteady magnetohydrodynamic (MHD) flow and heat 
transfer over a stretching permeable surface with suction or injection have been investigated by 
Choudhary et al. [5]. They found that the rate of heat transfer, temperature profile and velocity 
profile were affected by the suction or injection effect. 
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The study of MHD flow towards a permeable stretching/shrinking sheet of a nanofluid with the 
addition of suction/injection was done by Naramgari and Sulochana [6]. They analysed the 
influence of chemical reaction and thermal radiation and solved the problem numerically by 
using bvp4c function in Matlab. The study found the existence of dual solutions for a certain 
range of stretching/shrinking and suction/injection parameter. The radiation parameter helps 
enhance the temperature profile and decrease the concentration profiles as well as the rate of 
heat transfer. From this study, the rate of heat transfer, flow, and friction factor in stretching 
surface were reduced by the magnetic field parameter. 
 
Motivated by the studies mentioned above, the objective of the present studies is to investigate 
the effect of suction on stagnation point flow and heat transfer over a stretching/shrinking 
sheet past a porous medium. This study is the extension from Rosali and Ishak [7], by adding the 
suction effect as well as the stability analysis. The effects of the suction parameter are 
discovered and explained in detail. The dual solutions are expected to exist for this problem. 
Temporal stability analysis was conducted to verify which solution is stable and has a real 
physical implication. 
 

 
2. MATHEMATICAL FORMULATION 
 

Consider a steady two-dimensional stagnation-point flow over a stretching/shrinking sheet. The 
coordinate system where x -axis along the stretching/shrinking surface, while the y -axis is 

measured normal to it was denoted. It is assumed that the velocity of the stretching/shrinking 
sheet is 

wU ax , where 0a   corresponds to stretching sheet and 0a   is for the shrinking 

case, while the velocity of the external flow is given by U cx  , where 0c   is the strength of 

stagnation flow. The temperature of the surface is ( )wT x T bx  , where b  is a constant and T  

is the temperature of the ambient fluid. The flow configuration and the coordinate system are 
presented in Figure 1. Under above boundary layer approximation assumptions, the governing 
equation for conservation of mass, momentum equation and energy equations of this problem 
can be expressed as the following (see Rosali & Ishak [7]; Ishak et al. [8]): 
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where x and y  represent the coordinate axes along the moving sheet and normal to it with 

respect to the origin at the stagnation point. u and v  are velocity component along the x -axis 

and y -axis respectively, T is the fluid temperature, 1K  is the permeability of porous medium, 

  is the thermal diffusivity, and    is the kinematic viscosity. 
   
The appropriate boundary conditions are: 
 

( ) , ,
w w w

u U x ax v V T T      at  0y   , 

( ) ,u U x cx T T
 

     as  y   ,                        (4) 
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where u and v  are velocity component in the x  and y  direction, a  and c are positive 

constant, T  is the fluid temperature, and 
wV  is the mass velocity with 0wV   for suction. 

 

 
` a) Shrinking case with , 0a      b) Stretching case with , 0a   

 
Figure 1. Physical model and coordinate system.  

 
 
3. SIMILARITY TRANSFORMATIONS 
 

In order to obtain the similarity solutions for equations (1)-(3) with boundary condition (4), we 
have introduced the following similarity variables of the following form (see Rosali & Ishak [7]): 

1
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where   is the stream function, which is defined as  in Equation (6)(see Rosali & Ishak [7]): 

,u
y





  v
x


 


 .                         (6) 

 
Then, substituting equations (5)-(6) into equations (2)-(3) while equation (3.1) is identically 
satisfied, we get 

2

Pr ''' '' 1 ' 1 ' 0f ff f K f            ,                                                                                                (7) 

'' ' ' 0f f     .                                                                                      (8)
             
The boundary conditions (4) become: 
 
'(0) , (0) , (0) 1f f     , 

(0) 1, ( ) 0    as   .                                       (9) 

 

where Pr



  is the Prandtl number, 

1

K
cK


  is the permeability parameter, 0   is the 

suction parameter, and a c   is the stretching/shrinking parameter with 0   for a 

stretching sheet and 0   for a stretching sheet. 
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The physical quantities of interest in this study are the skin friction coefficient 
fC  and the local 

Nusselt number xNu   as stated by Rosali & Ishak [7] which are defined as: 

 

2
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                                                              (10) 

 

Here,   is the fluid density, 
w  and 

wq  are the surface shear stress and surface heat flux, 

respectively are given by 
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where   and k  are the dynamic viscosity and thermal conductivity respectively. Substituting 

equation (11) into equation (10) and using equations (5) and (6), we get: 
 

1 1

2 2
1

Re Pr ''(0)
2 f x
C f



 ,          
1

2 '(0)
x x

Nu Pe 


  ,                                              (12) 

 
where the local Reynolds number and the Peclet number are defined as: 
 

Re
x

U x



    and   
x

U x
Pe


                                                                             (13) 

 
 
4. STABILITY ANALYSIS 
 

Recently, stability analysis has become a trend between researchers in order to verify the 
stability of the dual solutions. The idea of stability analysis is to verify the significance of dual 
solutions was started by Merkin [9]. As stated by Weidman et al. [10], in order to study the 
stability of the dual solutions, the unsteady state flow case need to be considered. There is a lot 
of researchers that utilise the stability analysis in their studies such as Awaludin et al. [11], 
Jahan et al. [12], and Ismail et al. [13]. 
 
Consider the problem of unsteady. Equation (1) holds while equations (2)-(3) are replaced by: 
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We introduce new similarity variables as follows: 
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We introduce the dimensionless time variable   that will follow the definition of u  and v . 
 

'( , ),u cxf     ( , )v c f    .                                                               (17) 

 
Using equations (16)-(17) into (14)-(15), the following equations are obtained: 
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Thus, the boundary conditions become: 
 

(0, ) , (0, ) , (0, ) 1,
f f     



  


 

'( , ) 1, ( , ) 0f        as  .                                              (20)   

 

In order to test the stability behaviour, the basic flow  0f f    and  0    which satisfy 

the equations (7)-(8) subject to boundary conditions (9) will be perturbed with disturbance as 
stated by Weidman et al. [10]. 
 

     0
, , ,f f e F        

     0
, , ,e G                                                                                                                 (21)   

 

where   is an unknown eigenvalue, and  ,F    and  ,G   are functions. Solutions of the 

eigenvalue problem (16)-(18) give an infinite set of eigenvalues 1 2 3 ...      ; 1 , If 1  is 

negative, there is an initial growth of disturbances and the flow is unstable, but when 1  is 

positive, there is an initial decay and the flow is stable. Substituting (21) into equations (18)-
(19), the following equations were obtained: 
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along the  boundary conditions: 
 

     0, 0, 0, 0, 0, 0F F G  



  


,                                                                                                    (24) 

   , 0, , 0F G   



 


 as   .                                                              (25)     

 

The solutions    0f f  and    0    of the steady equations (7) and (8) are obtained 

by setting 0  . Hence,  0F F  and  0G G  in (22) and (23) identify the initial growth 

or decay of the solution (21). Equations (22) and (23) become the following linear eigenvalue 
problem 
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0 0 0
Pr ''' '' '' 2 ' ' 0F f F f F f K F        ,                     (26)  

0 0 0 0
'' ' ' ' ' ' 0G f G F F f G G        ,                                                                            (27)  

 
along with the boundary condition:  
 

     ' 0 0, 0 0, 0 0F F G   , 

   ' 0, 0F G    as  .                                                                            (28)

           
It should be mentioned that for particular values of Pr, K ,   and  , the stability of the 

corresponding steady flow solution  0f   and  0  was determined by the smallest 

eigenvalue  . 
 
 
5. RESULTS AND DISCUSSION 
 

The system of ordinary differential equations of equations (7)-(8) with the boundary conditions 
(9) is solved numerically using the bvp4c function in Matlab software. In order to test the 
accuracy of the present result, we have compared our results with Rosali and Ishak [7] when  
Pr 1 , 0K   and 1.2K  , and 0   which mean there is no suction effect imposed at the 

boundary with different values of stretching/shrinking parameter  . For different values of  , 
the present results agree to six decimal places and that is in line with the result of  Rosali and 
Ishak [7]. The comparison showed excellent agreement as presented in Table 1. 
 

Table 1 Comparison of the values of   0f   for different values of   for stretching  0   and 

shrinking  0   when Pr 1  

 
            Present Results        Rosali & Ishak [7] 
 0K   1.2K   0K   1.2K   

-1.2465 0.584282 2.676432 0.554294 2.676432 
-1.15 1.082310 2.651743 1.082231 2.651743 
-1 1.328817 2.591239 1.328817 2.591239 
-0.9 1.418077 2.537131   
-0.75 1.489298 2.436991 1.489298 2.436991 
-0.6 1.507025 2.315730   
-0.5 1.495670 2.223932 1.495670 2.223932 
-0.3 1.427576 2.015788   
-0.25 1.402241 1.958883 1.402241 1.958883 
-0.1 1.308602 1.777080   
0 1.232588 1.646964 1.232588 1.646964 
0.1 1.146561 1.509998 1.146561 1.509998 
0.2 1.051130 1.366397 1.051130 1.366397 
0.4 0.834072 1.060080   
0.5 0.713294 0.897720 0.713294 0.897720 
1 0 0   
2 -1.887307 -2.178589 -1.887307 -2.178589 
3 -4.276541 -4.798467    
5 -10.264749 -11.150137 -10.264749 -11.150137 
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The variations of the skin friction coefficient  0f   and the local Nusselt number  0  with 

stretching/shrinking parameter   for different values of suction/injection parameter   is 

shown in Figure 2 and 3, respectively. From Figure 2 and 3, it is shown that a dual solution 
exists for the similarity equations of equations (7)-(8) subject to the boundary condition (9). 

There exists a critical value 
c  with two solutions exist for 

c  , a unique solution obtained 

when 
c   and no solutions exist for 

c  , as shown in Figure 2 and 3. The critical values of 

c  are -2.348835, -2.389845 and -2.437, for 0,0.1   and 0.2 , respectively. Table 2 shows the 

critical values 
c  for different  . On the other hand, the values of  0f   and  0  for the 

present problem are tabulated in Tables 3 and 4. 
 

Table 2 The critical values 
c  for some values of    when Pr 1  and 1.2K    

 
   

c   

0 -2.348835 

0.1 -2.389845 

0.2 -2.437 

 

Table 3 Values of  0f   for different values of  and , for stretching  0   and shrinking  0   

when Pr 1  and 1.2K    

 
  0f    

   0              0.1            0.2   

-2.34 1.150900137 
 

(0.662286156) 

1.627769039 
 

(0.455557521) 
 

1.995295635 
 

(0.36020797) 
 

-2.33 1.26525544 
 

(0.55302540) 
 

1.683479626 
 

2.035207821 
 

-2.32 1.350745798 
 

(0.472677092) 
 

1.734187464 
 

2.072833038 
 

-2.2 1.889173753 2.148684414 
 

2.410359719 
 

-2.1 2.137152596 2.364342699 
 

2.597241673 
 

-2 2.313085653 2.520128878 
 

2.733578429 
 

-1.8 2.538372792 2.718335459 
 

2.904409831 
 

-1.6 2.653192124 2.813384066 
 

2.978991971 
 

-1.4 2.690098066 2.833793917 
 

2.982214859 
 

-1.2 2.665999035 2.794991705 
 

2.928083123 
 

-1 2.591239275 2.706633327 
 

2.82556621 
 

-0.8 2.472803228 2.575334618 2.680902838 
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-0.6 2.315730344 2.405917688 

 
2.498688431 

 
-0.4 2.123834469 2.202058968 

 
2.28245399 

 
-0.2 1.900107747 1.966658988 2.035001852 

0 1.646964429 1.702068312 
 

1.758613683 
 

0.2 1.366396923 1.410233504 
 

1.455186014 
 

0.4 1.060080009 1.092795473 
 

1.126322451 
 

0.6 0.729443312 0.751158138 
 

0.773398492 
 

0.8 0.375723001 0.386537875 
 

0.397608396 
 

1 0 0 0 

( ) second solution 

 

Table 4 Values of  0  for different values of  and  , for stretching  0    and shrinking 

 0   when Pr 1  and 1.2K    

 
  0   

   0              0.1            0.2   

-2.34 -2.846273194 
(-4.945898633) 

-2.067838194 
(-9.62590335) 

-1.651378021 
(-26.65041223) 

-2.33 -2.552346558 
(-5.838610832) 

-1.961620739 
 

-1.585772172 
 

-2.32 -2.35668347 
(-6.732714624) 

-1.868991071 
 

-1.525321503 
 

-2.2 -1.404443176 -1.211655201 
 

-1.025200344 
 

-2.1 -1.048707217 -0.906200636 
 

-0.761386115 
 

-2 -0.801508535 -0.682996631 
 

-0.560258046 
 

-1.8 -0.452571766 -0.357420965 
 

-0.257693748 
 

-1.6 -0.200458697 
 

-0.116773431 
 

-0.028920677 
 

-1.4 -0.000086956 0.076786571 
 

0.157395797 
 

-1.2 0.167929469 0.240291438 
 

0.316023154 
 

-1 0.313729288 0.382884351 
 

0.455108896 
 

-0.8 0.443288645 0.510047771 
 

0.579629451 
 

-0.6 0.560429904 0.625331399 
 

0.692850089 
 

-0.4 0.667748079 0.731167388 
 

0.797030914 
 

-0.2 0.767087152 
 

0.829296482 
 

0.893802464 
 

0 0.859805457 
 

0.921008409 
 

0.984380711 
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0.2 0.946933332 
 

1.007286127 
 

1.069697322 
 

0.4 1.02927143 
 

1.088896554 
 

1.150482472 
 

0.6 1.107454763 
 

1.166449986 
 

1.227319463 
 

0.8 1.181995736 
 

1.240440373 1.300681949 

1 1.253314136 1.311273391 1.370960065 

( ) second solution 

 
In Figure 2, the first solution has a higher value of  0f   compared to the second solution for a 

given . The magnitude of  0f   increases as   increases for both first and second solution. 

This is due to the suction/injection effect that increases the surface shear stress and thus 
increases the velocity gradient at the surface. As the   increases, the critical values 

stretching/shrinking parameter c  for which the solution exists also increases. Consequently, 

the skin friction coefficient increases with the increasing of suction/injection effect parameter. 
 

Figure 3 shows that the magnitude of  0 which represents the heat transfer rate at the 

surface increases as the suction/injection parameter   increases. The first solution has a higher 

value of  0  as compared to the second solution. In this figure, we noticed that the second 

solution becomes unbounded. It is due to the fact that with the increasing of   will increase the 

temperature gradient at the surface which implies in the heat transfer rate at the surface. 
 
Figure 4 and 5 shows the effect of suction/injection parameter   on the velocity profile and 

temperature profile of the shrinking case. Figure 4 has been plotted to demonstrate the effects 

of suction/injection   on  f   for shrinking case. It is observed that the velocity increases as 

  increases for the first solution and oppositely acts for the second solution. It also can be seen 

that the suction effect increases the boundary layer thickness as the   increases. Consequently, 

the surface shear stress increases and the skin friction coefficient increases as shown in Figure 
2. 
 
Figure 5 devotes to see the influence of the suction effect   parameter on temperature profiles 

    for the shrinking case. From Figure 5, it is seen that the temperature increases with the 

increasing of   for the second solution, while for the first solution, the temperature decreases as 

the   increases. It is observed that the suction effect decreases the thermal boundary layer 

thickness and in turn increase the temperature gradient at the surface. As a result, as the 
suction/injection effect increases, the local Nusselt number on the surface also increases. Based 
on Figure 4 and 5, it is worth to highlight that the velocity profiles and temperature profiles 
satisfy the far boundary conditions asymptotically, which support the validity of numerical 
result and the existence of a dual solution. 
 
As previously mentioned, the dual solution exists for a certain range of shrinking strength. Thus, 
a temporal stability analysis was done to verify which solution could be utilized in real-world 
phenomena. Stability was carried out by solving the linear eigenvalue problem in Equation (26) 
and Equation (27) subject to the boundary conditions Equation (28). The stable solution is 
identified based on the positive smallest eigenvalues  , while the unstable solution is identified 

based on the negative smallest eigenvalues   in the relation      0
, ,f f e F       and 
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     0
, ,e G        . The positive values of   gives an initial decay of disturbance which 

results in a stable flow, whereas negative values of   results in the growth of disturbance and 
cause an unstable flow as the time pass,   .  Table 5 shows the first solution is stable and 
the second solution is unstable. 
 

Table 5  Smallest eigenvalues, 1  for some values of   when Pr 1, 1.2K   and 0   

 
    First solution  

(Upper branch), 

 1   

Second solution  
(Lower branch), 

1  

-2.32  0.504233 -0.233151  
-2.34  0.274842 -0.264783 

-2.345  0.178842 -0.174538 
-2.34881  0.004925 -0.001646 

-2.348835  0.000000 -0.000127 

 

 
Figure 2. Variation of skin friction coefficient  0f   with    for different 

 values   when Pr 1  and 1.2K   . 
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Figure 3. Variation of local Nusselt number  0  with   for different  

values   when Pr 1  and 1.2K  . 

 
 

Figure 4. The velocity profiles  f   for different values   when Pr 1 ,  

1.2K   and 2.34   (shrinking case). 
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Figure 5. The temperature profiles     for different values   when Pr 1 ,  

1.2K   and 2.34   (shrinking case). 

 
 
6. CONCLUSION 
 

In this study, the problem of stagnation point flow and heat transfer over a stretching/shrinking 
sheet past a porous medium with suction effect is investigated. By using similarity 
transformation, the governing equations are reduced into ordinary differential equations and 
then solved numerically using the bvp4c function in Matlab software. The effects of the 
governing parameter, namely the suction effect on the flow and heat transfer characteristic are 
graphically presented and discussed. We have found that the suction effect increases the 
magnitude of the skin friction coefficient and the local Nusselt number. The result indicates that 
the velocity and temperature decrease with the suction effect at the boundary. 
 
Then, the dual solutions exist for a certain range of shrinking case, but for stretching case, a 
unique solution exists. For the shrinking case, the solution exists up to the critical values of 

 0c  whereas, for the stretching case, the solution could be obtained for all positive values of 

 . Critical values c  increases as the suction parameter increases. The stability analysis was 

performed to prove that the first solution (upper branch) is stable while the second solution 
(lower branch) is unstable. 
 
The present results are also comparable with previous studies by the previous study of specific 
cases. The present results are in excellent agreement with the results reported by the previous 
researchers.  
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APPENDIX 
 
If any, the appendix should appear directly after the references without numbering, and on a 
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