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ABSTRACT 
 

In this paper, the technique of discontinuity tracking equations was proposed in order to 
deal with the derivative discontinuities in the numerical solution of functional differential 
equation. This technique will be adapted in a linear multistep method with the support of 
Runge-Kutta Felhberg step size strategy. Naturally, the existence of discontinuities will 
produce a large number of failure steps that can lead to inaccurate results. In order to get 
a smooth solution, the technique of detect, locate, and treat of the discontinuities has been 
included in the developed algorithm. The numerical results have shown that this technique 
not only can improve the solution in terms of smoothness but it also enhances the efficiency 
and accuracy of the proposed method.  

 
Keywords: Derivative of Discontinuity, Retarded Functional Differential Equations, 
Runge-Kutta Felhberg, Linear Multistep Method. 

 

 
1. INTRODUCTION 
 
The assumption of the solution to be sufficiently smooth is very important for solving 
differential equations in any numerical methods. Usually, the non-smooth solution occurs when 
the local truncation errors which form the basis of the step size selection algorithm is no longer 
valid. One of the phenomena that may arise in this problem is the presence of derivative 
discontinuities which may exist in functional differential equations (FDE) in various time-scales. 
Let consider the FDE with the solution of the left-hand and the right-hand derivative which do 

not agree at 
0x a  i.e. ( ) ( ),

a a
x y x  

   for  

 
( ) ( , ( ), ( ( ))),                   [ , ],y x f x y x y x x x a b                                                                                          (1) 

 
with the following initial function, 
 

( ) ( ),                                                [ , ],y x x x a                                                  

 
where f  and   are the given functions, ( ( ))x x  is the retarded term with   is a positive 

constant and ( )y x  is the unknown function that needs to be found in the interval [ , ].a b  

 
The study of discontinuities initially arises when there exists a jump in the solution that might 
give a significant effect on the accuracy when solving a particular ordinary differential equation 
(ODE). By realizing that, Carver (1978) has developed a new method of detecting and handling 
discontinuities in arbitrary functions of ODE where the method has been implemented by Gear 
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(1970) for solving the sets of stiff equation. In 1981, Ellison classified discontinuities in two 
major types known as time and state events and has developed a new approach in detecting the 
location of state events using Hermite interpolation. 
 
In functional differential equations, Neves (1975) has suggested two ways in treating 
discontinuities which are 1) by ignoring them and then depending on the local error control 
mechanism, or 2) stopping the integration at the discontinuity point and then requiring the user 
to restart the integration. However, the strategy to ignore the discontinuities is not really 
recommended because it can waste the computing time and does not give a reliable result, see 
Hairer et al. (1987).  
 
Besides, Enright & Hayashi (1997) has adopted the technique for initial value ordinary 
differential equations which is called defect error control in handling derivative discontinuities 
for delay differential equations (DDE). Then, Paul (1999) has implemented the technique of 
discontinuity tracking equations in the Runge-Kutta method that has been initialized by Baker & 
Wille (1988). This technique can be implemented by giving the position of the discontinuity at 
the initial point, then the position of the propagated discontinuity can be found by solving the 

nonlinear equations of the form ( , ( )) .i i i js s y s s   Here, js  corresponds to a previous 

discontinuity and 
is  is the same point of discontinuity where the approximation to 

is  is refined 

as the solution progress. 
 
In the linear multistep method, the strategy in treating the small delay case in the retarded type 
of functional differential equations has been proposed by Aziz & Majid (2014, 2015). In their 
study, they only focus on how to handle the small and vanishing delay that disappeared in the 
solution. Besides the one-step and multistep method, Li and Zhang (2014) also has investigated 
the error estimation of derivative discontinuity in Galerkin method while Lenz et al. (2014) 
developed the experimental solver namely COLSOL-DDE in treating this case.  
 
Therefore, in this paper, we intent to adapt the technique so-called discontinuity tracking 
equations that has been proposed by Baker and Wille (1988) for handling the derivative 
discontinuities of functional differential equations in linear multistep method that has been 
proposed in Majid & Suleiman (2006). This technique has been supported with the 
implementation of Runge-Kutta Felhberg step size strategy in order to enhance the efficiency of 
the method and getting the smooth solution along the integration. 
 
  
2. 1-POINT IMPLICIT METHOD 
 
In this paper, 1-point implicit method that has been proposed by Majid and Suleiman (2006) 
were considered. This method can be defined in the standard form as 
 

3 3

0 0

,
k k

j n j j n j

j j

y h f    

 

                                                                                                                                   (2) 

 

where j  and j  are constants subject to the conditions 
11,  1k k      and 0j   for 

0,1,2.j   The method of (2) is said to be explicit if 0k   and implicit if 0k   where having 

0j   until 4k   is the number of steps taken for predictor and corrector formula.  

 
The derivation of the method starts by considering the initial value problem (IVP) of ordinary 
differential equations (ODEs) as follows,  
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0( ) ( , ),           ( ) ,           .y x f x y y a y a x b                                                       (3)                                               

 
In order to determine the solution of 

1( ),ny x
 the IVP in (3) is then will be integrated over the 

interval 
1[ , ]n nx x 

 as follows, 

 
1 1

( ) ( , ) ,
n n

n n

x x

x x

y x dx f x y dx
 

           or       
1

1( ) ( ) ( , ) ,
n

n

x

n n

x

y x y x f x y dx


                                          (4) 

 

where ( , )f x y  in the integral can be replaced by the Lagrange polynomial ( )qP x  of degree q .  

 
Predictor: 

   

1

1 3

0
1

0
1

1

0

( ) ( ) ( )

( )( )( )
                          = ( )

( )( )( )

( )( )( )
                          + ( )

( )( )( )

(
                          +

n n

n

n

y x y x P x dx

s m q r s q r s r
h ds f

m q r q r r

s m q r s q r s
h ds f

m q q r

s m
h





 

     

  

    

 

 






1

2

0
1

3

0

)( )( )
( )

( )( )( 1)( )

( )( )( )
                          + ( ).

( )( 1)( )( 1)( )

n

n

q r s r s
ds f

m q q r

s q r s r s
h ds f

m m q m q r





 

  

  

     





                                     (5)   

 
Corrector: 

0

1 4

1
0

1

1
0

1

( ) ( ) ( )

( 1)( 1)( 1)( 1)
                          = ( )

( 1)( 1)( 1)

( 1)( 1)( )
                          + ( )

( )( )( )

     

n n

n

n

y x y x P x dx

s m q r s q r s r s
h ds f

m q r q r r

s m q r s q r s
h ds f

m q r q r r











 

         

     

      

   






0

1

1
0

2

1

( 1)( 1)( 1)( )
                     + ( )

( )( )( )( 1)( 1)

( 1)( 1)( 1)( )
                          + ( )

( )( )( 1)( )( 1)( 1)

                       

n

n

s m q r s q r s s
h ds f

m q q r r

s m q r s r s s
h ds f

m q q r q r









       

   

      

     




0

3

1

( 1)( 1)( 1)( )
   + ( ).

( )( 1)( )( 1)( )( 1)( 1)
n

s q r s r s s
h ds f

m m q m q r m q r




     

         

          (6) 

 
Since the Runge-Kutta Felhberg step size strategy will be adapted in this solution, therefore the 
step size ratios r, q and m in (5) and (6) will be substituted with any values by depending on the 
formula in Section 4. This strategy implies different coefficients in the predictor and corrector 
formula that will reduce the computational work. 
 
 
3. DISCONTINUITY TRACKING EQUATION 
 
In the numerical solution of FDE, it is very significant for one to understand the way of how the 
discontinuities being propagated by the delays ( )x . The difficulty to treat it, highly rely on the 

function of retarded term either it is a constant, time-dependent or state-dependent function 
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delays. For the sake of simplicity, let consider the constant retarded term of FDE with 
discontinuity at first derivative i.e. 

0 0( ) 0 1 ( ),x y x  
      

 
( ) ( 1),                              0,
( ) 1,                                          0,

y x y x x
y x x

   
 

                                                  (7) 

 
with the discontinuity tracking equations give in the form of 
 

( , ( )) .i i i js s y s s                                                                                (8) 

 
Our aim is to obtain the approximation of 

is  which are some points of derivative discontinuities 

that will propagated from the initial point. By solving equation (17), we will have 
11r rx x    for 

1r rx x   with r-th is the derivative and thus, 
1 1r rx x    for 0.r   The solution in each 

subinterval can be obtained by integrating ( ) 1y x   and substitute 0x   in ( ),y x  we have 

( ) 1y x x   for the interval [0,1].  Repeating the same procedure, we will obtain the solution as 

follows,   
 
Interval [0,1] :  ( ) 1,y x     so that ( ) 1.y x x   

Interval [1,2] :  ( ) ( 1) 1,y x x      so that 21 3
( ) .

2 2
y x x     

Interval [2,3] :  21 3
( ) ( 1) ,

2 2
y x x      so that 3 21 1 1

( ) 2 .
6 2 6

y x x x x     

 
Thus, we can see that there is a jump of discontinuities in second derivatives 

(1 ) 0 1 (1 )y y      that being propagated from 0x   and the jump in third derivatives 

(2 ) 0 1 (2 )y y      and so on. 

 
Since the discontinuity points are detected earlier, so it is easier to include the discontinuity 
points in the mesh point. This is purposely to get a continuously, smooth solutions that lead to a 
better accuracy and fewer rejected steps. The step size is then be restricted as 

1n ix h     

where 
i  is discontinuity point for 1,2,3i  . The integration is then are set to be restarted with 

the new function in particular subintervals using a sufficiently small step size as 151.0h  .     
 
 
4. RUNGE-KUTTA FELHBERG STEP SIZE STRATEGY 
 
In dealing with the derivative of discontinuities, one should consider the best strategy of the 
chosen step size along the interval. Thus, the solution will have the optimum step size that 
allows the discontinuity points to be included in the mesh point. For this reason, the strategy of 
Runge-Kutta Felhberg has been adapted to vary the h since the more options of step size can be 
implemented in getting the best accuracy of the method.   
 

Lets denote ih  as the initial step size, oldh  as the most recent step size, newh as the next step size 

that need to be determined, minh  as the minimum step allowed by the routine, TOL as the 

tolerance per unit step, EQN as the number of equations, DMAX as the initial function evaluation, 
MAXE as the maximum of mixed error test for 1A B  , SSTEP as the number of successful 
steps and 1p   is for 1-point implicit method. The algorithm of this strategy is described as 

follows. 
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Step 1:  Set TOL and min 1. 15.h E     

Step 2:  Calculate the initial step size, 

1

1

4.0

EQN

i EQN

TOL

DMAX
h

 
 
  . 

1. 5i ih h E   . 

 

Step 3:  Compute the estimate 
,p kE  per unit step, using 

 
( ) ( 1)

,

k k

p k n p n pE y y 

   . 

 
Step 4:  Compute the maximum error, 
 

1 1

( )
max max

( )

n p n p

i SSTEP i N
n p

y y x
MAXE

A By x

 

   


  
  

  

. 

 

Step 5:  If 
,( )p kE TOL , Successful Step 

 

  Set 

1

4

,

0.8
p k

TOL
HACC

E

 
   

 

. 

  If   0.1,HACC   then 0.1new oldh h  . 

  Else if  4.0,HACC   then 4.0new oldh h  . 

   Else   new oldh HACC h  . 

 
Step 6:  Else, Failure Step 
 

  Set 0.5new oldh h  . 

 
Step 7:  Compute the step size ratio, 
 

,     ,     old old old
old old

new new new

h h h
r q r m q

h h h

   
     

   
. 

 
 
 

5. NUMERICAL RESULT AND DISCUSSION 
 

In this section, two discontinuity problems of FDE for the type of constant and time-dependent 
retarded term have been tested. The algorithm has been performed using Microsoft Visual C++ 
6.0 program and the numerical results were compared according to with and without 
discontinuity tracking equations strategy. 
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Problem 1: 
( ) ( 1),                        0,
( ) 1,                                    0,

y x y x x
y x x

   
 

 

  
with the exact solution 
 

2

3 2

1,                             [0,1],
1 3

( ) ,                      [1,2],
2 2
1 1 1

2 ,    [2,3].
6 2 6

x

y x x

x x x


 


 

   


 

 
Problem 2: 
 

1
( ) ( ),                        0,

( ) 1,                                     0,
(0) 0,

y x y x x
x

y x x
y

   

 


 

  
with the exact solution 
 

 

2

3

,                                                     [0,1],
1 1 1

ln( ) ,                              [1, (1+ 5)],
2 2 2
1 1 1 1 5 5 1( )

ln( ) ln 3 5 ,
6 2 2 12 12 2

                                   

x

x x

y x
x x x x

x x

 

  
        

 
1 1

                     [ (1+ 5), (1+ 5+ 22 2 5 )].
2 4








 


 

 

The endpoint for these problems is only restricted to 3x   and 
1

(1+ 5+ 22 2 5 )
4

x    

respectively where the solution is available up until this point only. Solving the discontinuity 

tracking equations (17) associated to the Problem 2, we will obtain 2

1 1

1
( + 4)

2
r r rx x x    for 

0r   with the next jump of derivative discontinuities are 
1 1

0,1, (1+ 5), (1+ 5+ 22 2 5.
2 4

    

The following abbreviations are defined as follows:   
 
 
TOL  the prescribe tolerance (TOL = 10-2, 10-4, 10-6, 10-8, 10-10). 

DTE the technique of discontinuity tracking equations that has been  
  employed using 1-point implicit method 
HMIN  minimum step size. 
HMAX  maximum step size.  
TS  number of successful steps.  
FS  number of failure steps.  
FNC  number of function f evaluation.  
MAXERR maximum of mixed error test of the computed solution. 
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Table 1 Comparison of the solution of Problem 1 with and without DTE 

 

  TOL       Technique           HMIN        HMAX    TS          FS           FNC  MAXERR    

   10-2     Without DTE         2.50E-2       8.00E-1    14       1              39            8.44E-4 
     With DTE              1.77E-2       8.00E-1    18       0        48               1.03E-4 
   10-4     Without DTE         2.50E-3       6.40E-1    33       6              83            3.90E-5 
     With DTE              1.77E-3       9.05E-1    28       0              68              1.04E-6 
   10-6     Without DTE         2.50E-4       5.12E-1    47       10           117             6.93E-6 
     With DTE              1.77E-4       7.24E-1    37        0             86              1.04E-8 
   10-8     Without DTE         2.50E-5       8.19E-1    62       15           154             6.40E-8 
     With DTE              1.77E-5       8.19E-1    48        0            108             1.04E-10 
   10-10     Without DTE         2.50E-6       6.55E-1    86       22           209             3.58E-10 
     With DTE              1.77E-6       9.27E-1    58        0            128             1.04E-12 

                
 

Table 2 Comparison of the solution of Problem 2 with and without DTE 
 

  TOL       Technique           HMIN        HMAX    TS          FS           FNC  MAXERR    

   10-2     Without DTE         2.50E-2       8.00E-1    18       2              52              3.36E-1 
     With DTE              2.73E-2       2.00E-1    16       0         44               4.66E-5 
   10-4     Without DTE         2.50E-3       6.40E-1    46      10            121             3.46E-1 
     With DTE              5.00E-3       8.00E-2    26       0              69               4.25E-6 
   10-6     Without DTE         1.65E-4       6.78E-1    82      16            225             3.48E-1 
     With DTE              5.00E-4       3.20E-2    44        0            116             1.50E-7 
   10-8     Without DTE         4.81E-6       6.30E-1   144      32            400             3.48E-1 
     With DTE              5.00E-5       1.28E-2    78        0            209             2.22E-9 
   10-10     Without DTE         1.10E-7       9.19E-1   278      38            785             3.48E-1 
     With DTE              5.00E-6       5.12E-3   170        0            462             6.56E-12 

                
Table 1 and 2 show the comparison between with and without the strategy of discontinuity 
tracking equation in 1-point implicit method. In order to avoid the cross of discontinuity points 
that may lead to a larger number of failure steps, we have restricted the h to be included in the 
mesh points. Here, it can be seen that how important the mechanism of variable step size 
strategy has been implemented in treating the discontinuity points. Because the steps were 
allowed to cross over the discontinuity point, it will produce a larger local truncation error that 

may not satisfy the condition of 
,( )p kE TOL .   

 
Next, the integration will be restarted just past the discontinuity points that have been detected 
using the discontinuity tracking equation with the sufficiently small h. As the results, it can be 
observed that the technique of DTE which starts with the minimal step size and increase with 
the optimal size produces not only better accuracy but it can also give a zero rejected steps. By 
comparing the results between Problem 1 and 2, it can be seen that the maximum error with 
and without DTE has no big difference in Problem 1 compared to Problem 2. This is actually due 
to the difficulty and the type of the problem itself, where in Problem 1, it is a constant retarded 
type which is easier compared to the type of time-dependent retarded type.  For this case, the 
results for solving time-dependent retarded type for Problem 2 has shown that the 
implemented strategy and approach has enhanced the smoothness and the accuracy of the 
method.    
 
As a conclusion, the strategy of discontinuity tracking equation is suitable to be adapted in 1-
point implicit method with the mechanism of Runge-Kutta Felhberg step size. The developed 
algorithm does not only improve the smoothness of the solution but it has shown the reliability 
and efficiency in terms of the less number of total steps and function calls in the numerical 
results. 
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