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ABSTRACT 
 

In calculating mean equality for two or more groups, Analysis of Variance (ANOVA) is a 
popular method. Following the normality assumption, ANOVA is a robust test. A modification 
to ANOVA is proposed to test the equality of population means. The suggested research 
statistics are straightforward and are compatible with the generic ANOVA statistics 
whereby the classical mean is supplemented by other robust means such as geometric mean, 
harmonic mean, trimean and also trimmed mean. The performance of the modified ANOVAs 
is then compared in terms of the Type I error in the simulation study. The modified ANOVAs 
are then applied on real data. The performance of the modified ANOVAs is then compared 
with the classical ANOVA test in terms of Type I error rate. This innovation enhances the 
ability of modified ANOVAs to provide good control of Type I error rates. In general, the 
results were in favor of the modified ANOVAs especially ANOVAT and ANOVATM. 
 
Keywords: ANOVA, Geometric Mean, Harmonic Mean, Trimean, Trimmed Mean, Type I 
Error.   

 
 

1. INTRODUCTION 
 

Analysis of variance (ANOVA) is one of the most used model which can be seen in many fields 
such as medicine, engineering, agriculture, education, psychology, sociology and biology to 
investigate the source of the variations. One-way ANOVA is based on assumptions that the 
normality of the observations and the homogeneity of group variances. If the assumptions of 
normality and homogeneity of variances are invalid and also outliers are present, classical ANOVA 
does not give accurate results. Therefore, test statistics based on robust methods should be used 
instead of the classical ANOVA. 
 
The one-way ANOVA under the violation of assumptions has been studied extensively. To deal 
with non-normal data and/or heteroscedastic variances across groups, many alternatives such as 
Q, Welch, Brown-Forsythe and Modified Brown-Forsythe tests have been developed instead of 
classical ANOVA. Note that with the normality of the probability distributions and the constant 
variability, the probability distributions differ only with respect to their means. ANOVA is a very 
powerful test as long as all prerequisites are met. It is not necessary, nor is it usually possible, 
that an ANOVA model fit the data perfectly. ANOVA models are reasonably robust against certain 
types of departures from the model, such as the data not being exactly normally distributed 
(Kutner, Nachtsheim, Neter & Li, 2005). 
 
Basically, classical parametric tests such as analysis of variance (ANOVA) and independent 
sample t-test are often used in testing the central tendency measure by researchers rather than 
other methods since the aforementioned methods provide a good control of Type I error and 
generally more powerful than other methods when all the assumptions are fulfilled (Wilcox & 
Keselman, 2010). Analysis of variance (ANOVA) has been stated to be robust to departures from 
population normality (Glass, Peckham & Sanders, 1972). 
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The calculation of ANOVA involves the mean. It is also known as the arithmetic mean. The 
simplest and most classical mean values are the arithmetic, the geometric and the harmonic 
mean. All of the means are known for their inequalities (Xia, Xu & Qi, 1999). The arithmetic mean 
is the most commonly used average. It is generally referred to as the average or simply mean. The 
breakdown point is zero. The arithmetic mean or simply mean is defined as the value obtained by 
dividing the sum of values by their number or quantity. The formula given below is the basic 
formula that forms the definition of arithmetic mean and is used in case of ungrouped data where 
weights are not involved. The formula is as follows, 
 

𝐴 = 
𝑎1+𝑎2+𝑎3+⋯+𝑎𝑛

𝑛
                (1) 

 
Meanwhile, the geometric mean is used when numbers are multiplied. It is a useful application 
with percentage increases or decreases. Examples, where this kind of calculation may be 
applicable, include any growth measurement (where we are dealing with a constant time for 
change measurement) or in a financial situation where we are concerned with changes as a 
function of month or year. The geometric mean is calculated as the nth root of the product of the 
n positive observations. The formula for the geometric mean is as follows, 
 

𝐺 = √𝑥1𝑥2𝑥3 … 𝑥𝑛
𝑛                  (2)  

 
Alternatively, the harmonic mean is used with inverse relationships. For example, speed and time 
are inversely related. In general, it is useful for expressing average rates. The harmonic mean is 
less than or equal to the geometric mean. Equality occurs when all the numbers are equal 
(Weisstein, 2003). The harmonic mean is the reciprocal of the arithmetic mean of the reciprocals 
of the observed values (Norris, 2000). The formula for the harmonic mean is as follows, 
 

𝐻 = 
𝑛

∑
1

𝑥𝑖

𝑛
𝑖=1

                   (3)  

 
Other resistant measures include the trimean, which is a central trend measure based on the 
arithmetic average value of the first quartile, the third quartile, and the median counted twice 
(Behrens, 1997). In statistics, the trimean is also known as Tukey's trimean (Tukey, 1977). The 
Trimean's foundations were part of the teachings of Arthur Bowley and later popularized in his 
1977 book by statistician John Tukey, who gave his name to a set of techniques called exploratory 
data analysis (Doyle & Chen, 2009). Unlike the sample mean, with a breakdown point of 25%, it 
is a statistically resistant L-estimator. This beneficial property was described as the trimean's 
advantage as a center measure. It combines the emphasis of the median on core values with the 
attention of the midhinge to the extremes (Weisberg, 1992). The formula for the trimean is as 
follows, 
 

𝑇 = 
1

4
(𝑄1 + 2𝑄2 + 𝑄3)                             (4) 

 
The classical point and interval estimators use the sample mean and standard deviation. If a graph 
of the data indicates that the classical assumptions are violated, then an alternative estimator 
should be considered. Robust estimators can be obtained by giving zero weight to some cases and 
applying classical methods to the remaining data. Bickel (1965) and (Stigler, 1973) consider 
trimmed means or sometimes called a truncated mean. Shorack (1974) and also Shorack and 
Wellner (1986) derive the asymptotic theory for a large class of robust procedures. Special cases 
include trimmed, Winsorized, metrically trimmed, and Huber type skipped means. Many location 
estimators can be presented in a unified way by ordering the values of the sample as 𝑥1 ≤ 𝑥2 ≤
𝑥3 ≤ ⋯ ≤ 𝑥𝑛. 
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A trimmed mean is calculated by discarding a certain percentage of the lowest and the highest 
scores and then computing the mean of the remaining scores. The prevalent method of trimming 
is to remove outliers from each tail of the distribution of scores. Tukey (1948) introduced 
trimmed mean as a compromise to the two classical estimators mean and median, to achieve 
balance between outlier(s) tolerance and efficiency. In addition, the recommendation is to trim 
20% from each tail (Rosenberger & Gasko, 1983; Wilcox, 1995). The x% trimmed mean has a 
breakdown point of x% for the chosen level of x.  
 
For example, a mean trimmed 50% is computed by discarding the lower and higher 25% of the 
scores and taking the mean of the remaining scores. The median is the mean trimmed 100% and 
the arithmetic mean is the mean trimmed 0%. Therefore, in this study, we will consider the robust 
method, trimmed mean along with the other means mentioned above. Wilcox (2012) states that 
trimming means cannot fix every problem but do work remarkably well to adjust for problems of 
heteroscedasticity (non-equal variances) and non-normality. The α-trimmed mean is as follows  
 

�̅�𝑡𝑗 =
1

𝑛𝑗−𝛼1𝑗−𝛼2𝑗
[∑ 𝑥𝑖𝑗

𝑛𝑗−𝛼2𝑗

𝑖=𝛼1𝑗+1 ]              (5)    

 
Thus, the trimmed mean corresponds to the mean value of data samples where p highest and p 
lowest samples are removed. Application of trimming lowers the influence of extreme data values 
on the result of averaging. 
 
Outliers can completely break down the results of the ANOVA test when not properly taken into 
account (Wilcox, 1990). Given this limitation of the ANOVA test, there is a need for ANOVA type 
tests that are robust. Such an approach using robust estimators provides better control of the 
probability of the Type I error for one-way ANOVA situations (Lix & Keselman, 1998).  
 
Calculation of the ANOVA has been using the classical mean or known as the arithmetic mean. It 
is very sensitive to changes in data series, especially to outliers. It has a breakdown point of 0%, 
so it shows that it is highly affected by extreme values or known as outliers. Therefore, it 
motivates us to perform this study by modifying the arithmetic mean with other type of means in 
ANOVA.  
 
As for the geometric mean, it is usually used to tackle continuous data series in which it is unable 
to accurately be reflected by the arithmetic mean or the classical mean that is used in ANOVA. The 
arithmetic mean cannot average the ratios and percentages properly. Therefore, the geometric 
mean should be used since it has already been mentioned that it is useful for calculation regarding 
the increase or decrease of percentages. Since there is quite a few of continuous data series in real 
data, so in term of that, geometric mean would be preferable.  
 
Other than that, a reliable estimation of the location of the bulk of the observations is needed. 
Therefore, the trimmed mean can help in providing a better estimation than the classical mean. 
Outliers and asymmetry less affect the standard error of the trimmed mean than the classical 
mean. ANOVA test using trimmed means can have more power than the test using the classical 
mean (Rousselet, Pernet & Wilcox, 2017). Therefore, in this study, we will compare the 
performance of ANOVA with the modified ANOVAs in term of the Type I error rate. 
 
Therefore, the main objective for this study is to propose modification on classical ANOVA with 
geometric, harmonic, trimean and trimmed mean. The sub-objectives are to measure and 
compare performance between classical ANOVA with modified ANOVAs. 
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2. METHODOLOGY 
 

2.1 Design Specification 
 

The Monte Carlo simulation study was performed using the SAS programming language. Pseudo-
random number generators were invoked to obtain random variates from the normal 
distribution by using the SAS generator (SAS, 2006). Normal variates with mean, µ = 0 and 𝜎 = 1 
were generated. Nominal alpha was set at α = 0.05. Figure 3.1 shows the flow of the simulation 
study processes. The modified ANOVAs are then applied on real data.  
 

 
Figure 1. Flow chart of Simulation Study. 

 
Each statistical method is assessed to compare three group means in a simulated dataset. We 
focus on three groups because it is quite common and can be found in a lot of trials. The sample 
size is to be manipulated in this simulation study such that small, medium and large sample size 
to test the robustness of the modified ANOVAs. We use group sizes of (15, 15, 15), (30, 30, 30) 
and (50, 50, 50) to represent the small, medium and large sample size, respectively. This is in 
order for us to compare the results from each size of group.  
 
Type I error is the rejection of a true null hypothesis resulting in the faulty conclusion of 
statistically significant treatment effects. From the simulation, the number of count will increase 
by ‘1’ if the p-value is less than α=0.05 in which we reject the H0. Then, the total number of counts 
were divided by the total simulations which is 1,000. Type I error rate corresponding to each 
method was determined and compared. 
 
 
 

Generate Normal Data using SAS 
software 

Calculate: Geometric, Harmonic, 
Trimean and Trimmed Means

Hypothesis testing for ANOVA

Simulate 1,000 times

Calculations of Type I error rate
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2.2 Robustness Criterion 
 

In each simulation scenario, a test is considered to be significant when a p-value is less than the 
nominal α=0.05. The number of significant tests will be counted in simulated datasets in a 
scenario and the Type I error rate was calculated. The robustness of a method is determined by 
its ability in controlling the Type I error. Researchers have developed a few robustness criterions. 
Sullivan and D`Agostino in 2003 illustrated that a test which does not exceed 10% of the nominal 
significance level as robust. Guo and Luh (2000) interpreted that if a test’s empirical Type I error 
rate is not higher than 0.075, with a 5% significance level, then it is robust.  
 
Meanwhile, this study adopted the robustness liberal criterion by Bradley. This criterion was 
chosen since it was widely used by many robust statistic researchers (e.g. (Keselman, Kowalchuk, 
Algina, Lix, & Wilcox, 2000); (Othman, et al., 2004)) to judge robustness. A test can be considered 
robust if its empirical rate of Type I error, α, is within the interval 0.5α and 1.5α (Bradley, 1978). 
If the nominal level is α = 0.05, the empirical Type I error rate should be between 0.025 and 0.075.  
 
2.3 ANOVA Test 

 
The total variability can be split into several parts. The total amount of variability among 
observations can be measured by summing the squares of the differences between each 𝑥𝑖𝑗  and 

�̅�: 
 
SST: Total sum of squares 
 

SST =  ∑ ∑ (𝑥𝑖𝑗 − �̅�)
2𝑛𝑖

𝑗=1
𝑘
𝑖=1                 (6)   

 
The variability has two sources: 
 
Variability between group means (specifically, variation around the overall mean �̅�) 
 
SSA =  ∑ 𝑛𝑖(�̅�𝑖 − �̅�)2𝑘

𝑖=1 , and             (7)    
 
Variability within groups means (specifically, variation of observations about their group mean 
�̅�𝑖) 
 

SSE =  ∑ ∑ (𝑥𝑖𝑗 − �̅�𝑖)
2𝑛𝑖

𝑗=1
𝑘
𝑖=1 = ∑ (𝑛𝑖 − 1)𝑠𝑖

2𝑘
𝑖=1             (8) 

 
It is the case that, 

 
SST = SSA + SSE                  (9) 
 
F-test is a measure of the variability between treatments divided by a measure of the variability 
within treatments. Table 1 shows the calculations for F-test for ANOVA.   
 

Table 1 Table of ANOVA 
 

Source SS df MS F 

Model/ Group SSA k – 1  MSA = 
𝑆𝑆𝐴

𝑘−1
 

𝑀𝑆𝐴

𝑀𝑆𝐸
 

Residual/ Error SSE n – k  MSE = 
𝑆𝑆𝐸

𝑛−𝑘
  

Total SST n – 1    
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2.4 Geometric Mean 
 

The geometric mean is calculated as the nth root of the product of the n positive observations. 
The geometric mean of a population is given as, 
 

G = √𝑥1𝑥2𝑥3 … 𝑥𝑛
𝑛                                                (10)   

 
Where 𝑥1, 𝑥2, … , 𝑥𝑛 are values of auxiliary variable of the population. 
 
2.5 Harmonic Mean 

 
Harmonic mean is another measure of central tendency and is also based on mathematics like 
arithmetic mean and geometric mean. Like arithmetic mean and geometric mean, harmonic mean 
is also useful for quantitative data. The harmonic mean is a very specific type of average. It is 
generally used when dealing with averages of units, like speed or other rates and ratios. Harmonic 
mean’s formula is defined as: 
 

H = 
𝑛

∑
1

𝑥𝑖

𝑛
𝑖=1

                                               (11)   

 
2.6 Trimean 
 
In this paper, we consider another L–statistic, namely the sample trimean introduced by Tukey 
(1977) as an element of a set of statistical techniques in descriptive statistics called “exploratory 
data analysis”. The trimean is defined as 
 

T =
1

4
(25𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 + 2(𝑚𝑒𝑑𝑖𝑎𝑛) + 75𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒) 

 
Or 
 

T = 
1

4
(𝑄1 + 2𝑄2 + 𝑄3)                                            (12)  

 
where 𝑄2 is the sample median and 𝑄1 and 𝑄3 are lower and upper hinges of the sample. The 
sample median is defined usually as  
 
𝑄2 = 𝑋𝑛+1

2
:𝑛

,    if n is odd, 

𝑄2 =
1

2
(𝑋𝑛

2
:𝑛 + 𝑋𝑛

2
+1:𝑛),  if n is even, 

 
which can be written in a more compact way as 
 

𝑄2 =
1

2
(𝑋

[
𝑛+1

2
]:𝑛

+ 𝑋
[

𝑛+1

2
]:𝑛

), 

 
where [𝑥] and [𝑥] denote the floor and the ceiling functions defined as 
 
[𝑥] = max{𝑛 ∈ 𝑍: 𝑛 ≤ 𝑥},             [𝑥] = min{𝑛 ∈ 𝑍: 𝑥 ≤ 𝑛},  
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2.7 Trimmed Mean 

 
This study will trim the mean of the data by 20% as have been suggested by Rosenberger and 
Gasko (1983) and Wilcox (1995; 2005) that 20% trimming should be used. The sample trimmed 
mean is computed as shown below. Let 𝑥1𝑗, 𝑥2𝑗, … , 𝑥𝑛𝑗𝑗 be an ordered sample of group j with size 

𝑛𝑗. 

 
Calculate the α-trimmed mean of group j by using: 
 

�̅�𝑡𝑗 =
1

ℎ
[∑ 𝑥𝑖𝑗

𝑛𝑗−𝑔2

𝑖=𝑔1+1 ]                                                (13) 

 
Where 
 
ℎ = 𝑛𝑗 − 𝑔1 − 𝑔2                                                                              (14) 

𝑔1 = [𝑛𝑗𝛼𝑢]                                       (15) 

𝑔2 = [𝑛𝑗𝛼1]                                                         (16) 

 
2.8 Modified ANOVA 

 
This paper focuses on modifying the ANOVA with various type of means that are geometric mean, 
harmonic mean, trimean and trimmed mean. Their performances will be observed using the Type 
I error rate. As have been mentioned before in subsection 3.2, there are three parts in calculating 
the F value for ANOVA, which are SST, SSA and SSE.  
 
Recalling the formula are as follows, 
 

SST =  ∑ ∑ (𝑥𝑖𝑗 − �̅�)
2𝑛𝑖

𝑗=1
𝑘
𝑖=1   

 
SSA =  ∑ 𝑛𝑖(�̅�𝑖 − �̅�)2𝑘

𝑖=1 , and 
 

SSE =  ∑ ∑ (𝑥𝑖𝑗 − �̅�𝑖)
2𝑛𝑖

𝑗=1
𝑘
𝑖=1 = ∑ (𝑛𝑖 − 1)𝑠𝑖

2𝑘
𝑖=1    

 
SST = SSA + SSE 
 
The �̅� will be replaced by all the various type of means as shown in equations (10), (11), (12) and 
(13) to produce modified ANOVAs presented by ANOVAG, ANOVAH, ANOVAT and ANOVATM, 
respectively. 
 
 
3. DATA ANALYSIS AND RESULTS 

 
3.1 Simulation Results 

 
The robustness of a method is determined by its ability to control the Type I error. Table 2 
displays the empirical Type I error rates for all the procedures. Based on Bradley’s liberal 
criterion of robustness (Bradley, (1978)), a test can be considered robust if the rate of Type I 
error, α is within the interval 0.5α and 1.5α. For the nominal level of α = 0.05, the Type I error 
rates should be between 0.025 and 0.075. The best procedure is the one that can produce Type I 
error rate closest to the nominal (significance) level.  
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Table 2 Type I error rates 

 
Methods N=45(15,15,15) N=90(30,30,30) N=150(50,50,50) 
ANOVA 0.0213 0.0351 0.0323 
ANOVAG 0.0270 0.0288 0.0281 
ANOVAH 0.0263 0.0280 0.0292 
ANOVAT 0.0354 0.0370 0.0397 
ANOVATM 0.0366 0.0372 0.0403 

 
All of the methods showed robust Type I error rates. The best procedure is ANOVATM or modified 
ANOVA with trimmed mean which produces the nearest Type I error rate to the nominal level 
which is α = 0.05.    
 

3.2 Analysis on Real Data 
 

The performance of the ANOVA and also the modified ANOVAs were demonstrated on real data. 
BMI of students was taken at random from secondary data. The data was collected from students 
in Carolinas Medical Center University, Charlotte, North Carolina, United States by Wayne W. 
LaMorte in 2006.  
 
There are three groups of them. The sample sizes for Group 1, 2 and 3 were 20, 30 and 35 
respectively. The results of the test in the form of p-values are given in Table 7. The Shapiro-Wilk 
test has been employed in order to determine the normality of data analysis.  
 

Table 3 Tests of normality for BMI of group 1 

 

 
Shapiro-Wilk 

Statistic df Sig. 

BMI (Group 1) .872 20 .537 

a. Lilliefors Significance Correction 
 

Table 4 Tests of normality for BMI of group 2 

 

 
Shapiro-Wilk 

Statistic df Sig. 

BMI (Group 2) .921 30 .619 

a. Lilliefors Significance Correction 

 
Table 5 Tests of normality for BMI of group 3 

 

 
Shapiro-Wilk 

Statistic df Sig. 

BMI (Group 3) .870 35 .597 

a. Lilliefors Significance Correction 

 
Hypothesis: 
 

𝐻0: The data is normally distributed. 
𝐻1: The data is not normally distributed. 
𝛼 = 0.05 
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Normality Test for BMI of Group 1: 
 
 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝐺1 = 0.537 
 Since the 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝐺1 > 𝛼, failed to reject 𝐻0. 
 Therefore, the data is normally distributed. 
 
Normality Test for BMI of Group 2: 
 
 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝐺2 = 0.619 
 Since the 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝐺2 > 𝛼, failed to reject 𝐻0. 
 Therefore, the data is normally distributed. 
 
Normality Test for BMI of Group 3: 
 
 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝐺3 = 0.597 
 Since the 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝐺3 > 𝛼, failed to reject 𝐻0. 
 Therefore, the data is normally distributed. 
 
Based on the Shapiro-Wilk test as shown in Table 3, 4 and 5, all of the groups are normally 
distributed since the p-value is greater than α=0.05, which failed to reject the null hypothesis. 
 

Table 6 Descriptive statistics for each group 

 

Group 
Sample 

size 
(N) 

Mean 
of the 
BMI 

Std. 
Deviation 

Std. Error 

95% Confidence 
Interval for Mean 

Min. Max. 

Lower 
Bound 

Upper 
Bound 

  

1 20 27.8 4.06 0.91 25.89 29.70 22 33 
2 30 28.3 2.82 0.51 27.28 29.39 23 33 
3 35 26.4 3.82 0.65 25.14 27.77 22 33 

 
There are a total of 85 students from three different groups. In this data, the mean BMI of each 
group is 27.8kg/m2, 28.3kg/m2, 26.4kg/m2 respectively. Furthermore, Group 2 has the lowest 
variation with value of 2.82 as compared to the other two groups.  
 

Table 7 Results of the test using different methods 

 
Methods p-value 
ANOVA 0.0330 
ANOVAG 0.0380 
ANOVAH 0.0380 
ANOVAT 0.0298 

ANOVATM 0.0281 

 
For comparison, the data were tested using all the five procedures mentioned in this study namely 
ANOVA and the modified ANOVAs, which are ANOVAG, ANOVAH, ANOVAT, and ANOVATM. As can 
be observed in Table 7, all of the methods show significant results in which they reject the null 
hypothesis. The ANOVATM shows a better detection with the strongest significance (p = 0.0281) 
as compared to the other methods. As shown in the simulation results in Table 2, the ANOVATM 
does produce robust Type I error rates. Even though ANOVATM shows stronger significance (p = 
0.0281) as compared to the other modified ANOVAs, but ANOVATM in general only gave a brief 
information on the data since the data has been trimmed by 20%. Thus, misrepresentation of the 
result could occur. 
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4. CONCLUSIONS 

 
The goals of this paper are to propose modification on classical ANOVA and also to measure and 
compare the performances in term of Type I error. The Type I error will increase when the 
method is less robust compared to other methods. This will cause wary rejection of the null 
hypothesis and the power of the test can be reduced. Undetected differences are one of the 
consequences. This study has integrated the ANOVA with various types of means such as 
geometric mean, harmonic mean, trimean and also trimmed mean.  
 
This paper has shown some improvement in the statistical solution for detecting differences 
between location parameters. The findings showed that the modified robust procedures, 
ANOVAT, ANOVATM, ANOVAG, and ANOVAH are comparable with the classical ANOVA in controlling 
Type I error rates. In the analysis on real data, ANOVAT (p = 0.0298) and ANOVATM (p = 0.0281) 
showed a slightly stronger significance than the classical ANOVA (p = 0.0330). ANOVAG (p = 
0.0380) and ANOVAH (p = 0.0380) showed a weaker performance as compared to the classical 
ANOVA.       
 
Even though the study has achieved its goals, some constraints were inevitable. Study limitations 
would be time restrictions since only 12 weeks are part of one semester. This implies that there 
is very little time to analyze more information. To improve the performance of the modified 
ANOVA methods, other types of mean or robust scale estimators should be considered to be 
replaced in the formula. There are plenty of them that can be chosen from. 
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