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ABSTRACT 

Recently, two specialized compartmental epidemiological models; the modified SIRD and 
SEIRD were developed to study COVID-19 in Malaysia, with their validity tested by fitting 
them to actual data. In this case, the optimization problem has a single objective: minimizing 
the least square error between the numerical solution and real-world data, without any 
imposed constraints. However, the introduction of time-dependent coefficients in both 
models increases the number of optimization variables. To solve this, the Nelder-Mead and 
Pattern Search algorithms were recommended. While Nelder-Mead is widely available in 
Python optimization libraries, Pattern Search is less common, which motivated the choice of 
the Pymoo multi-objective optimization framework for this study. The fitting results show 
that the absolute error metrics improve highest by about 40% compared to the results 
obtained from other optimization packages in previous studies. Furthermore, as an extension 
of prior research, we incorporate the computation of the dynamic basic reproduction 
number and its sensitivity analysis, confirming the effectiveness of the movement control 
order in controlling the disease during the pre-vaccination phase. 

Keywords: Covid-19, Model Fitting, Epidemiology, Optimization. 

1 INTRODUCTION 

Python has emerged as one of the most preferred programming languages for academic studies 
and commercial projects in the current trending fields such as data science, machine learning, 
and deep learning. One of the factors is it has numerous different libraries and frameworks that 
can be used in those fields including the ones related to optimization such as Lmfit, SciPy and 
Pymoo. Python multi-objective optimization (Pymoo) framework is relatively new compared to 
the others and interestingly, it offers more algorithms even for single-objective optimization 
problems [1].  

In this study, the optimization capability of Pymoo is tested by fitting a published epidemiological 
model of the outbreak of COVID-19 cases in Malaysia to the time series data from 25th January 
2020 to 23rd February 2021 based on a modified SEIRD model. The data are collected from the 
Minister of Health Malaysia (MOH)’s official GitHub repository [2]. The modifications 
incorporated several crucial control measures such as lockdown, social distancing, quarantine, 
lockdown lifting time and the percentage of individuals who adhere to the prescribed regulations 
in terms of some dynamical kinetic functions [3]. 
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Recently, this model and a similar modified SIRD model has been tested to fit the same COVID-19 
data [4]. The SIRD model was fitted to COVID-19 data using a combination of Nelder-Mead and 
Pattern-Search algorithms from MATLAB’s Optimization Toolbox. However, in our previous work 
Pattern-Search procedure was not implemented because it is not available from the Python’s 
Lmfit library we used. Therefore, the SIRD model fitting had attained better accuracy, measured 
by the least Root Mean Square Error (RMSE), compared to ours [5]. This motivates the 
reproduction of SEIRD fitting using both Nelder-Mead and Pattern-Search under the Pymoo 
framework, to investigate whether Pymoo can match the performance of MATLAB’s commercial 
optimization tools. 

The impact of COVID-19 to Malaysian population was so severe as 2,346,303 individuals were 
infected including local and imported cases. The death toll stands at 27,422 cases, including those 
classified as Brought in Dead (BID), indicating individuals who passed away before reaching the 
hospital. These figures were reported by the Ministry of Health (MOH) Malaysia as of 11th 
October 2021. The Malaysian government, particularly the MOH Malaysia, has been closely 
involved in responding to this outbreak. Various phases of movement restrictions and Standard 
Operating Procedures (SOPs) have been implemented to break the chain of COVID-19 
transmission among Malaysian citizens. These efforts have led to a significant decline in daily 
COVID-19 cases, effectively ending the second wave of the pandemic on 8th July 2020. However, 
the emergence of new variants of SARS-CoV-2 during the third wave has presented more critical 
and challenging circumstances. 

The introduction of time dependent function for the evolution kinetics in the models is to consider 
the impact of intervention measures such as lockdown, healthcare system and the community 
behavior. These factors were translated into piecewise function based on Malaysian government 
action in three phases, first; before Movement Control Order (MCO), second; during MCO and 
Conditional MCO and lastly; during Recovery MCO.  Expressing SIRD parameters in particular 
explicit function of time has practiced by various other researchers such as [6] and [7]. Our SEIRD 
model, despite heavily inspired by [8] and [9], the formulation for the evolution’s kinetics is highly 
influenced by [4]. Note that the SEIRD model parameters in [8] and [9] are also considered as 
time varying but were implicitly determined by some different optimization techniques. 

The basic reproduction number 𝑅0 is one of the key values in epidemiology as it is conventionally 
used to predict whether the infectious disease will spread further or vanish. In most 
epidemiological contexts, the epidemic is controlled when 𝑅0 < 1, however for complex 
epidemics, where 𝑅0(𝑡) fluctuates, a proper dynamic threshold definition can be set as the upper 
bound.  Despite the success in fitting their modified models to the data where the best optimized 
parameters were obtained, the estimation of 𝑅0 is not reported in [4] and [10]. Usually, the 
explicit formula for 𝑅0 can be derived from the model’s ordinary differential equations (ODEs) 
and one of the popular methods is known as the next generation matrix. However, the 𝑅0 
formulation may not be unique as it depends on how one classifies the infected compartments 
from the ODEs during the derivation [11]. Once the 𝑅0 explicit formula is derived then the 
sensitivity analysis can be carried out easily. 

In this paper, first under the Methodology section, we present the SEIRD model that was proposed 
by [3] to investigate the dynamics of COVID-19 cases during the early outbreak period prior to 
the national vaccination program. Some justifications related to the construction of this 
compartmental model are also discussed. Then it is followed by the explanation on the solving 
the ODEs and optimization of the parameters to obtain the best fitted solution to the data. Next, 
the techniques used in the next generation matrix for deriving the 𝑅0(𝑡) formula, its 
corresponding dynamic threshold and local sensitivity analysis will be presented. Secondly, 
under the Results and Discussion section, we demonstrate the improvement of our fitting results 
compared to the two main cited works. Additionally, the estimated 𝑅0(𝑡) and its percentage 
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degree of local sensitivity are also discussed. Finally, in the Conclusion part, we summarize our 
findings from this study.  

2 MATERIAL AND METHODS 

2.1 Model and Data 

The modified SEIRD model is described in terms of non-linear ODE system as in Equation (1) – 
Equation (5). Additionally, Equation (6) represents the constant total population, denoted by N. 

 

𝑑𝑆

𝑑𝑡
= −

𝛽𝐼(𝑡)𝑆𝐼

𝑁
−
𝛽𝐸(𝑡)𝑆𝐸

𝑁
 ( 1 ) 

𝑑𝐸

𝑑𝑡
=
𝛽𝐼(𝑡)𝑆𝐼

𝑁
+
𝛽𝐸(𝑡)𝑆𝐸

𝑁
− 𝜎𝐸 ( 2 ) 

𝑑𝐼

𝑑𝑡
= 𝜎𝐸 − 𝛾(𝑡)𝐼 − 𝜇(𝑡)𝐼 ( 3 ) 

𝑑𝑅

𝑑𝑡
= 𝛾(𝑡)𝐼 ( 4 ) 

𝑑𝐷

𝑑𝑡
= 𝜇(𝑡)𝐼 ( 5 ) 

𝑁 = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) + 𝐷(𝑡) ( 6 ) 

where 𝑆, 𝐸, 𝐼, 𝑅 and 𝐷 represent the susceptible, exposed, infected, recovered and death 
individuals in the population, 𝛽𝐼(𝑡) is the infection rate upon contact with 𝐼, 𝛽𝐸(𝑡) is the infection 
rate upon contact with 𝐸, 𝜎  is the incubation rate, 𝛾(𝑡) is the recovery death and 𝜇(𝑡) is the death 
rate. The detail explanation on the model formulation can be referred to [3] and [5]. 

Note that the epidemiological parameters are changing over time. Inspired by [4], time-varying 
infection rate 𝛽𝐼(𝑡) and 𝛽𝐸(𝑡), recovery death 𝛾(𝑡) and death rate 𝜇(𝑡) are formulated as 
piecewise-defined functions as in Equation (7) – Equation (10). The time interval of these 
piecewise functions is basically divided into three phases: 

• Phase I: Before MCO, 𝑡 < 𝑡𝑙𝑜𝑐𝑘 (27/2/2020-17/3/2020) 
• Phase II: During MCO, 𝑡𝑙𝑜𝑐𝑘 ≤ 𝑡 < 𝑡𝑙𝑖𝑓𝑡 (18/3/2020-9/6/2020) 

• Phase III: During RMCO, 𝑡 ≥ 𝑡𝑙𝑖𝑓𝑡  (10/6/2020-23/2/21) 
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𝛽𝐼(𝑡) =

{
 

 
𝛽1𝑡 + 𝛽2, 𝑡 < 𝑡𝑙𝑜𝑐𝑘

𝛽0𝑒
−
𝑡−𝑡𝑙𝑜𝑐𝑘
𝜏𝛽 ,               𝑡𝑙𝑜𝑐𝑘 ≤ 𝑡 < 𝑡𝑙𝑖𝑓𝑡

(1 − 𝑟)(𝛽1(𝑡 − 𝑡𝑙𝑖𝑓𝑡) + 𝛽2), 𝑡 ≥ 𝑡𝑙𝑖𝑓𝑡

 ( 7 ) 

𝛽𝐸(𝑡) = 𝑝𝛽𝐼(𝑡) ( 8 ) 

𝛾(𝑡) = {

𝛾2(𝑡) + 𝛾3,                        𝑡 < 𝑡𝑙𝑜𝑐𝑘

𝛾0 +
𝛾1

1 + 𝑒(−𝑡+𝑡𝑙𝑜𝑐𝑘+𝜏𝛾)
,                        𝑡 ≥ 𝑡𝑙𝑜𝑐𝑘

 ( 9 ) 

𝜇(𝑡) =

{
 

 
𝜇2(𝑡) + 𝜇3,                    𝑡 < 𝑡𝑙𝑜𝑐𝑘

𝜇0𝑒
−
𝑡−𝑡𝑙𝑜𝑐𝑘
𝜏𝜇 + 𝜇1,                                  𝑡𝑙𝑜𝑐𝑘 ≤ 𝑡 < 𝑡𝑙𝑖𝑓𝑡

𝜇2(𝑡 − 𝑡𝑙𝑖𝑓𝑡) + 𝜇3,                    𝑡 ≥ 𝑡𝑙𝑖𝑓𝑡

 (10) 

 

Each phase is correlated to the specific time dependent function based on the population 
behavior. Phase I represents the situation before the MCO, where people were free to move 
without restriction, therefore the infection rates 𝛽𝐼 and 𝛽𝐸 , recovery rate 𝛾 and mortality rate 𝜇 
are assumed as linear functions. Phase II considers the occurrence during the MCO, where the 
infection and mortality rates should decay due to the isolation and the implementation of 
standard operation procedures (SOP). Hence, those two rates could be described as exponential 
functions with decay rate. Meanwhile, in this phase the infected individuals should receive better 
treatment and healthcare, so it is expected that the recovery rate will increase following a logistic 
function. Phase III justifies the condition after MCO, when the lockdown was lifted but social 
activities were allowed under the SOP. Hence, again the infection and mortality rates can be 
considered as linear function, however the infection rate is also assumed to be proportional to 
the percentage of population disobedient to the SOP. 

The original data consists in two spreadsheet files, namely Data Set 1 and 2. If combined, it spans 
from 25th January 2020 to 23rd February 2021, but we intentionally select the first 238 days of 
each dataset to fairly compare our fitting results with the previous works [4], [5] and [10]. 
Moreover, the chosen 238-day span sufficiently covers all three phases considered in the model. 
The dataset is clean and well-structured, and since our fitting methodology is based on a 
deterministic model rather than statistical inference, additional preprocessing steps such as 
smoothing or filtering are deemed unnecessary. Furthermore, the optimization procedure 
employs numerical derivative-free methods, which do not rely on gradient-based information. 
While these methods are less sensitive to data distribution assumptions, potential issues such as 
underreporting or inconsistencies are not explicitly modeled in this approach. However, given 
the nature of our dataset and problem context, we assume that such factors do not significantly 
impact the results.  

2.2 The Optimization and Fitting Procedure 

This problem has only one objective which is to minimize the difference between the numerical 
solutions from the model and the data i.e., the error. Hence, a single objective function needs to 
be constructed and the parameters that need to be optimized are corresponding coefficients from 
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the system of ordinary differential SEIRD equations. Since the model is a system of non-linear 
ODEs, the objective function should include an ODE solver where the solver will require initial 
conditions for the five populations denoted by 𝑆(0), 𝐸(0), 𝐼(0), 𝑅(0) and 𝐷(0). The optimization 
problem is defined as follows: 

min∑(𝑌(𝑡𝑖) − 𝑈(𝑡𝑖, 𝐱))
2

𝑚

𝑖=1

,    𝐱𝐿 ≤ 𝐱 ≤ 𝐱𝑈 (11) 

where 𝑡𝑖  is the i-th day, 𝑌 is a case from the recorded data, 𝑈 is the solution from the model for 
that particular 𝑌 and 𝐱 ∈ ℝ𝒏 is the vector that contains the parameters for the optimization, 𝒙𝐿, 𝒙𝑈 
are respectively the lower and upper bound of 𝐱 and 𝑛 is the number of those extremums. Based 
on the ODEs,  𝑛 = 16 and we set the corresponding vectors as:  

𝐱 =  [𝛽0, 𝛽1, 𝛽2, 𝛾0, 𝛾1, 𝛾2, 𝛾3, 𝜇0, 𝜇1, 𝜇2, 𝜇3, 𝜏𝛽 , 𝜏𝛾 , 𝜏𝜇, 𝑝, 𝜎], 

𝐱𝐿 = [𝜖, 𝜖, 𝜖, 𝜖, 𝜖, 𝜖, 𝜖, 𝜖, 𝜖, 𝜖, 𝜖, 1,1,1,1,0.07] where 𝜖 = 10
−6, 

𝐱𝑈 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,30,30,30,5,0.5]. 

(12) 

The bounds corresponding to the parameters 𝛽0 until 𝜇3 in Equation (12) are between [0, 1] but 
we substitute 0 with 𝜖 = 10−6 merely for computational efficiency. The rational is that these 
parameters should be small since 𝑡 will increase linearly in Equations (7 – 10).  Meanwhile for 
characteristic time of transmission 𝜏𝛽 , characteristic time of recovery 𝜏𝛾 and characteristic time 

of death 𝜏𝜇, the bounds are between [1,30] represent 30 days limit based on our previous study 

[5]. Parameter 𝑝, the proportion of 𝛽𝐸 over 𝛽𝐼 is bounded between [1, 5] based on [9] and 
parameter 𝜎, incubation rate is based on the general formula 1 𝑇𝑐⁄  where 𝑇𝑐  is the average of 
latency period which ranges from 5 to 6 days [5], therefore [0.07, 0.5] is the assumed bound. 

 

2.2.1 Nelder-Mead Method 

The Nelder-Mead (NM) technique is a direct method or derivative-free minimization algorithm 
that generates a sequence of simplexes that run after or circumscribe the minimizer of the 
objective function. It uses the evaluations of the objective function at the simplexes’ vertices and 
simple geometrical transformations such as reflections, expansions, and contractions repeatedly 
until it satisfies the stopping criteria for convergence and returns associate vertices as the 
solution. This algorithm is quite robust and efficient for small dimensional problems. Its rate of 
convergence is severely affected by the choice of the initial simplex [12]. 

2.2.2 Pattern-Search Method 

The Hooke and Jeeves Pattern-Search (PS) algorithm is also a derivative-free optimization 
technique. It starts with an initial guess of the parameter space, then chooses a search pattern (a 
set of directions) and makes a move from the current point. After evaluating the objective 
function at the new point then the pattern is updated based on the objective function value either 
accept it if it decreases or backtrack to the previous point and reduce step size in the current 
direction if no improvement or find a new direction if no improvement at all. These steps are 
repeated until the convergence criteria are met [13]. 
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2.3 The Optimization Application in Pymoo 

Firstly, Pymoo requires the user to define the optimization problem in a class definition as 
commonly practice in object-oriented programming [14]. We define our optimization problem as 
follows: 

from pymoo.core.problem import ElementwiseProblem 

... 

class MyProblem(ElementwiseProblem): 

    def __init__(self, tspan, initz, cdata, rpars): 

        xl=1.0e-6*np.ones(16) 

        xl[11:16]=[1,1,1,1,0.07] 

        xu=np.ones(16) 

        xu[11:16]=[30,30,30,5,0.5] 

        super().__init__(n_var=16,n_obj=1,xl=xl,xu=xu) 

        self.tspan = tspan 

        self.initz = initz 

        self.cdata = cdata 

        self.rpars = rpars 

                          

    def _evaluate(self, x, out, *args, **kwargs): 

        tspan = self.tspan 

        initz = self.initz 

        cdata = self.cdata 

        rpars = self.rpars 

        sol = Ode_Solver(tspan,initz,*(rpars+list(x))) 

        f1 = (sol[:, 2:5] - cdata).ravel()  

        out["F"] = np.sum(f1**2) 

 

Specifically, in this case, the optimization problem is defined by a custom class called 
MyProblem. It is a subclass of Pymoo’s base class for single-objective optimization problems, 

ElementwiseProblem. The class constructor __init__ is responsible for initializing the 

problem and determining the upper and lower bounds (xl and xu respectively) for the 

optimization variables, which are the compartmental model’s parameters. There are 16 
optimization variables, as indicated by n_var=16, n_obj=1 represents that there is one 

objective function (single objective) and the super().__init__ call initializes the base class 
of ElementwiseProblem with specific parameters. The second definition in the class is   

_evaluate function. This function is required by ElementwiseProblem to evaluate the 

objective function. It employs the user defined function Ode_Solver where the sixteen 

parameters are assigned to the array x as one of the inputs, to obtain the numerical solution for 

the ODEs. Next, it computes the objective function value by comparing the model prediction with 
the actual data and summing the squared differences. The output was then used by the 
optimization algorithm to guide the search for new optimized parameters.  

Parts of our implementation of the defined class are as follows: 

... 

from pymoo.algorithms.soo.nonconvex.nelder import NelderMead 

from pymoo.optimize import minimize 

from pymoo.algorithms.soo.nonconvex.pattern import PatternSearch 

... 

def Ode_Model(z,t,tMCO,tRMCO,abdr,deltp,beta0,beta1,beta2,gam0,gam1, 
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              gam2,gam3,mu0,mu1,mu2,mu3,taub,taug,taum,prbb,sigmp): 

    S, E, I, R, D = z 

    N = S + E + I + R + D 

    betaI = Beta_I(t,tMCO,tRMCO,beta0,beta1,beta2,taub,abdr) 

    betaE = prbb*betaI 

    gampt = Gampt(t,tMCO,gam0,gam1,gam2,gam3,taug) 

    mupt = Mupt(t,tMCO,tRMCO,mu0,mu1,mu2,mu3,taum) 

    dSdt = -(betaI*S*I)/N - (betaE*S*E)/N + deltp*R 

    dEdt = (betaI*S*I)/N + (betaE*S*E)/N - sigmp*E 

    dIdt = sigmp*E - gampt*I - mupt*I 

    dRdt = gampt*I - deltp*R 

    dDdt = mupt*I 

    dydt = [dSdt, dEdt, dIdt, dRdt, dDdt] 

    return dydt 

 

def Ode_Solver(tspan,initz,*pars): 

    OdeFun = lambda y,t: Ode_Model(y,t,*pars) 

    sol = odeint(OdeFun,initz,tspan) 

    return sol 

... 

problem = MyProblem(tspan,initz,cdata,rpars)  

algorithm = NelderMead(x0=np.array()) 

res = minimize(problem,algorithm,seed=1,verbose=False) 

... 

algorithm = PatternSearch(x0=optimal_pNM) 

res = minimize(problem,algorithm,seed=1,verbose=False) 

... 

 

The user defined function for the ODEs is  Ode_Model  and to solve the model we use odeint 

function from SciPy module in the Ode_Solver procedure. The initial values initz can be 

referred to Table 1. Then, we define the object from MyProblem class as  problem , then one 

can choose the available optimization algorithms offered in Pymoo, in which  NelderMead  and  

PatternSearch in our case. Finally, minimize is called to perform the optimization based on 

the chosen algorithm. The initial values for the optimization ipars can be referred to Table 2. 

Table 1 : Initial values for solving the ODEs of the SEIRD model. 

Dataset Initial States Values (Individuals) Sources 

1 

 

Susceptible, 𝑆(0) 

Exposed, 𝐸(0) 

Infected, 𝐼(0) 

Recovered, 𝑅(0) 

Death, 𝐷(0) 

32657300 

4 

3 

0 

0 

Equation (6) 

Assumption 

[2] 

[2] 

[2] 

2 Susceptible, 𝑆(0) 

Exposed, 𝐸(0) 

Infected, 𝐼(0) 

Recovered, 𝑅(0) 

Death, 𝐷(0) 

32657300 

100 

1 

22 

0 

Equation (6) 

Assumption 

[2] 

[2] 

[2] 
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Table 2 : Initial parameters input for the optimization procedure. 

Parameters Values Sources 

Infection rate, 𝛽𝐼 𝛽0 =  0.16100732 

𝛽1 =  0.00142347 

𝛽2 =  0.07373335 

[4] 

Recovery rate, 𝛾 𝛾0 =  0.02590983 

𝛾1 =  0.02670039 

𝛾2 =  0.00008300 

𝛾3 =  0.00606688 

[4] 

Death rate, 𝜇 𝜇0 =  0.00151062 

𝜇1 =  0.00015316 

𝜇2 =  0.00008013 

𝜇3 =  0.00025064 

[4] 

Characteristic time of 

transmission, 𝜏𝛽 

21.73215538 [4] 

Characteristic time of 
recovery, 𝜏𝛾 

12.35930060 [4] 

Characteristic time of 
death, 𝜏𝜇 

26.35932269 [4] 

Proportion of 𝛽𝐸 over 

𝛽𝐼, 𝑝 

1.002 [5] 

Incubation rate, 𝜎 0.15 [5] 

 

The flow of our program basically follows what has been implemented in [4], the optimized 
parameters from Nelder-Mead is impoverished using Pattern-Search, and it is repeated until the 
current RMSE error is larger than the previous one. However, for each of the methods, Pymoo 
provides the default setting for terminating the procedure where the maximum number of 
iterations is 1000 and the numerical tolerance is 10−8. This gives a disadvantage in the 
computational time, for example using a laptop with Intel-i5 2.38 GHz processor, the elapse time 
is at least 30 minutes. 

2.4 Derivation of Reproduction Number Formula 

In the context of compartmental epidemiological modeling, there are a few approaches to 
estimate the reproduction number such as by direct definition, Jacobian of the ODE and next 
generation matrix. For a relatively complex model, the next generation matrix approach is 
preferable [15]. The compartments are divided into two broad categories: infected compartments 
and noninfected (healthy) compartments. In this study, Equations (2) and (3) are categorized 
under infected compartments, while the healthy compartments comprise Equations (1), (4) and 
(5). The ODEs that are assumed under infected compartments can be rewritten as: 
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𝑑𝐸

𝑑𝑡
= ℱ1 − 𝒱1 ,

𝑑𝐼

𝑑𝑡
= ℱ2 − 𝒱2   (13) 

where 

ℱ1 =
𝛽𝐼𝑆𝐼

𝑁
+
𝛽𝐸𝑆𝐸

𝑁
, 𝒱1 = 𝜎𝐸 , ℱ2 = 0, 𝒱2 = −𝜎𝐸 + 𝛾𝐼 + 𝜇𝐼.   (14) 

Then we construct matrices  

𝐹 = [

𝜕ℱ1
𝜕𝐸

𝜕ℱ1
𝜕𝐼

𝜕ℱ2
𝜕𝐸

𝜕ℱ2
𝜕𝐼

] = [
𝛽𝐸𝑆

𝑁

𝛽𝐼𝑆

𝑁
0 0

] , 𝑉 = [

𝜕𝒱1
𝜕𝐸

𝜕𝒱1
𝜕𝐼

𝜕𝒱2
𝜕𝐸

𝜕𝒱2
𝜕𝐼

] = [
𝜎 0
−𝜎 𝛾 + 𝜇

].   
(15) 

The so-called, next generation matrix is given by 

𝐾 = 𝐹𝑉−1 = [

𝛽𝐸𝑆

𝜎𝑁
+

𝛽𝐼𝑆

(𝛾 + 𝜇)𝑁

𝛽𝐼𝑆

(𝛾 + 𝜇)𝑁
0 0

] 
(16) 

The effective reproduction number is 

𝑅𝑒𝑓𝑓 =
𝛽𝐸𝑆

𝜎𝑁
+

𝛽𝐼𝑆

(𝛾 + 𝜇)𝑁
 

(17) 

which is the largest eigen-value of 𝐾. This number represents the average number of secondary 
infections produced by a single infected individual at time t in a population that may include both 
susceptible and non-susceptible (immune) individuals. It reflects the current state of the 
epidemic. Conventionally, to obtain the basic reproduction 𝑅0 formula, one should replace the 
dependent variable with solutions from a disease-free equilibrium state and the averaged values 
for the parameter, in such 𝑅0 is constant over time. This is qualitatively suitable for a study over 
short period of time span when the values are not too much deviate from their averages. 

In our case, we substitute the initial condition in  𝑅𝑒𝑓𝑓 as suggested in [8], to obtain 

𝑅0(𝑡) =
𝑝𝛽𝐼(𝑡)𝑆0
𝜎𝑁

+
𝛽𝐼(𝑡)𝑆0

(𝛾(𝑡) + 𝜇(𝑡))𝑁
 

(18) 

where 𝑆0 = 𝑆(0) is the initial condition when the ODEs are solved but in [8], they fixed 𝑝 = 5 and 
𝜎 = 1/7 and neglect the first term without any explanation. Perhaps, the first term is insignificant 
in that case. In most epidemiological contexts, the epidemic is under controlled when 𝑅0(𝑡) < 1, 
meaning each infected person spreads the disease to fewer than one other person on average. 
Despite that, [8] proposed a dynamical threshold 𝐿0(𝑡) to compare with 𝑅0(𝑡), given by 

𝐿0(𝑡) =
𝐼(𝑡)

𝐼(𝑡) + 𝑝𝐸(𝑡)
 

(19) 

which represents the fraction of individuals who are currently infectious relative to the pool of 
both infectious and exposed individuals.  Using 𝐿0(𝑡) as the control threshold is more realistic for 
complex epidemics, where the reproduction number can fluctuate, and the exposed population 
plays a key role. In such cases, simply requiring 𝑅0(𝑡) < 1 might be too strict, the condition 
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𝑅0(𝑡) < 𝐿0(𝑡) allows for a more nuanced understanding; the epidemic could still be manageable 
if enough individuals are in the exposed phase (and not infectious yet). 

2.5 The Sensitivity Analysis of the Basic Reproduction Number 

It is important to know the change generated in a model variable when the values of one of its 
parameters is changed in the model. A high sensitivity index value for a parameter primarily 
indicates that the parameter is significant to the model, meaning that variations in this parameter 
have a substantial impact on the model’s output. To compute the sensitivity analysis, we adopt 
the definition of the normalized sensitivity index from [16]. The sensitivity index of 𝑅0 with 
respect to 𝑝, 𝛽𝐼, 𝜎, 𝛾 and 𝜇 are given as follows: 

Υ𝑝(𝑡) = 𝑝(𝛾(𝑡) + 𝜇(𝑡))/(𝑝(𝛾(𝑡) + 𝜇(𝑡)) + 𝜎) (20) 

Υ𝛽𝐼(𝑡) = 1 (21) 

Υ𝜎(𝑡) = −𝑝(𝛾(𝑡) + 𝜇(𝑡))/(𝑝(𝛾(𝑡) + 𝜇(𝑡)) + 𝜎) (22) 

Υ𝛾(𝑡) = −𝛾(𝑡)𝜎/ ((𝛾(𝑡) + 𝜇(𝑡))(𝑝(𝛾(𝑡) + 𝜇(𝑡)) + 𝜎)) (23) 

𝛶𝜇(𝑡) = −𝜇(𝑡)𝜎/ ((𝛾(𝑡) + 𝜇(𝑡))(𝑝(𝛾(𝑡) + 𝜇(𝑡)) + 𝜎)). (24) 

Except for Υ𝛽𝐼(𝑡) all other sensitivity index expressions are dependent on time. Clearly, as the 

parameters in our SEIRD model that are also time dependent. 

3 RESULTS AND DISCUSSION 

First, to compare the current work with [4] and [5], we fit it to the case of COVID-19 outbreaks in 
Malaysia recorded from 25th January until 13th May 2020. The comparisons in terms of RMSE are 
depicted in Table 3. The RMSE from [5] is recalculated to match the considered period since in 
[5], the calculation was carried out for a much wider time span i.e. until 18th September 2020. Our 
current model has the lowest RMSE compared to the other two. It is about 7.5% RMSE 
deterioration from Model 1 to Model 2 but 27.5% improvement from Model 1 to Model 3 and 
32.6% improvement from Model 2 to Model 3. 

 

Table 3 : Comparison of RMSE from various related models to the case of COVID-19 outbreak in Malaysia. 

No Model Package / Methods RMSE 

1 SIRD [4] MATLAB / NM and PS 80.08 

2 SEIRD [5] Lmfit / NM 87.56 

3 SEIRD, [this study] Pymoo / NM and PS 58.35 

 

Next, we show the result of the fitting of the model to the data by choosing two data sets, first data 
set from 25th January 2020 until 18th September 2020 and second data set from 27th February 
2020 until 21st October 2020. Note that the latter data set is just a prolong data of the former, and 
basically these data are from the pre-vaccination phase, collected from the MOH Malaysia's 
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official GitHub repository. Figure 1 illustrates the fitting of the SEIRD model for three recorded 
cases from the first data set. In the death case, the fitting seems worse compared to the other two 
cases but one should look at the proportion of the 𝑦-axis to see that the discrepancies are of order 
as in the other cases. Similarly, for the second set of data, the fitting is depicted in Figure 2 but 
since it is the extended period of first data set, we use the optimized parameters from the first 
data set as the initials to compute the optimized parameters for the second data set. Initial values 
for solving the ODEs are also changed based on the starting point of the second data set. 

 

 

Figure 1 : Fitting to the Dataset 1 from 25th January 2020 to 18th September 2020    
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Figure 2 : Fitting to the Dataset 2from 27th February 2020 to 21st October 2020    

Further comparisons of error metrics between Lmfit and PyMoo are presented in Table 4 (SEIRD 
model) and Table 5 (SIRD model). The SIRD model from [4] was reimplemented in Python, where 
we computed the Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Symmetric 
Mean Absolute Percentage Error (sMAPE) to evaluate model performance. The comparison 
between the SIRD and SEIRD models shows that SEIRD generally improves absolute error metrics 
while SIRD sometimes has lower relative errors (sMAPE). For Dataset 1, RMSE decreases ranging 
by 2.4% to 4.9% when switching from SIRD to SEIRD, while MAE improves ranging by 5.8% to 
9.5%, though it slightly increases in one case. In Dataset 2, SEIRD achieves a more significant 
reduction, lowering RMSE ranging by 4.8% to 22.5% and MAE ranging by 9.4% to 19.0%, 
demonstrating improved absolute accuracy. Comparing optimization methods, shifting from 
Lmfit to Pymoo (with NM and PS) improves RMSE by 11.0% to 15.2% and MAE by 7.8% to 8.0% 
in Dataset 1, while in Dataset 2, Pymoo significantly enhances RMSE by 39.7% and MAE by 42.0%, 
making it the superior approach for fitting COVID-19 data. However, sMAPE remains consistently 
high (>20%) for all cases, indicating poor relative accuracy, likely due to the sensitivity of sMAPE 
to small values or data inconsistencies. 

Table 4 : Comparison of error metrics for the Python optimization modules in fitting the SEIRD model to 
the case of COVID-19 outbreak in Malaysia. 

Dataset Modules / Methods MAE RMSE sMAPE% 

1 Lmfit    / NM 

Pymoo / NM  

Pymoo / NM and PS 

166.54 

153.61 

153.27 

265.19 

236.12 

224.95 

49.37 

58.80 

66.15 

2 Lmfit    / NM 

Pymoo / NM  

Pymoo / NM and PS 

412.75 

401.21 

239.40 

589.24 

648.04 

355.20 

62.14 

59.52 

38.11 
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Table 5 : Comparison of error metrics for the Python optimization modules in fitting the SIRD model to 
the case of COVID-19 outbreak in Malaysia. 

Dataset Modules / Methods MAE RMSE sMAPE% 

1 Lmfit    / NM 

Pymoo / NM  

Pymoo / NM and PS 

183.98 

163.11 

144.37 

278.98 

241.84 

234.33 

55.02 

60.40 

53.25 

2 Lmfit    / NM 

Pymoo / NM  

Pymoo / NM and PS 

391.02 

442.88 

295.61 

619.23 

801.52 

458.33 

43.97 

47.97 

44.12 

 

Further, we compute the basic reproduction number 𝑅0(𝑡) and the dynamical threshold 𝐿0(𝑡) for 
both data sets. In the first data set, the MCO began on the 53rd day, RMCO started on 137th day 
and based on Figure 3, the range where 𝑅0(𝑡) < 𝐿0(𝑡) is 114 ≤ days ≤ 142. This means that it 
took about 61 days after MCO for the COVID 19 to be under control and in just 5 days after RMCO, 
the disease outbroke again. While in the second data set, the MCO started on the 20th day, RMCO 
initiated on 104th day and based on Figure 4, the range where 𝑅0(𝑡) < 𝐿0(𝑡) is 87 ≤ days ≤ 112. 
This gives 67 days after MCO to effectively control the disease and the spreading restarted after 
8 days MCO had been lifted. Overall, these figures are qualitatively in agreement to support that 
the MCO had succeeded in preventing the spread of COVID 19 two months after its 
implementation and the spread had continued just after one week it was being lifted. 

 

 

Figure 3 : 𝑅0 and 𝐿0 from 25th January 2020 to 18th September 2020    
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Figure 4 : 𝑅0 and 𝐿0 from 27th February 2020 to 21st October 2020    

 

Finally, the local sensitivity analysis of 𝑅0(𝑡) with respect to its parameters is presented for both 
datasets. Figures 5 and 6 illustrate the sensitivity index of 𝑅0(𝑡) concerning 𝑝, 𝛽𝐼, 𝜎, 𝛾 and 𝜇 for 
the first and second datasets, respectively. Notably, only  Υ𝛽𝐼(𝑡) remains constant across both time 

spans. Comparing the maximum absolute values of the sensitivity indices, Υ𝛽𝐼 = 1 is the highest, 

indicating that 𝛽𝐼  (infection rate) is the most influential parameter in estimating 𝑅0(𝑡) . A 1% 
increase (or decrease) in 𝛽𝐼  directly results in a 1% increase (or decrease) in 𝑅0(𝑡). Moreover, 
examining the maximum absolute sensitivity across both datasets in Figure 5, a 1% change in 𝑝 
leads to a maximum 0.5% change in 𝑅0(𝑡), whereas a 1% increase (or decrease) in 𝜎, 𝛾 or 𝜇 results 
in a maximum 0.5% decrease (or increase) in 𝑅0(𝑡). 

 

Figure 5 : The sensitivity index of 𝑅0 with respect to 𝑝, 𝛽𝐼 , 𝜎, 𝛾 and 𝜇 from  
25th January 2020 to 18th September 2020    
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Figure 6 : The sensitivity index of 𝑅0 with respect to 𝑝, 𝛽𝐼 , 𝜎, 𝛾 and 𝜇 from  
27th February 2020 to 21st October 2020    

4 CONCLUSION 

In this study, the SEIRD model generally outperforms SIRD in terms of absolute error, as indicated 
by lower RMSE and MAE. While SIRD sometimes yields a lower sMAPE, suggesting better 
handling of relative errors, SEIRD remains the more suitable model for fitting COVID-19 data, as 
absolute errors are more critical than percentage-based errors in this context. The integration of 
the Pymoo framework to implement a combination of Nelder-Mead and Pattern Search has 
significantly improved the SEIRD model’s fit to COVID-19 case data, achieving up highest about a 
40% reduction in both RMSE and MAE. Furthermore, the calculation of 𝑅0 and 𝐿0, along with their 
dynamic relationship, aligns well with MCO outcomes, indicating that the model parameters have 
been accurately estimated through the optimization procedure. The sensitivity analysis of 𝑅₀ with 
respect to its corresponding parameters reveals that all sensitivity indices remain below 1%, with 
the infection rate 𝛽𝐼 being the most influential factor. 

The SEIRD model is explicitly constructed for the pre-vaccination period, specifically from 
January 25, 2020, to February 23, 2021. It does not account for the phase during which Malaysia’s 
vaccination program was implemented. Consequently, the fitted model cannot explain the 
current phase of COVID-19, where the national immunization program has been completed. 
Future research could extend this model to incorporate the post-vaccination period. In doing so, 
it would be crucial to account for vaccination-related factors when developing an updated 
compartmental model. By integrating vaccination variables and parameters, a more 
comprehensive understanding of COVID-19 transmission during and after the vaccination phase 
could be achieved. This would provide valuable insights into the effectiveness of vaccination 
efforts and aid in designing more effective pandemic control strategies. 
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