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ABSTRACT

Recently, two specialized compartmental epidemiological models; the modified SIRD and
SEIRD were developed to study COVID-19 in Malaysia, with their validity tested by fitting
them to actual data. In this case, the optimization problem has a single objective: minimizing
the least square error between the numerical solution and real-world data, without any
imposed constraints. However, the introduction of time-dependent coefficients in both
models increases the number of optimization variables. To solve this, the Nelder-Mead and
Pattern Search algorithms were recommended. While Nelder-Mead is widely available in
Python optimization libraries, Pattern Search is less common, which motivated the choice of
the Pymoo multi-objective optimization framework for this study. The fitting results show
that the absolute error metrics improve highest by about 40% compared to the results
obtained from other optimization packages in previous studies. Furthermore, as an extension
of prior research, we incorporate the computation of the dynamic basic reproduction
number and its sensitivity analysis, confirming the effectiveness of the movement control
order in controlling the disease during the pre-vaccination phase.

Keywords: Covid-19, Model Fitting, Epidemiology, Optimization.

1 INTRODUCTION

Python has emerged as one of the most preferred programming languages for academic studies
and commercial projects in the current trending fields such as data science, machine learning,
and deep learning. One of the factors is it has numerous different libraries and frameworks that
can be used in those fields including the ones related to optimization such as Lmfit, SciPy and
Pymoo. Python multi-objective optimization (Pymoo) framework is relatively new compared to
the others and interestingly, it offers more algorithms even for single-objective optimization
problems [1].

In this study, the optimization capability of Pymoo is tested by fitting a published epidemiological
model of the outbreak of COVID-19 cases in Malaysia to the time series data from 25th January
2020 to 23rd February 2021 based on a modified SEIRD model. The data are collected from the
Minister of Health Malaysia (MOH)’s official GitHub repository [2]. The modifications
incorporated several crucial control measures such as lockdown, social distancing, quarantine,
lockdown lifting time and the percentage of individuals who adhere to the prescribed regulations
in terms of some dynamical kinetic functions [3].
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Recently, this model and a similar modified SIRD model has been tested to fit the same COVID-19
data [4]. The SIRD model was fitted to COVID-19 data using a combination of Nelder-Mead and
Pattern-Search algorithms from MATLAB’s Optimization Toolbox. However, in our previous work
Pattern-Search procedure was not implemented because it is not available from the Python’s
Lmfit library we used. Therefore, the SIRD model fitting had attained better accuracy, measured
by the least Root Mean Square Error (RMSE), compared to ours [5]. This motivates the
reproduction of SEIRD fitting using both Nelder-Mead and Pattern-Search under the Pymoo
framework, to investigate whether Pymoo can match the performance of MATLAB’s commercial
optimization tools.

The impact of COVID-19 to Malaysian population was so severe as 2,346,303 individuals were
infected including local and imported cases. The death toll stands at 27,422 cases, including those
classified as Brought in Dead (BID), indicating individuals who passed away before reaching the
hospital. These figures were reported by the Ministry of Health (MOH) Malaysia as of 11th
October 2021. The Malaysian government, particularly the MOH Malaysia, has been closely
involved in responding to this outbreak. Various phases of movement restrictions and Standard
Operating Procedures (SOPs) have been implemented to break the chain of COVID-19
transmission among Malaysian citizens. These efforts have led to a significant decline in daily
COVID-19 cases, effectively ending the second wave of the pandemic on 8th July 2020. However,
the emergence of new variants of SARS-CoV-2 during the third wave has presented more critical
and challenging circumstances.

The introduction of time dependent function for the evolution kinetics in the models is to consider
the impact of intervention measures such as lockdown, healthcare system and the community
behavior. These factors were translated into piecewise function based on Malaysian government
action in three phases, first; before Movement Control Order (MCO), second; during MCO and
Conditional MCO and lastly; during Recovery MCO. Expressing SIRD parameters in particular
explicit function of time has practiced by various other researchers such as [6] and [7]. Our SEIRD
model, despite heavily inspired by [8] and [9], the formulation for the evolution’s kinetics is highly
influenced by [4]. Note that the SEIRD model parameters in [8] and [9] are also considered as
time varying but were implicitly determined by some different optimization techniques.

The basic reproduction number R, is one of the key values in epidemiology as it is conventionally
used to predict whether the infectious disease will spread further or vanish. In most
epidemiological contexts, the epidemic is controlled when R, < 1, however for complex
epidemics, where R, (t) fluctuates, a proper dynamic threshold definition can be set as the upper
bound. Despite the success in fitting their modified models to the data where the best optimized
parameters were obtained, the estimation of R, is not reported in [4] and [10]. Usually, the
explicit formula for R, can be derived from the model’s ordinary differential equations (ODEs)
and one of the popular methods is known as the next generation matrix. However, the R,
formulation may not be unique as it depends on how one classifies the infected compartments
from the ODEs during the derivation [11]. Once the R, explicit formula is derived then the
sensitivity analysis can be carried out easily.

In this paper, first under the Methodology section, we present the SEIRD model that was proposed
by [3] to investigate the dynamics of COVID-19 cases during the early outbreak period prior to
the national vaccination program. Some justifications related to the construction of this
compartmental model are also discussed. Then it is followed by the explanation on the solving
the ODEs and optimization of the parameters to obtain the best fitted solution to the data. Next,
the techniques used in the next generation matrix for deriving the Ry(t) formula, its
corresponding dynamic threshold and local sensitivity analysis will be presented. Secondly,
under the Results and Discussion section, we demonstrate the improvement of our fitting results
compared to the two main cited works. Additionally, the estimated Ry(t) and its percentage
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degree of local sensitivity are also discussed. Finally, in the Conclusion part, we summarize our
findings from this study.

2 MATERIAL AND METHODS
2.1 Model and Data

The modified SEIRD model is described in terms of non-linear ODE system as in Equation (1) -
Equation (5). Additionally, Equation (6) represents the constant total population, denoted by N.

d_S _ _ﬁl(t)SI _ Be(t)SE

dt N N ‘D
& _pOSt, fOSE_, (2)
% = 0E — y(t)] — u(O)1 (3)
o =y (4)
0 = w1 (5)
N=SO+E@®+I({t)+R({)+D() (6)

where S,E,I,R and D represent the susceptible, exposed, infected, recovered and death
individuals in the population, §;(t) is the infection rate upon contact with I, Sz (t) is the infection
rate upon contact with E, ¢ is the incubation rate, y(t) is the recovery death and u(t) is the death
rate. The detail explanation on the model formulation can be referred to [3] and [5].

Note that the epidemiological parameters are changing over time. Inspired by [4], time-varying
infection rate §;(t) and Bg(t), recovery death y(t) and death rate p(t) are formulated as
piecewise-defined functions as in Equation (7) - Equation (10). The time interval of these
piecewise functions is basically divided into three phases:

e Phase I: Before MCO, t < t;,0 (27/2/2020-17/3/2020)
e Phase II: During MCO, tjpc < t < ty;5, (18/3/2020-9/6/2020)
e Phase III: During RMCO, t > t;;r, (10/6/2020-23/2/21)

94



Muhammad Salihi et al / Optimizing the SEIRD Model for COVID-19 in Malaysia Using Pymoo
Framework

Blt + BZ’ t< tlock
_t_tlock
Bl(t) = ﬁoe B , tiock <t< tlift ( 7)
\a1 - (Bt = tiire) + B2), t = tfe
Be(t) = pBi(t) (8)
Y2 (t) + Y3, Ut <tock
y() = |41 (9)
+ , t=>t
Yo 14+ e(_t“'tlock‘l"fy) lock
pz (t) + s, t < tiock
_t_tlock
O =1 poe  TH o +p, tiock <t < typt (10)
uo (t = type) + s, t = tfe

Each phase is correlated to the specific time dependent function based on the population
behavior. Phase I represents the situation before the MCO, where people were free to move
without restriction, therefore the infection rates 8; and S, recovery rate y and mortality rate u
are assumed as linear functions. Phase II considers the occurrence during the MCO, where the
infection and mortality rates should decay due to the isolation and the implementation of
standard operation procedures (SOP). Hence, those two rates could be described as exponential
functions with decay rate. Meanwhile, in this phase the infected individuals should receive better
treatment and healthcare, so it is expected that the recovery rate will increase following a logistic
function. Phase III justifies the condition after MCO, when the lockdown was lifted but social
activities were allowed under the SOP. Hence, again the infection and mortality rates can be
considered as linear function, however the infection rate is also assumed to be proportional to
the percentage of population disobedient to the SOP.

The original data consists in two spreadsheet files, namely Data Set 1 and 2. If combined, it spans
from 25th January 2020 to 23rd February 2021, but we intentionally select the first 238 days of
each dataset to fairly compare our fitting results with the previous works [4], [5] and [10].
Moreover, the chosen 238-day span sulfficiently covers all three phases considered in the model.
The dataset is clean and well-structured, and since our fitting methodology is based on a
deterministic model rather than statistical inference, additional preprocessing steps such as
smoothing or filtering are deemed unnecessary. Furthermore, the optimization procedure
employs numerical derivative-free methods, which do not rely on gradient-based information.
While these methods are less sensitive to data distribution assumptions, potential issues such as
underreporting or inconsistencies are not explicitly modeled in this approach. However, given
the nature of our dataset and problem context, we assume that such factors do not significantly
impact the results.

2.2 The Optimization and Fitting Procedure
This problem has only one objective which is to minimize the difference between the numerical

solutions from the model and the data i.e,, the error. Hence, a single objective function needs to
be constructed and the parameters that need to be optimized are corresponding coefficients from
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the system of ordinary differential SEIRD equations. Since the model is a system of non-linear
ODEs, the objective function should include an ODE solver where the solver will require initial
conditions for the five populations denoted by S(0), E(0), 1(0), R(0) and D(0). The optimization
problem is defined as follows:

m

minz(Y(ti) - U(ti,x))z, X, <X<Xxy (11)
i=1

where t; is the i-th day, Y is a case from the recorded data, U is the solution from the model for

that particular Y and x € R™ is the vector that contains the parameters for the optimization, x;, x;;

are respectively the lower and upper bound of x and n is the number of those extremums. Based

on the ODEs, n = 16 and we set the corresponding vectors as:

X= [ﬁo'ﬁl'ﬂz')’o'h'Vz'V3:Mo'#llﬂz'%:fﬁ"fy"pr, U]'
X, = [e,€6€,66€,6,€66€,6,6,6,1,1,1,1,0.07] wheree = 107°, (12)
xy=[1,111111,1,1,1,1,30,30,30,5,0.5].

The bounds corresponding to the parameters 8, until y3 in Equation (12) are between [0, 1] but
we substitute 0 with € = 107° merely for computational efficiency. The rational is that these
parameters should be small since t will increase linearly in Equations (7 - 10). Meanwhile for
characteristic time of transmission 7, characteristic time of recovery 7, and characteristic time
of death 7, the bounds are between [1,30] represent 30 days limit based on our previous study
[5]. Parameter p, the proportion of Bz over B; is bounded between [1,5] based on [9] and
parameter o, incubation rate is based on the general formula 1/T, where T, is the average of
latency period which ranges from 5 to 6 days [5], therefore [0.07, 0.5] is the assumed bound.

2.2.1 Nelder-Mead Method

The Nelder-Mead (NM) technique is a direct method or derivative-free minimization algorithm
that generates a sequence of simplexes that run after or circumscribe the minimizer of the
objective function. It uses the evaluations of the objective function at the simplexes’ vertices and
simple geometrical transformations such as reflections, expansions, and contractions repeatedly
until it satisfies the stopping criteria for convergence and returns associate vertices as the
solution. This algorithm is quite robust and efficient for small dimensional problems. Its rate of
convergence is severely affected by the choice of the initial simplex [12].

2.2.2 Pattern-Search Method

The Hooke and Jeeves Pattern-Search (PS) algorithm is also a derivative-free optimization
technique. It starts with an initial guess of the parameter space, then chooses a search pattern (a
set of directions) and makes a move from the current point. After evaluating the objective
function at the new point then the pattern is updated based on the objective function value either
accept it if it decreases or backtrack to the previous point and reduce step size in the current
direction if no improvement or find a new direction if no improvement at all. These steps are
repeated until the convergence criteria are met [13].
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2.3 The Optimization Application in Pymoo

Firstly, Pymoo requires the user to define the optimization problem in a class definition as
commonly practice in object-oriented programming [14]. We define our optimization problem as
follows:

from pymoo.core.problem import ElementwiseProblem

class MyProblem(ElementwiseProblem) :
def init (self, tspan, initz, cdata, rpars):
x1=1.0e-6*np.ones (16)
x1[11:16]=[1,1,1,1,0.07]
xu=np.ones (16)
xu[ll:16]=[30,30,30,5,0.5]

super (). init (n var=16,n obj=1,xl=x1, xu=xu)
self.tspan = tspan
self.initz = initz
self.cdata = cdata
self.rpars = rpars

def evaluate(self, x, out, *args, **kwargs):
tspan = self.tspan

initz = self.initz
cdata = self.cdata
rpars = self.rpars
sol = 0Ode Solver (tspan,initz, * (rpars+list(x)))

f1 = (sol[:, 2:5] - cdata).ravel ()
out ["F"] = np.sum(fl**2)

Specifically, in this case, the optimization problem is defined by a custom class called
MyProblemn. It is a subclass of Pymoo’s base class for single-objective optimization problems,
ElementwiseProblem. The class constructor init  is responsible for initializing the
problem and determining the upper and lower bounds (x1 and xu respectively) for the
optimization variables, which are the compartmental model’s parameters. There are 16
optimization variables, as indicated by n var=16, n obj=1 represents that there is one
objective function (single objective) and the super () . init  call initializes the base class
of ElementwiseProblem with specific parameters. The second definition in the class is
_evaluate function. This function is required by ElementwiseProblem to evaluate the
objective function. It employs the user defined function Ode Solver where the sixteen
parameters are assigned to the array x as one of the inputs, to obtain the numerical solution for
the ODEs. Next, it computes the objective function value by comparing the model prediction with
the actual data and summing the squared differences. The output was then used by the
optimization algorithm to guide the search for new optimized parameters.

Parts of our implementation of the defined class are as follows:
from pymoo.algorithms.soo.nonconvex.nelder import NelderMead
from pymoo.optimize import minimize

from pymoo.algorithms.soo.nonconvex.pattern import PatternSearch

def Ode Model (z,t, tMCO, tRMCO, abdr, deltp,betal, betal,betaz, gam0, gaml,
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gam2,gam3,mul,mul, mu2,mu3, taub, taug, taum, prbb, sigmp) :

S, E, I, R, D =z
N=S+E+I+R+D
betal = Beta I(t,tMCO,tRMCO,betal,betal,beta2, taub,abdr)

betaE = prbb*betal
gampt Gampt (t, tMCO, gam0, gaml, gam2, gam3, tauqg)
mupt = Mupt (t, tMCO, tRMCO, mu0,mul,mu2, mu3, taum)

dsdt = - (betaI*S*I)/N - (betaE*S*E)/N + deltp*R
dEdt = (betaI*S*I)/N + (betaE*S*E)/N - sigmp*E
dIdt = sigmp*E - gampt*I - mupt*I

dRdt = gampt*I - deltp*R

dDdt = mupt*I

dydt = [dSdt, dEdt, dIdt, dRdt, dDdt]
return dydt

def Ode Solver (tspan,initz, *pars):
OdeFun = lambda y,t: Ode Model (y,t, *pars)
sol = odeint (OdeFun,initz, tspan)
return sol

problem = MyProblem(tspan,initz,cdata, rpars)
algorithm = NelderMead (x0=np.array())
res = minimize (problem,algorithm, seed=1,verbose=False)

algorithm = PatternSearch (x0O=optimal pNM)
res = minimize (problem,algorithm, seed=1, verbose=False)

The user defined function for the ODEs is Ode Model and to solve the model we use odeint
function from SciPy module in the Ode Solver procedure. The initial values initz can be
referred to Table 1. Then, we define the object from MyProblem class as problem, then one
can choose the available optimization algorithms offered in Pymoo, in which NelderMead and
PatternSearch inour case. Finally, minimize is called to perform the optimization based on
the chosen algorithm. The initial values for the optimization ipars can be referred to Table 2.

Table 1 : Initial values for solving the ODEs of the SEIRD model.

Dataset Initial States Values (Individuals) Sources

1 Susceptible, S(0) 32657300 Equation (6)
Exposed, E (0) 4 Assumption
Infected, 1(0) 3 [2]
Recovered, R(0) 0 [2]
Death, D(0) 0 [2]

2 Susceptible, S(0) 32657300 Equation (6)
Exposed, E(0) 100 Assumption
Infected, 1(0) 1 [2]
Recovered, R(0) 22 [2]
Death, D(0) 0 [2]
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Table 2 : Initial parameters input for the optimization procedure.

Parameters Values Sources

Infection rate, 3; Bo = 0.16100732 [4]
B = 0.00142347
B, = 0.07373335

Recovery rate, y ¥o = 0.02590983 [4]
y1 = 0.02670039
y, = 0.00008300

y3 = 0.00606688

Death rate, u Uo = 0.00151062 [4]
1, = 0.00015316
U, = 0.00008013
uz = 0.00025064

Characteristic time of 21.73215538 [4]
transmission, 7g

Characteristic time of 12.35930060 [4]
recovery, T,

Characteristic time of 26.35932269 [4]
death, 7,,

Proportion of 5 over 1.002 [5]
Bi.p

Incubation rate, o 0.15 [5]

The flow of our program basically follows what has been implemented in [4], the optimized
parameters from Nelder-Mead is impoverished using Pattern-Search, and it is repeated until the
current RMSE error is larger than the previous one. However, for each of the methods, Pymoo
provides the default setting for terminating the procedure where the maximum number of
iterations is 1000 and the numerical tolerance is 1078. This gives a disadvantage in the
computational time, for example using a laptop with Intel-i5 2.38 GHz processor, the elapse time
is at least 30 minutes.

2.4 Derivation of Reproduction Number Formula

In the context of compartmental epidemiological modeling, there are a few approaches to
estimate the reproduction number such as by direct definition, Jacobian of the ODE and next
generation matrix. For a relatively complex model, the next generation matrix approach is
preferable [15]. The compartments are divided into two broad categories: infected compartments
and noninfected (healthy) compartments. In this study, Equations (2) and (3) are categorized
under infected compartments, while the healthy compartments comprise Equations (1), (4) and
(5). The ODEs that are assumed under infected compartments can be rewritten as:
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dE dl
E=-7:1_V1, E:TZ_VZ (13)
where
BiSI . BiSE
Tl:T-l_ N V, = oE, F, =0, V, = —cE + vyl + ul. (14)

Then we construct matrices

0F, O0F, 8.5 BiS oV,
po|0E ol |[_|== == v — | 9E 61:[0 0
0F, OF, 1(\)’ 1(\)’ ’ v, V| " l-o y+ul (15)
0E 01 0E 01
The so-called, next generation matrix is given by
BeS BiS BiS
—ry-l = |
K=FV="=1oN (+wN F+wN (16)
0 0
The effective reproduction number is
BeS BiS
Reff = —+
T oN T G+ N {17

which is the largest eigen-value of K. This number represents the average number of secondary
infections produced by a single infected individual at time ¢t in a population that may include both
susceptible and non-susceptible (immune) individuals. It reflects the current state of the
epidemic. Conventionally, to obtain the basic reproduction R, formula, one should replace the
dependent variable with solutions from a disease-free equilibrium state and the averaged values
for the parameter, in such Ry is constant over time. This is qualitatively suitable for a study over
short period of time span when the values are not too much deviate from their averages.

In our case, we substitute the initial condition in R,ss as suggested in [8], to obtain

pBi1(t)So + Bi1()So
oN (y(®©) + u(@®)N (18)

Ry(t) =

where Sy = S(0) is the initial condition when the ODEs are solved but in [8], they fixed p = 5 and
o = 1/7 and neglect the first term without any explanation. Perhaps, the first term is insignificant
in that case. In most epidemiological contexts, the epidemic is under controlled when Ry (t) < 1,
meaning each infected person spreads the disease to fewer than one other person on average.
Despite that, [8] proposed a dynamical threshold Ly (t) to compare with R, (t), given by

Lo(6) = 1(t)
T + pE® (19)
which represents the fraction of individuals who are currently infectious relative to the pool of
both infectious and exposed individuals. Using Ly(t) as the control threshold is more realistic for
complex epidemics, where the reproduction number can fluctuate, and the exposed population
plays a key role. In such cases, simply requiring Ry(t) < 1 might be too strict, the condition
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Ry (t) < Ly(t) allows for a more nuanced understanding; the epidemic could still be manageable
if enough individuals are in the exposed phase (and not infectious yet).

2.5 The Sensitivity Analysis of the Basic Reproduction Number

It is important to know the change generated in a model variable when the values of one of its
parameters is changed in the model. A high sensitivity index value for a parameter primarily
indicates that the parameter is significant to the model, meaning that variations in this parameter
have a substantial impact on the model’s output. To compute the sensitivity analysis, we adopt
the definition of the normalized sensitivity index from [16]. The sensitivity index of R, with
respect to p, ;, g, ¥ and u are given as follows:

Y, () =p(y(®) +u@®)/(p(y(®) + u(®)) + o) (20)
Yp,(0) =1 (21)
Yo (1) = —p(y (&) + u(®)/(p(y(®) + 1)) + 0) (22)
Y, (©) = =)o/ ((r(©) + n(®) (p(y(©) + u(©)) + 7)) (23)
Yu(t) = —u@®a/ ((r(®) + u®) p(r(®) + u(®) + o). (24)

Except for Yp, (t) all other sensitivity index expressions are dependent on time. Clearly, as the
parameters in our SEIRD model that are also time dependent.

3 RESULTS AND DISCUSSION

First, to compare the current work with [4] and [5], we fit it to the case of COVID-19 outbreaks in
Malaysia recorded from 25t January until 13th May 2020. The comparisons in terms of RMSE are
depicted in Table 3. The RMSE from [5] is recalculated to match the considered period since in
[5], the calculation was carried out for a much wider time span i.e. until 18t September 2020. Our
current model has the lowest RMSE compared to the other two. It is about 7.5% RMSE
deterioration from Model 1 to Model 2 but 27.5% improvement from Model 1 to Model 3 and
32.6% improvement from Model 2 to Model 3.

Table 3 : Comparison of RMSE from various related models to the case of COVID-19 outbreak in Malaysia.

No Model Package / Methods RMSE
1 SIRD [4] MATLAB / NM and PS 80.08
2 SEIRD [5] Lmfit / NM 87.56
3 SEIRD, [this study] Pymoo / NM and PS 58.35

Next, we show the result of the fitting of the model to the data by choosing two data sets, first data
set from 25t January 2020 until 18th September 2020 and second data set from 27t February
2020 until 21st October 2020. Note that the latter data set is just a prolong data of the former, and
basically these data are from the pre-vaccination phase, collected from the MOH Malaysia's
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official GitHub repository. Figure 1 illustrates the fitting of the SEIRD model for three recorded
cases from the first data set. In the death case, the fitting seems worse compared to the other two
cases but one should look at the proportion of the y-axis to see that the discrepancies are of order
as in the other cases. Similarly, for the second set of data, the fitting is depicted in Figure 2 but
since it is the extended period of first data set, we use the optimized parameters from the first
data set as the initials to compute the optimized parameters for the second data set. Initial values
for solving the ODEs are also changed based on the starting point of the second data set.

Active Cases Over Time
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Figure 1 : Fitting to the Dataset 1 from 25% January 2020 to 18t September 2020
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Active Cases Over Time

75004 === Infected Data 3
2 Infected Model Fi
] /
S 5000 1 /
[ l/
Z /
5 aenn | o ;
2 2500 SIS . y
' S~
0 | ’/ "\ ——————— : — fl' ~d
0 50 100 150 200
15000 4
=== Recovered Data i
8 Recovered Model e
@ 10000 1 o m—
S e
[ - i
= -
5 5000+ o
< -
P
- ,/
04 S— .
0 50 100 150 200
=== Death Data
8 200 Death Model
© 4
o nd
o e e —————t
21004 00 mm=emmmooTTTTTTTTTT
E e
.
g
0 - .
0 50 100 150 200

Days

Figure 2 : Fitting to the Dataset 2from 27t February 2020 to 21st October 2020

Further comparisons of error metrics between Lmfit and PyMoo are presented in Table 4 (SEIRD
model) and Table 5 (SIRD model). The SIRD model from [4] was reimplemented in Python, where
we computed the Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Symmetric
Mean Absolute Percentage Error (sMAPE) to evaluate model performance. The comparison
between the SIRD and SEIRD models shows that SEIRD generally improves absolute error metrics
while SIRD sometimes has lower relative errors (SMAPE). For Dataset 1, RMSE decreases ranging
by 2.4% to 4.9% when switching from SIRD to SEIRD, while MAE improves ranging by 5.8% to
9.5%, though it slightly increases in one case. In Dataset 2, SEIRD achieves a more significant
reduction, lowering RMSE ranging by 4.8% to 22.5% and MAE ranging by 9.4% to 19.0%,
demonstrating improved absolute accuracy. Comparing optimization methods, shifting from
Lmfit to Pymoo (with NM and PS) improves RMSE by 11.0% to 15.2% and MAE by 7.8% to 8.0%
in Dataset 1, while in Dataset 2, Pymoo significantly enhances RMSE by 39.7% and MAE by 42.0%,
making it the superior approach for fitting COVID-19 data. However, sMAPE remains consistently
high (>20%) for all cases, indicating poor relative accuracy, likely due to the sensitivity of sMAPE
to small values or data inconsistencies.

Table 4 : Comparison of error metrics for the Python optimization modules in fitting the SEIRD model to
the case of COVID-19 outbreak in Malaysia.

Dataset Modules / Methods MAE RMSE SMAPE%
1 Lmfit /NM 166.54 265.19 49.37
Pymoo / NM 153.61 236.12 58.80
Pymoo / NM and PS 153.27 224.95 66.15
2 Lmfit /NM 412.75 589.24 62.14
Pymoo / NM 401.21 648.04 59.52
Pymoo / NM and PS 239.40 355.20 38.11
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Table 5 : Comparison of error metrics for the Python optimization modules in fitting the SIRD model to

the case of COVID-19 outbreak in Malaysia.

Dataset Modules / Methods MAE RMSE SMAPE%
1 Lmfit /NM 183.98 278.98 55.02
Pymoo / NM 163.11 241.84 60.40
Pymoo / NM and PS 144.37 234.33 53.25
2 Lmfit /NM 391.02 619.23 43.97
Pymoo / NM 442.88 801.52 47.97
Pymoo / NM and PS 295.61 458.33 44,12

Further, we compute the basic reproduction number R, (t) and the dynamical threshold L, (t) for
both data sets. In the first data set, the MCO began on the 53rd day, RMCO started on 137th day
and based on Figure 3, the range where Ry (t) < Ly(t) is 114 < days < 142. This means that it
took about 61 days after MCO for the COVID 19 to be under control and in just 5 days after RMCO,
the disease outbroke again. While in the second data set, the MCO started on the 20th day, RMCO
initiated on 104th day and based on Figure 4, the range where Ry(t) < Ly(t)is87 < days < 112.
This gives 67 days after MCO to effectively control the disease and the spreading restarted after
8 days MCO had been lifted. Overall, these figures are qualitatively in agreement to support that
the MCO had succeeded in preventing the spread of COVID 19 two months after its

implementation and the spread had continued just after one week it was being lifted.
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Figure 3 : Ry and L, from 25t January 2020 to 18t September 2020
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Figure 4 : Ry and L, from 27t February 2020 to 21st October 2020

Finally, the local sensitivity analysis of R, (t) with respect to its parameters is presented for both
datasets. Figures 5 and 6 illustrate the sensitivity index of R, (t) concerning p, 8;, g, y and u for
the first and second datasets, respectively. Notably, only Yg, () remains constant across both time
spans. Comparing the maximum absolute values of the sensitivity indices, Yg, = 1 is the highest,
indicating that B; (infection rate) is the most influential parameter in estimating Ry (t) . A 1%
increase (or decrease) in 8; directly results in a 1% increase (or decrease) in R,(t). Moreover,
examining the maximum absolute sensitivity across both datasets in Figure 5, a 1% change in p
leads to a maximum 0.5% change in R, (t), whereas a 1% increase (or decrease) in g, y or u results
in a maximum 0.5% decrease (or increase) in Ry(t).

Local Ry(t) Sensitivity Over Time
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Figure 5 : The sensitivity index of R, with respect to p, §;, o, y and u from
25t January 2020 to 18th September 2020

105



Applied Mathematics and Computational Intelligence
Volume 14, No. 4, 2025 [92 - 108]

Local Ro(t) Sensitivity Over Time
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Figure 6 : The sensitivity index of R, with respect to p, ;, o, ¥y and u from
27t February 2020 to 21st October 2020

4 CONCLUSION

In this study, the SEIRD model generally outperforms SIRD in terms of absolute error, as indicated
by lower RMSE and MAE. While SIRD sometimes yields a lower sMAPE, suggesting better
handling of relative errors, SEIRD remains the more suitable model for fitting COVID-19 data, as
absolute errors are more critical than percentage-based errors in this context. The integration of
the Pymoo framework to implement a combination of Nelder-Mead and Pattern Search has
significantly improved the SEIRD model’s fit to COVID-19 case data, achieving up highest about a
40% reduction in both RMSE and MAE. Furthermore, the calculation of Ry and L, along with their
dynamic relationship, aligns well with MCO outcomes, indicating that the model parameters have
been accurately estimated through the optimization procedure. The sensitivity analysis of R, with
respect to its corresponding parameters reveals that all sensitivity indices remain below 1%, with
the infection rate f; being the most influential factor.

The SEIRD model is explicitly constructed for the pre-vaccination period, specifically from
January 25, 2020, to February 23, 2021. It does not account for the phase during which Malaysia’s
vaccination program was implemented. Consequently, the fitted model cannot explain the
current phase of COVID-19, where the national immunization program has been completed.
Future research could extend this model to incorporate the post-vaccination period. In doing so,
it would be crucial to account for vaccination-related factors when developing an updated
compartmental model. By integrating vaccination variables and parameters, a more
comprehensive understanding of COVID-19 transmission during and after the vaccination phase
could be achieved. This would provide valuable insights into the effectiveness of vaccination
efforts and aid in designing more effective pandemic control strategies.
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