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ABSTRACT 

This article investigates the influence of temperature-dependent viscosity and thermal radiation 
on free convective flow in a vertical channel, Incorporating a Forchheimer equation in the 
momentum equation. The governing equations are formulated and solved numerically using the 
finite difference method (FDM). The effects of various parameters, such as the Forchheimer 
number (Fr), radiation parameter(R), viscosity variation index(λ), and Grashof number (Gr), on 
the velocity and temperature profiles are analyzed. The results indicate that the inclusion of the 
Forchheimer equation significantly affects the thermal and flow fields, offering enhanced 
understanding of heat transfer behavior in porous media.  

Keywords: Temperature-dependent viscosity, thermal radiation, free convective flow, 
suction/injection, finite-difference method. 

1 INTRODUCTION 

Free convective flows in vertical channels are of significant interest due to their applications in 
engineering and industrial processes, such as cooling of electronic equipment, solar collectors, and 
heat exchangers. The inclusion of thermal radiation and porous media effects adds complexity to the 
heat transfer mechanisms, warranting comprehensive analysis for accurate modelling. Thermal 
radiation plays a vital role in high-temperature environments, significantly affecting the temperature 
and velocity profiles in convective flows. In addition, the Darcy dissipation term, accounting for 
viscous dissipation within porous media, is crucial in modelling energy transfer. Despite its 
importance, several previous studies have either neglected this term or assumed steady-state 
conditions. The current study addresses these gaps by exploring the combined effects of thermal 
radiation and Darcy dissipation on unsteady free convective flow in a vertical channel. 

Earlier works provide a strong foundation. Raptis and Perdikis [1] studied the influence of thermal 
radiation on viscous fluid flow past a semi-infinite vertical plate, emphasizing its impact on 
temperature distribution. Similarly, Molla et al. [2] analysed radiation effects on natural convection 
along a vertical wavy surface and found substantial changes in the heat transfer rate. Das et al. [3] 
extended this research to MHD convective flow in a vertical channel, showing that radiation enhances  
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both heat transfer and velocity profiles. Zaheer and Tasawar [4] noted that thermal radiation reduces 
the thickness of the velocity and thermal boundary layers while increasing surface temperature. 

The effects of radiation have also been examined in porous media contexts. Hossain et al. [5] analysed 
free convection from a porous vertical plate, introducing the radiation parameters Rd and θw. Their 
results showed that increasing Rd thins the boundary layer, while θw thickens it. Suction helps 
stabilize the layer at a constant thickness as emissivity increases. Ferdousi et al. [6] investigated 
variable viscosity effects in a porous medium with heat generation using the finite difference method 
and the Keller–Box scheme. They concluded that variable viscosity significantly influences the 
surface shear stress, rate of heat transfer, and the velocity and temperature profiles. Likewise, 
Makinde and Ogulu [7] explored thermal radiation effects on the heat and mass transfer of a variable 
viscosity fluid in the presence of a transverse magnetic field, underscoring the combined influence of 
radiation and magnetic fields on transport phenomena. 

The concept of viscous dissipation in porous media was introduced by Vafai and Tien [8], who 
showed that neglecting this term can lead to substantial errors in predicting temperature fields. Nield 
and Bejan [9] provided an in-depth analysis of convective heat transfer in porous media, highlighting 
the importance of Darcy dissipation. Mahdy and Chamkha [10] expanded this understanding by 
examining mixed convection flows, emphasizing Darcy dissipation’s role in enhancing the heat 
transfer. Unsteady free convective flows have also attracted considerable attention. Gebhart and Pera 
[11] conducted seminal work on the stability of natural convection, offering insights into transient 
flow behaviour. Hossain and Wilson [12] studied unsteady convection past an impulsively started 
vertical plate, revealing significant transient effects on velocity and temperature fields. Roy et al. [13] 
examined unsteady MHD convective flow in a vertical channel, highlighting complex interactions 
between magnetic fields and convection. Ahmed et al. [14] applied the finite element method to 
simulate unsteady flow in a curved pipe, while Li et al. [15] employed the lattice Boltzmann method 
to explore wall roughness effects in unsteady flow. 

LeVeque [16], in his book Numerical Methods for Conservation Laws, outlines various numerical 
techniques including finite difference and finite volume methods, offering foundational approaches 
for solving channel flow problems. Patankar [17] introduced the SIMPLE algorithm for solving the 
Navier–Stokes equations, now widely used in computational fluid dynamics. Zienkiewicz and Taylor 
[18] provided a comprehensive study of the finite element method, while recent advancements by 
Kumar and Singh [19] have improved the accuracy and efficiency of these methods. 

Further notable studies include Takhar et al. [20], who investigated unsteady free convection over 
an infinite vertical porous plate under the influence of a magnetic field and Hall current. Minto et al. 
[21] analyzed free convection over a vertical surface embedded in a porous medium. Yih [22] 
examined transpiration effects over a vertical cone in a porous medium, and Sinha et al. [23] explored 
MHD free convective flow past a vertical plate with a ramped wall temperature, using the Laplace 
transform to obtain analytical solutions. These studies consistently show the importance of porosity, 
magnetic fields, and time dependence in shaping flow and thermal characteristics. 

In summary, while many studies have addressed individual aspects of radiation, variable viscosity, 
or unsteady convection, this study contributes by incorporating the combined effects of thermal 
radiation, temperature-dependent viscosity, and Darcy dissipation into the governing equations of 
unsteady free convective flow in a vertical channel. The problem is solved numerically using the finite  
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difference method, and the influence of key parameters on the thermal and velocity profiles is 
thoroughly analyzed. 

2 PHYSICAL AND MATHEMATICAL PROBLEM DESCRIPTION  

 Physical Problem Description 

The physical problem under consideration involves a vertical channel formed by two infinite parallel 

plates separated by a distance h. The channel is filled with an optically thick, incompressible, viscous 

fluid subjected to an incident radiative heat flux qr, which is absorbed by the plates and transferred 

to the fluid (see Figure 1). 

Assumptions: 

- All fluid properties are constant except for viscosity, which is temperature-dependent. 

- The fluid is optically thick, so radiative heat flux is modeled using non-linear Rosseland 
diffusion. 

- Initially (at time t = 0), both the fluid and the plates are at rest with a uniform temperature 
T₀. 

- At t > 0, the plate at y′ = 0 is suddenly heated to a temperature Tw, while the plate at y′ = h 
is kept at the initial temperature T₀. 

- The flow is fully developed, implying the axial velocity component u′ is a function of 
transverse coordinate y′ and time t only. 

- Viscous dissipation is included. 

- The radiative heat flux in the x′-direction is negligible compared to that in the y′-direction. 
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Figure 1: Schematic of the vertical channel with imposed temperature conditions. 

Under these assumptions, the appropriate governing equations for the present problem in 

dimensional form are: 

Governing Equations (Dimensional Form) 

The system is governed by the following coupled partial differential equations: 

Momentum Equation (x′-direction): 

  
𝜕𝑢′

𝜕𝑡
+ 𝑉0 

𝜕𝑢′

𝜕𝑦′ =
1

𝜌

𝜕
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𝜇

𝜌𝐾
𝑢′ +  𝛽𝑢′2)             (1) 

 Energy Equation (non-linear Rosseland approximation): 

  
𝜕𝑇′
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𝜕𝑇′

𝜕𝑦′ = 𝛼 (
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𝑘
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) +

𝜇

𝜌𝐶𝑝
(

𝜕𝑢′

𝜕𝑦′
)

2

               (2) 

Boundary and Initial Conditions 

At t = 0: 

u′ = 0,    T′ = T₀ for 0 ≤ y′ ≤ h 

At y′ = 0 (heated plate): 

u′ = 0,    T′ = T_w 

At y′ = h (cooling plate): 

u′ = 0,    T′ = T₀ 

 

 (3) 
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where u′(m/s) is the Velocity in x′-direction, y′(m) Transverse coordinate, t(s) is Time, T′(K) is the 
Temperature, T₀(K) is the Initial/ambient temperature, Tw(K) is Wall temperature at y′ = 0, μ(T′) 
(pa.s) is the Temperature-dependent viscosity, ρ(kg/m³) is the Density of fluid, Cp(J/kg·K) is the 
Specific heat at constant pressure, k(W/m·K) is the Thermal conductivity, g(m/s²) is the Acceleration 
due to gravity, qr(W/m²) is Radiative heat flux. 

Eq. (1) represents the momentum equation with the first term on the LHS of the equation 
representing the rate of change of velocity (u) with respect to time (t). it describes how the velocity 
of the fluid changes over a time. the second term is representing convection term. It describes the 
transport of fluid velocity (u) in the y direction due to the mean flow velocity (V0). While in the RHS 
of the equation we have the third term representing diffusion term. It describes the diffusion of fluid 
velocity (u) in the y direction due to the viscosity of the fluid (μ). And the fourth term is representing 
gravitational force term. It describes the effect of the temperature difference  (𝑇′ − 𝑇0) on the fluid 
flow. The term is proportional to the acceleration due to gravity (g), the coefficient of the thermal 
expansion (β) and the temperature difference between the fluid (𝑇′) and the reference temperature 
(𝑇0). It accounts for the density variation in the fluid caused by temperature differences, which in 
turn affect the fluid flow. The fifth term is representing Forchhermer term. Similarly, in the energy 
equation (Eq. (2)), in the L.H.S of the equation the first term represents the rate of change of 
temperature (T) with respect to time (t). it describes how temperature of the system changes over 
time. And the second term represents the convective heat transfer term. It describes the heat transfer 
due to the velocity (V0) of the fluid in the y-direction and the temperature gradient in the same 
direction. In the R.H.S of the equation we have the third term represents conductive heat transfer 
term. It accounts for the heat transfer due to the temperature gradient and the radiative heat flux (qr) 
in the y-direction. The term is scaled by the thermal diffusivity (α) and the thermal conductivity (K). 
The fourth term represents darcy dissipation term. Here μ is the dynamic viscosity of the fluid, u is 
the velocity of the fluid, K is the thermal conductivity, ρ is the density of the fluid and Cp is the specific 
heat capacity. This term accounts for the conversion of mechanical energy into heat due to fluid 
viscosity. 

3 VARIABLE PROPERTIES AND RADIATIVE HEAT FLUX 

The fluid dynamic viscosity (μ) is assumed to vary with temperature difference as: 
μ = μ₀(1 - λθ(y)),   where λ ∈ ℝ                                                (4) 

The radiative heat flux qᵣ, according to Sparrow and Cess [24], is given by: 
qᵣ = - (4σ∂T⁴) / (3δ∂y)                  (5) 

4 NON-DIMENSIONALISATION OF THE EQUATIONS 

To transform the governing equations into dimensionless form, we introduce the following variables: 

μ = μ₀(1 - λ((T - T₀)/(Tw - T₀))),   u = U₀f(y),   y = y/√(νt),   

 θ(y) = (T - T₀)/(Tw - T₀), δ = 2√(νt)                                                      (6) 
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Using Eq. (6) in the momentum equation, the dimensionless momentum equation becomes: 
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Using Eqs. (5) and (7) in the energy equation: 
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After simplification: 
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Substituting Eq. (10) into Eq. (8): 
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Boundary Conditions: 

u = U₀, T = Tw at y = 0  →  f(0) = 0, θ(0) = 0 

u = 0, T = T₀ at y = h    →  θ(y) = f(y) = 1                                                     (12) 

Dimensionless Parameters: 
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5 METHOD OF SOLUTION 

5.1 Mathematical Description of FDM 

The Finite Difference Method (FDM) is a numerical technique used to solve differential equations by 

approximating derivatives with finite differences. This method involves discretizing the continuous 

domain (spatial or temporal) into a finite set of points and then approximating the derivatives at 

these points using difference equations. Common references for FDM techniques include: Smith [25], 

'Numerical Solution of Partial Differential Equations', and Chapra and Canale [26], 'Numerical 

Methods for Engineers'. 

The following steps are important in solving ODEs using the finite difference method: 

i. Discretization: The continuous domain is divided into a grid of discrete points. For example, 

if we have a domain [a, b], we can divide it into (N) intervals of equal length (h = (b-a)/N). 

ii. Finite Difference Approximation: Derivatives in the differential equation are replaced with 

finite difference approximations. For instance, the first derivative of a function u(x) at a point 

(xi) can be approximated using the central difference method: 

du/dx ≈ (ui₊₁ - ui₋₁) / (2h).                                      (14) 

The second derivative is approximated as: 

d²u/dx² ≈ (ui₊₁ - 2ui + ui₋₁) / h².                              (15) 

iii. Formulating the Difference Equations: Substitute the finite difference approximations 

into the original differential equation to obtain a system of algebraic equations. 

 

5.2 FDM Solution of the Problem 

Equations (5) and (6) under the boundary conditions (3) are solved using FDM as follows: 

Discretized form of the dimensionless momentum equation: 
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Discretized form of the dimensionless energy equation: 
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Boundary conditions: 

At y = 0: f(0) = 0, θ(0) = 0 

At y = h: f(h) = 1, θ(h) = 1 

5.3 Nusselt Number and Skin Friction on the Channel Plates 

In this study, the Nusselt number and skin friction are evaluated to characterize the thermal and flow 

behavior on the channel plates. Due to the assumed variable viscosity of the fluid, the skin friction 

coefficient is particularly important in understanding the shear stress distribution near the walls. 

Skin friction (τ) at the wall is defined as: 

𝜏0 = (1 − 𝜆𝜃)
𝑑𝑓

𝑑𝑦
 𝑎𝑡 𝑦 = 0  𝑎𝑛𝑑 𝜏1 = (1 − 𝜆𝜃)

𝑑𝑓

𝑑𝑦
  𝑎𝑡 𝑦 = 1. 

- μ: dynamic viscosity of the fluid, λ: viscosity variation parameter, θ: dimensionless temperature, f: 

dimensionless stream function, df/dy: velocity gradient 

Nusselt number (Nu) is used to quantify the rate of heat transfer at the wall and is defined 

as: 

𝑁𝑈0 = −
𝑑𝜃

𝑑𝑦
 𝑎𝑡 𝑦 = 0   𝑎𝑛𝑑 𝑁𝑈1 = −

𝑑𝜃

𝑑𝑦
  𝑎𝑡 𝑦 = 1. 

- θ: dimensionless temperature, dθ/dy: temperature gradient normal to the surface 

These expressions are evaluated at the channel walls (y = 1) because that is where both skin friction 

and heat transfer are most significant due to the no-slip boundary condition and thermal interaction 

with the plates. In internal flows, these wall interactions critically influence the overall flow and heat 

transfer characteristics. 
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6 RESULTS AND DISCUSSION   

The governing equations (10) and (11) were solved numerically using MATLAB with the following 

parameters:   

- Prandtl number (Pr) = 0.71 (representing air and R-12 refrigerant).   

- Subintervals (N) = 100, step size h = 0.01 on the interval [1, 0], where a = 1 and b = 0.   

- Radiation (R), suction (S), and viscosity variation (λ) parameters were varied between 0 and 3.   

- Grashof number (Gr) = 10, 12, 14 (Gr > 0, indicating cooling of the channel by free convection).   

                                                       

 

 

 

Figure 2: velocity and temperature profile for different Gr. (ϕ=0.2, Pr = 0.71, R = 0.1, c = 0.1, λ = 0.1, Br = 0.5 
Gr = 5, Re = 0.04, Fr = 0.002) 

Figure 2 illustrates that higher Grashof number (Gr) enhance buoyancy-driven convection, 

increasing both fluid velocity and temperature due to improved heat transfer efficiency. 

                                                       

 

 

 

                Figure 3: velocity and temperature profile for different C. (ϕ=0.2, Pr = 0.71, R = 0.1, c = 0.1, λ = 0.1, Br 
= 0.5 Gr = 5, Re = 0.04, Fr = 0.002) 

 

Figure 3 shows that higher suction improves fluid flow and heat transfer by thinning the boundary 
layers and intensifying thermal gradients.  
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Figure 4: velocity and temperature profile for different λ. (ϕ=0.2, Pr = 0.71, R = 0.1, c = 0.1, λ = 0.1, Br = 0.5 Gr 
= 5, Re = 0.04, Fr = 0.002) 

Figure 4 shows that as λ increases, fluid velocity and temperature profiles rise due to reduced 

viscosity, which enhances flow but diminishes convective heat transfer, thickening the thermal 

boundary layer and increasing temperature. 

 

 

Figure 5: velocity and temperature profile for different Br. (ϕ=0.2, Pr = 0.71, R = 0.1, c = 0.1, λ = 0.1, Br = 0.5 
Gr = 5, Re = 0.04, Fr = 0.002) 

Figure 5 above demonstrates that the velocity and temperature profiles increase with increase in 

Brinkman number (Br), this is due to the fact that, when Br increases, the effects of viscous heating 

become more significant, leading to increased velocity and temperature profiles. 
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Figure 6: velocity and temperature profile for different R. (ϕ=0.2, Pr = 0.71, R = 0.1, c = 0.1, λ = 0.1, Br = 0.5 Gr 
= 5, Re = 0.04, Fr = 0.002) 

Figure 6 above shows that; decrease in Radiation Parameter R lead to the increase in temperature 

and velocity profiles. 

  

Figure 7: velocity and temperature profile for different Fr. (ϕ=0.2, Pr = 0.71, R = 0.1, c = 0.1, λ = 0.1, Br = 0.5 
Gr = 5, Re = 0.04, Fr = 0.002) 

Figure 7 above depicted that: increase in Forchheimer parameter (Fr) led to increase in velocity and 
temperature profiles, this is obviously true because an increase in the Forchheimer parameter leads 
to more pronounced porous media effects, non-Darcy behavior, and enhanced convective heat 
transfer, resulting in higher velocity and temperature profiles. 
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Figure 8: velocity and temperature profile for different Re. (ϕ=0.2, Pr = 0.71, R = 0.1, c = 0.1, λ = 0.1, Br = 0.5 
Gr = 5, Re = 0.04, Fr = 0.002) 

Figure 8 demonstrates that higher Reynolds numbers intensify fluid motion and heat transfer, 

resulting in increased velocity and temperature profiles due to stronger inertial effects and enhanced 

convection. 

 

  

Figure 9: velocity and temperature profile for different Pr. (ϕ=0.2, Pr = 0.71, R = 0.1, c = 0.1, λ = 0.1, Br = 0.5 
Gr = 5, Re = 0.04, Fr = 0.002) 

Figure 9 shows that decreasing the prandtl number enhances thermal diffusion, resulting in reduced 

velocity and temperature profiles due to weakened convection and lower thermal gradients. 
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Table 1: Numerical values of skin friction on the walls. 

λ R = 0.1, φ=0.2, Gr = 5, 
C = 0.1, Br = 0.5, Fr=0.04 

R = 0.2, φ = 0.2, Gr = 5, 
C = 0.1, Br = 0.5, Fr=0.04 

R=0.1, φ=0.5, Gr=5, 
c=0.1, Br=0.5, Fr=0.04 

τ0 τ1 τ0 τ1 τ0 τ1 

0.1 0.282510 3.768100 0.283230 3.765500 0.282870 3.767500 

0.2 0.263200 3.538800 0.263920 3.535700 0.263600 3.538100 

0.3 0.241290 3.314300 0.241920 3.310700 0.241640 3.313600 

0.4 0.216540 3.094900 0.217080 3.090800 0.216840 3.09400 

0.5 0.188800 2.880700 0.189300 2.876200 0.189050 2.87970 

 

Table 1 shows the effects of varying parameter(λ) on the skin friction. It reveals that the skin friction 

between the channel walls and the working fluids decreases on all the walls with increase in λ. 

Similarly, the skin friction is seen to decrease with increase in R and φ for some fixed values of Pr, c, 

and Gr. 

Table 2: Nusselt Number on the channel plates. 

Pr R=0.1, φ=0.2, Gr=5, 
c=0.1, Br=0.5, 
Fr=0.04 

R=0.3, φ=0.2, Gr=5, 
c=0.1, Br=0.5, 
Fr=0.04 

R=0.1, φ=0.5, Gr=5, 
c=0.1, Br=0.5, 
Fr=0.04 

Nu0 Nu1 Nu0 Nu1 Nu0 Nu1 

0.016 1.01550 0.879000 1.026100 0.839300 1.024000 1.011600 
0.44 1.02510 0.837200 1.034500 0.812800 1.029400 1.010100 
0.71 1.03130 0.810500 1.039900 0.796000 1.029900 1.009200 

1 1.03800 0.781700 1.045700 0.778100 1.033600 1.008200 
2 1.06613 0.681700 1.066000 0.716500 1.046500 1.005100 

 

The effect of Prandlt number (Pr) on the rate of heat transfer between the walls and the working fluid 
is displayed in Table II. The table displayed that; the Nusselt number on the wall stationed at y = 0 
increases with increase in Pr while it is seen to decrease with increase in Pr on the wall stationed at 
y = 1. Furthermore, the Nusselt number on the wall kept at y = 0 is observed to increase with increase 
in R where as it is noticed to increase with increase in R on the wall at y = 1. Also, the Nusselt number 
on the wall positioned at y = 0 is found to decrease with increase in φ while it is viewed to increase 
on the wall at y = 1 with increase in φ.
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7 CONCLUSION 

This study investigates the unsteady free convective flow of a viscous, radiating fluid in a vertical 
channel using the finite difference method. The governing equations were numerically solved with 
MATLAB, and the results were presented through graphs and tables for analysis. The study confirms 
that fluid velocity increases with viscosity, indicating enhanced momentum diffusion. Additionally, 
an increase in thermal radiation reduces both temperature and velocity, demonstrating its damping 
effect on heat and momentum transfer. Furthermore, higher values of the Brinkman number, 
Reynolds number, and Forchheimer number were found to significantly enhance both fluid velocity 
and temperature, highlighting the roles of viscous dissipation, inertial effects, and porous media 
resistance in heat transfer enhancement. These findings contribute to a deeper understanding of 
thermal-fluid dynamics in radiating and porous media environments. They may be useful in 
optimizing industrial processes such as cooling systems, thermal insulation, and energy transport in 
porous structures. Future studies may explore non-linear effects or turbulence models for more 
complex flow behaviours. 
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NOMENCLATURE AND GREEK SYMBOLS 

Symbol Description Unit 

y′ Dimensional length mm 

g Gravitational acceleration m/s² 

k Thermal conductivity W/m·K 

T’ Dimensional temperature K 

H Channel width (dimensional) m 

Tw Wall temperature K 

T Ambient temperature K 

v′ Dimensional velocity m/s 

μ Dynamic viscosity kg/m·s 

μ₀ Initial fluid viscosity kg/m·s 

ϑ (mu/ρ) Kinematic viscosity m²/s 

α Thermal diffusivity m²/s 

β Volumetric expansion coefficient 1/K 

  qr Radiative heat flux W/m² 

φ Temperature difference parameter K 

σ Stefan–Boltzmann constant W/m²·K⁴ 

V0 Dimensional suction velocity m/s 

 


