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ABSTRACT 

This paper discusses the parameter estimates as well as the asymptotic covariance in replicated 
linear functional relationship model (LFRM). The model is assumed to be balanced and equal in 
each group. The maximum likelihood estimation is used to estimate four parameters in this 
model namely the intercept, the slope, and two error variances. Although the closed-form of the 
estimates is not available, it is shown that the closed-form for the asymptotic covariance matrix 
of the model using the Fisher Information matrix can be obtained. Using a simulation study, we 
showed that the estimated values of the parameters are unbiased and consistent suggesting the 
proposed model’s superiority.  

Keywords: errors-in-variable model, parameter estimation, replicated, variance-covariance 
matrix 

1 INTRODUCTION 

The functional relationship model is a family of the errors-in-variables model including the structural 
relationship model and the ultrastructural relationship model. Errors-in-variable models is the 
extension of the regression model where both variables 𝑋 and 𝑌 are continuous linear and measured 
with errors. Measurement error can occur in many disciplines such as in econometrics, 
environmental sciences, engineering, manufacturing, and many others [1-3]. For example, 
instrument problems could occur in the industrial field due to the variation in the measuring process. 

In the linear functional relationship model (LFRM), the variable 𝑋 is fixed or deterministic and it can 
be further extended into two models namely the unreplicated and replicated linear functional 
relationship model. The replicated LFRM has been used to overcome the inconsistencies i.e the 
unidentifiability problem and also the assumption of error variance in unreplicated LFRM [4].  
Extensive works on parameter estimation in the errors-in-variables model had been well explored 
and discussed [1], [4-7]. Several researchers have proposed a maximum likelihood estimation 
method in estimating the parameters in both linear and circular models [8–11].  A number of studies 
have discussed the asymptotic variance-covariance matrix in the errors-in-variables model [10], [12-
13]. 
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In this paper, we emphasize a balanced replicated LFRM. This model has equal observation in each 
group which will be discussed in the next section. Next, the maximum likelihood estimation for the 
balanced replicated model is given although the estimates cannot be obtained algebraically. 
Nevertheless, the estimates can be solved iteratively. Then, we derive the asymptotic algebraically or 
closed form of the variance-covariance matrix followed by a simulation study to investigate the 
precision of the estimated parameters and its variance-covariance matrix.  

2 REPLICATED LINEAR FUNCTIONAL RELATIONSHIP MODEL  

A linear relationship between 𝑋𝑖   and 𝑌𝑖   is given by  

𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖  ( 1 ) 

where 𝛼 is the intercept parameter and 𝛽 is the slope parameter. For any fixed 𝑋𝑖 , we assume that 
the observations 𝑥𝑖𝑗  and 𝑦𝑖𝑗  have been measured with errors 𝛿𝑖𝑗  and 𝜀𝑖𝑘  respectively. This can be 

written as: 

𝑥𝑖𝑗 = 𝑋𝑖 + 𝛿𝑖𝑗   and 𝑦𝑖𝑗 = 𝑌𝑖 + 𝜀𝑖𝑗 ( 2 ) 

for 𝑖 = 1,2,⋯ , 𝑝 and 𝑗 = 1,2,⋯ ,𝑚. The errors terms  𝛿𝑖𝑗  and 𝜀𝑖𝑗  follow a normal distribution with 

mean zero and variance 𝜎2 and  𝜏2 respectively. Given a particular pair (𝑋𝑖, 𝑌𝑖), there may be 
replicated observations of 𝑋𝑖  and 𝑌𝑖   occurring in p groups and each group has a sample size of 𝑚. In 
this case, the replicated model is balanced and equal. 

3 MAXIMUM LIKELIHOOD ESTIMATION OF THE MODEL 

In balanced replicated LFRM, the parameters to be estimated are �̂�2, �̂�2, �̂�, �̂�, and �̂�𝑖  although our 
interests are �̂�2, �̂�2, �̂� and �̂�. The estimation of parameters can be obtained by the maximum 
likelihood estimation method. By using the maximum likelihood estimation method, one can easily 
get the asymptotic variance-covariance matrix of the estimators. For balanced replicated LFRM, the 
log-likelihood function can be expressed as 

log 𝐿 (𝛼, 𝛽, 𝜎2, 𝜏2, 𝑋1, … , 𝑋𝑝; 𝑥𝑖𝑗 , 𝑦𝑖𝑗) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 −
𝑛

2
(log 𝜎2 + log 𝜏2) 

−
1

2
{∑∑

(𝑥𝑖𝑗 − 𝑋𝑖)
2

𝜎2
+ ∑∑

(𝑦𝑖𝑗 − 𝛼 − 𝛽𝑋𝑖)
2

𝜏2 } 

( 3 ) 

The function log L is differentiated with respect to parameters �̂�, �̂�, �̂�2, �̂�2 and �̂�𝑖 .  

𝜕𝑙𝑜𝑔𝐿

𝜕𝜎2
= −

𝑛

2𝜎2
+

∑ ∑ (𝑥𝑖𝑗 − 𝑋𝑖)
2𝑚

𝑗=1
𝑝
𝑖=1

2𝜎4
 ( 4 ) 
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𝜕𝑙𝑜𝑔𝐿

𝜕𝜏2
= −

𝑛

2𝜏2
+

∑ ∑ (𝑦𝑖𝑗 − 𝛼 − 𝛽𝑋𝑖)
2𝑚

𝑗=1
𝑝
𝑖=1

2𝜏4
 ( 5 ) 

𝜕𝑙𝑜𝑔𝐿

𝜕𝛼
=

1

𝜏2
∑∑(𝑦𝑖𝑗 − 𝛼 − 𝛽𝑋𝑖)

𝑚

𝑗=1

𝑝

𝑖=1

 ( 6 ) 

𝜕𝑙𝑜𝑔𝐿

𝜕𝛽
=

𝑋𝑖

𝜏2
∑∑(𝑦𝑖𝑗 − 𝛼 − 𝛽𝑋𝑖)

𝑚

𝑗=1

𝑝

𝑖=1

 ( 7 ) 

𝜕𝑙𝑜𝑔𝐿

𝜕𝑋𝑖
=

1

𝜎2
∑∑(𝑥𝑖𝑗 − 𝑋𝑖)

𝑚

𝑗=1

𝑝

𝑖=1

+
𝛽

𝜏2
∑∑(𝑦𝑖𝑗 − 𝛼 − 𝛽𝑋𝑖)

𝑚

𝑗=1

𝑝

𝑖=1

 ( 8 ) 

By setting (4) until (8) to zero and simplifying, we obtain the estimate of �̂�2, �̂�2, �̂�, �̂�, and �̂�𝑖  as follows: 

�̂�2 =
∑∑(𝑥𝑖𝑗 − �̂�𝑖)

2

∑𝑚
 ( 9 ) 

�̂�2 =
∑∑(𝑦𝑖𝑗 − �̂� − �̂��̂�𝑖)

2

∑𝑚
 (10) 

�̂� =
∑𝑚(�̅�𝑖. − �̂��̂�𝑖)

∑𝑚
 (11) 

�̂� =
∑𝑚�̂�𝑖(�̅�𝑖. − �̂�)

∑𝑚�̂�𝑖
2

 (12) 

�̂�𝑖 =
1

∆̂
{
𝑚�̅�𝑖.

�̂�2
+

𝑚�̂�

�̂�2
(�̅�𝑖. − �̂�)} (13) 

where �̅�𝑖., �̅�𝑖. are sample means for each group and  ∆̂=
𝑚

�̂�2 +
𝑚�̂�2

�̂�2 . 

The estimates of (9) until (12) are dependent on �̂�𝑖 (13) which suggests that there is no closed-form 
available. Thus, the estimates may be obtained iteratively and starting values for the iteration can be 
chosen using parameters from unreplicated LFRM by assuming λ = 1 until all parameters 
converge[14]. This iteration procedure will continue until all parameters converge. 

4  VARIANCE-COVARIANCE MATRIX OF THE MODEL 

The asymptotic properties of �̂�2, �̂�2, �̂�  and �̂� can be found by inverting the estimated Fisher 
information matrix for balanced replicated LFRM. Next, the second derivative for the log-likelihood 
function is obtained followed by their negatives expected values. This is given by: 
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𝜕2𝑙𝑜𝑔𝐿

𝜕(𝜎2)2
=

∑ 𝑚
𝑝
𝑖=1

2𝜎4
−

∑ ∑ (𝑥𝑖𝑗 − 𝑋𝑖)
2𝑚

𝑗=1
𝑝
𝑖=1

𝜎6
.   Hence, 𝐸 [−

𝜕2𝑙𝑜𝑔𝐿

𝜕(𝜎2)2
] =

𝑚𝑝

2𝜎4
   

𝜕2𝑙𝑜𝑔𝐿

𝜕(𝜏2)2
=

∑ 𝑚
𝑝
𝑖=1

2𝜏4
−

∑ ∑ (𝑦𝑖𝑗 − 𝛼 − 𝛽𝑋𝑖)
2𝑚

𝑗=1
𝑝
𝑖=1

2𝜏6
.  Hence, 𝐸 [−

𝜕2𝑙𝑜𝑔𝐿

𝜕(𝜏2)2
] =

𝑚𝑝

2𝜏4
   

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛼2
= −

1

𝜏2
∑∑(1)

𝑚

𝑗=1

𝑝

𝑖=1

. Hence, 𝐸 [−
𝜕2𝑙𝑜𝑔𝐿

𝜕𝛼2
] =

𝑚𝑝

𝜏2
  

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽2
= −

1

𝜏2
∑∑𝑋𝑖

2

𝑚

𝑗=1

𝑝

𝑖=1

. Hence, 𝐸 [−
𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽2
] =

𝑚 ∑ 𝑋𝑖
2𝑝

𝑖=1

𝜏2
   

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛼𝜕𝛽
= −

1

𝜏2
∑∑𝑋𝑖

𝑚

𝑗=1

𝑝

𝑖=1

. Hence, 𝐸 [−
𝜕2𝑙𝑜𝑔𝐿

𝜕𝛼𝜕𝛽
] =

𝑚 ∑ 𝑋𝑖
𝑝
𝑖=1

𝜏2
  

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑋𝑖
2 = −

1

𝜎2
∑∑(1)

𝑚

𝑗=1

𝑝

𝑖=1

−
𝛽2

𝜏2
∑∑(1)

𝑚

𝑗=1

𝑝

𝑖=1

. Hence, 𝐸 [−
𝜕2𝑙𝑜𝑔𝐿

𝜕𝑋𝑖
2 ] =

𝑚

𝜎2
+

𝑚𝛽2

𝜏2
  

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑋𝑖𝜕𝛼
= −

∑ ∑ 𝛽𝑚
𝑗=1

𝑝
𝑖=1

𝜏2
.  Hence, 𝐸 [−

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑋𝑖𝜕𝛼
] =

∑ ∑ 𝑚𝑖𝛽
𝑚
𝑗=1

𝑝
𝑖=1

𝜏2
  

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑋𝑖𝜕𝛽
= −

∑ ∑ 𝑚𝑖𝑋𝑖𝛽
𝑚
𝑗=1

𝑝
𝑖=1

𝜏2
. Hence, 𝐸 [−

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑋𝑖𝜕𝛽
] =

∑ ∑ 𝑚𝑖𝑋𝑖𝛽
𝑚
𝑗=1

𝑝
𝑖=1

𝜏2
   

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑋𝑖𝑋𝑗
= 0.  Hence, 𝐸 [−

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑋𝑖𝑋𝑗
] = 0 for 𝑖 ≠ 𝑗.   

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑋𝑖𝜕𝜎2
= 0.Hence, 𝐸 [−

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑋𝑖𝜕𝜎2
] = 0   and  

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑋𝑖𝜕𝜏2
= 0.  Hence, 𝐸 [−

𝜕2𝑙𝑜𝑔𝐿

𝜕𝑋𝑖𝜕𝜏2
] = 0   

Next, the estimated Fisher information matrix, F, for �̂�1,⋯ , �̂�𝑝, �̂�2, �̂�2, �̂� and �̂� is given by 

𝐹 = [
𝐵 0 𝐸
0 𝐶 0
𝐸𝑇 0 𝐷

] 

where  𝐵, 𝐶 and 𝐷 are a square matrix with sizes 𝑝, 2 and 2 respectively and 𝐸 is a 𝑝 × 2 matrix.  
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The asymptotic covariance matrix of our interest, �̂�2, �̂�2, �̂� and �̂� is the bottom right minor of order 
4 × 𝑝 of the inverse of matrix 𝐹. From the theory of partitioned matrices, [15], this is given by, 

𝑉𝑎�̂� [

�̂�2

�̂�2

�̂� 
�̂�

] = [
𝐶−1 0
0 (𝐷 − 𝐸𝑇𝐵−1𝐸)−1]  

After lengthy algebraic manipulation, the asymptotic covariance matrix for �̂�2, �̂�2, �̂�  and �̂� is given 
by 

𝑀 =

[
 
 
 
 𝑎11

0
0
0

0
𝑎22

0
0

0
0
𝑎33

𝑎43

0
0
𝑎34

𝑎44]
 
 
 
 

 (14) 

where 𝑎11 = 2𝜎4 𝑛⁄ , 𝑎22 = 2𝜏4 𝑛⁄ , 𝑎33 = 𝑄 ∑ 𝑋𝑖
2𝑝

𝑖=1 , 𝑎34 = −𝑄 ∑ 𝑋𝑖
𝑝
𝑖=1 , 𝑎44 = 𝑄𝑝 and                             

𝑎43 = −𝑄 ∑ 𝑋𝑖
𝑝
𝑖=1  and  𝑄 =

𝑚𝜏2+𝑚𝛽2𝜎2

𝑚2{𝑝∑ 𝑋𝑖
2−(∑ 𝑋𝑖

𝑝
𝑖=1 )

2𝑝
𝑖=1

}
. Other elements in matrix M are 0.  

5 SIMULATION STUDY 

A simulation study has been carried out using the R software to evaluate the performance of the 
parameters of the balanced replicated LFRM. Two factors for performance to consider namely the 
value of errors variances and the sample sizes. Without loss of generality, we fixed the true value of 
𝛼 = 0 and choose different true values of 𝛽, 𝜎2 and 𝜏2. The sample size, 𝑛 are 50,100 and 180 with 𝑝-
subgroups of 5, 10, and 12 respectively. These sample sizes are chosen in such a way that represents 
the small and large datasets. The details of the algorithm can be described as follows: 

Step 1: Generate two random error terms 𝛿𝑖𝑗  and 𝜀𝑖𝑗   from 𝑁(0, 𝜎2) and 𝑁(0, 𝜏2)  respectively with    

              𝑖 = 1,2,… , 𝑝 where 𝑝 is the number of group and 𝑗 = 1,2, … ,𝑚 where 𝑚 is the number of  

             elements in each subgroup.  

Step 2: Generate the data using (1) and (2) in which data of 𝑥𝑖𝑗  and 𝑦𝑖𝑗  variables are of equal sample  

              size. The values of 𝑥𝑖𝑗  and 𝑦𝑖𝑗  are divided into 𝑝-subgroups with 𝑚 elements such that           

              𝑝 × 𝑚 = 𝑛.  

Step 3: Solve the parameters of interest iteratively using (9) until (13), The possible initial estimates  

              for �̂�, �̂�, �̂�2 and �̂�2 can be obtained from unreplicated LFRM with the assumption λ = 1 to  
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              start the iteration process.  

Step 4: Calculate the variance-covariance matrix of the parameters using (14).  

Step 5: Repeat the steps for 5000 simulations.  

The performance of the estimated parameters is measured by estimated bias, mean square error, and 
standard deviation. The estimated bias and the mean square are given by: 

EB= |�̂� − 𝑏| and MSE=
1

𝑠
∑(�̂�𝑗 − 𝑏)

2
 

with b be a generic term for the parameters and s is the number of simulation. The standard deviation 
for parameters is calculated from the diagonal element of the asymptotic variance-covariance matrix. 

Table 1 presents a result from the simulation study for 𝛼 = 0  and 𝛽 = 1 with different sets of 𝜎2 and 
𝜏2. It can be seen from the data in Table 1, when the value 𝜎2 < 𝜏2, the estimated bias for estimated 

parameters, �̂�, �̂�, �̂�2 and �̂�2 are consistently small and approximately close to 0 when the sample size 
is increased from 50 to 180. This shows the unbiasedness of the parameters. The mean square error 
of each parameter estimate tends to decrease with the increase in sample sizes. Furthermore, the 
standard deviation is generally small for all parameter estimates. Similar trends can also be observed 
when 𝜎2 > 𝜏2, such as these values tend to decrease with the increase in sample sizes which show 
that the estimated values of parameters are unbiased and consistent. 

Table 1. Results for 𝛼 = 0  and 𝛽 = 1 with different sets of (𝜎2, 𝜏2)  with 𝑛 is the sample size 

Statistics 

Sample 

size, 𝒏 

𝝈𝟐 = 𝟎. 𝟖 and 𝝉𝟐 = 𝟏 𝝈𝟐 = 𝟏 and 𝝉𝟐 = 𝟎. 𝟖 

�̂� �̂� �̂�𝟐 �̂�𝟐 �̂� �̂� �̂�𝟐 �̂�𝟐 

Estimated 

Bias 

50 0.0117 0.0024 0.0550 0.0659 0.0137 0.0027 0.0618 0.0582 

100 0.0088 0.0014 0.0499 0.0529 0.0089 0.0015 0.0527 0.0500 

180 0.0010 0.0004 0.0315 0.0351 0.0004 0.0004 0.0329 0.0332 

Mean 

Square 

Error 

50 0.1995 0.0045 0.0279 0.0422 0.1997 0.0045 0.0430 0.0275 

100 0.0881 0.0023 0.0153 0.0227 0.0877 0.0023 0.0229 0.0151 

180 0.0466 0.0012 0.0081 0.0123 0.0464 0.0012 0.0122 0.0081 

Standard 

Deviation 

50 0.4299 0.0648 0.1490 0.1868 0.4306 0.0649 0.1876 0.1484 

100 0.2812 0.0453 0.1061 0.1339 0.2814 0.0453 0.1340 0.1061 

180 0.2090 0.0341 0.0810 0.1017 0.2091 0.0341 0.1019 0.0808 

 

Table 2 shows result from the simulation study for 𝛼 = 0  and 𝛽 = 1.2 with different sets of 𝜎2 and 
𝜏2. These results are similar to Table 1 i.e when the sample size is increased, the value of the 
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estimated bias, the mean square error and the standard deviation also decreased. These results 
clearly show that the estimated values of parameters are not so bias and consistent.  

Table 2. Results for 𝛼 = 0 and 𝛽 = 1.2 with different sets of (𝜎2, 𝜏2) with 𝑛 is the sample size 

Statistics 

Sample 

size, 𝒏 

𝝈𝟐 = 𝟎. 𝟖 and 𝝉𝟐 = 𝟏 𝝈𝟐 = 𝟏 and 𝝉𝟐 = 𝟏 

�̂� �̂� �̂�𝟐 �̂�𝟐 �̂� �̂� �̂�𝟐 �̂�𝟐 

Estimated 

Bias 

50 0.0146 0.0029 0.0504 0.0715 0.0177 0.0034 0.0597 0.0749 

100 0.0104 0.0017 0.0436 0.0608 0.0115 0.0019 0.0498 0.0655 

180 0.0018 0.0006 0.0272 0.0403 0.0017 0.0006 0.0308 0.0435 

Mean 

Square 

Error 

50 0.2383 0.0054 0.0276 0.0428 0.2707 0.0061 0.0428 0.0432 

100 0.1049 0.0027 0.0148 0.0234 0.1188 0.0031 0.0227 0.0239 

180 0.0556 0.0015 0.0078 0.0126 0.0629 0.0017 0.0121 0.0129 

Standard 

Deviation 

50 0.4704 0.0709 0.1499 0.1857 0.5017 0.0756 0.1881 0.1850 

100 0.3076 0.0496 0.1070 0.1328 0.3278 0.0528 0.1344 0.1322 

180 0.2286 0.0373 0.0815 0.1012 0.2436 0.0397 0.1022 0.1008 

6 CONCLUSION 

For balanced replicated LFRM, the estimated parameters namely the error variances, �̂�2 and �̂�2,  the 

intercept, �̂� and the slope, �̂� can be obtained iteratively using the maximum likelihood estimation 
method. Although the closed-form of parameter estimation is not available, the variance-covariance 
matrix can be obtained using the Fisher information matrix and partitioned matrix. Taken together, 
the results from simulation study suggests the maximum likelihood estimation method performs well 
in estimating the parameters of the balanced replicated linear functional relationship model by 
showing that the estimated parameters are unbiased and consistent.  Further research could be 
focusing on the unbalanced and unequal replicated linear functional relationship model. 
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