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ABSTRACT 
 

This paper presents the application of double Natural transform method to solve one-

dimensional heat equations  
𝜕𝑈(𝑥,𝑡)

𝜕𝑡
=

𝜕2𝑈(𝑥,𝑡)

𝜕𝑥2 + 𝑓(𝑥, 𝑡) under the given conditions. The 

Double Natural Transform (DNT) method is a general method thus provide a wider 
domain of the application and it can be observed by the work of Eshag [6] where the 
obtained results are comparable with the solutions from the literature with the help of 
double Laplace and double Sumudu transform methods. The results in this study were 
calculated numerically by using suitable values of parameters and interpreted 
graphically. 
 
Keywords: Double Laplace Transform, Double Natural Transform, Double Sumudu 
Transform, Natural Transform, One-Dimensional Heat Equation. 

 
 

1. INTRODUCTION 
 

Partial differential equations and their applications are very useful in various branches of 
engineering and basic sciences. Many researchers have done their work on the solutions of 
various types of partial differential equations with initial as well as boundary conditions by using 
different methods. The list of methods may include numerical methods like finite difference 
method, finite element method, finite volume method etc., analytical methods like separation of 
variables method, method of characteristics etc., calculus of variations method, charpit method, 
integral transform methods like Laplace Transform, Fourier Transform, Mellin Transform, 
Hankel Transform etc.  
 
Heat transfer is the process of transferring heat energy from one point to another. In this process, 
heat flows from the point of higher temperature to the point of lower temperature. The governing 
equation of this heat transfer is known as the heat equation, this equation is a parabolic partial 
differential equation that describes the distribution of heat (or variation in temperature) in a 
given region over time. 
 
In this paper, we have solved one-dimensional heat equations by using Double Natural Transform 
(DNT) method and exhibit those numerically and graphically by using Origin Lab. These results 
are comparable with the results that have been obtained earlier in the literature by double 
Laplace and double Sumudu transform method [5, 6, 9]. 
 
The Natural transform was developed and studied by Khan and Khan [8] and some of its 
properties and applications were investigated by Al-Omari [1], Belgacem and Silambarasan [2, 3, 
4] and Mana and Omranb [10]. The Natural transform usually deals with continuous and 
continuously differentiable functions, if the function is not differentiable then the Natural 
transform fails to apply, similarly as Laplace transform [11] and Sumudu transform [13].  The 

 
*Corresponding Author: alok.bhargava@jaipur.manipal.edu  



Ravi Kumar Jain and Alok Bhargava / Application of Double Natural Transform to… 

96 

 

main purpose of this work is to generalize the definition of a single Natural transform to double 
Natural transform and achieve its main properties, in order to solve the one-dimensional heat 
equation.  
 
The Natural transform [8] of a function 𝑓(𝑡) is given by:  
 

𝑁[𝑓(𝑡)] = 𝑅(𝑠, 𝑢) = ∫ 𝑒−𝑠𝑡
∞

0

𝑓(𝑢𝑡)𝑑𝑡 =
1

𝑢
∫ 𝑒−𝑠

𝑡
𝑢

∞

0

𝑓(𝑡)𝑑𝑡  (1.1) 

 
                      
Remark 1.1: if we take 𝑢 = 1 and 𝑠 = 1, then the Natural transform reduces in Laplace Transform 
[11] and Sumudu transform [13] respectively. 
 
The Double Natural Transform (DNT) [10] of a function 𝑓(𝑥, 𝑦) ; 𝑥, 𝑦 ∈  𝑅+ is defined as: 
 

𝑁+
2[𝑓(𝑥, 𝑦)] = 𝑅+

2 [(𝑠, 𝑝); (𝑢, 𝑣)] = ∫ ∫ 𝑒−(𝑠𝑥+𝑝𝑦)
∞

0

𝑓(𝑢𝑥, 𝑣𝑦)𝑑𝑥𝑑𝑦
∞

0

=

=
1

𝑢𝑣
∫ ∫ 𝑒−(

𝑠𝑥
𝑢

+
𝑝𝑦
𝑣

)
∞

0

𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
∞

0

 
(1.2) 

  
Remark 1.2: If we take 𝑢 =  𝑣 =  1 in (1.2), we get Double Laplace Transform [7] as: 
 

𝐿2[𝑓(𝑥, 𝑦)] = 𝐹2(𝑠, 𝑝) = ∫  
∞

0

∫ 𝑒−(𝑠𝑥+𝑝𝑦)
∞

0

𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 ; 𝑥, 𝑦 ∈  𝑅+ (1.3) 

                                   
Remark 1.3: If we take 𝑠 =  𝑝 =  1 in (1.2), we get Double Sumudu transform [12] as: 
 

𝑆2{𝑓(𝑥, 𝑦)}  =  𝐺2(𝑢, 𝑣) =
1

𝑢𝑣
∫  

∞

0

∫  
∞

0

𝑒−(
𝑥
𝑢

+
𝑦
𝑣

)
𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 ; 𝑥, 𝑦 ∈  𝑅+  (1.4) 

 

                                               
2. Main Results 
In this section, we assume that the inverse double Natural transform exists for the functions that 
are used in the problems, mentioned in the following part of this section. Then we have applied 
the double Natural transform (DNT) to find the solution of the one-dimensional heat equation of 

type   
𝜕𝑈(𝑥,𝑡)

𝜕𝑡
=

𝜕2𝑈(𝑥,𝑡)

𝜕𝑥2 + 𝑓(𝑥, 𝑡) with initial and boundary conditions. Such problems are very 

common in mechanical engineering and thermal engineering, out of those some problems are 
taken here for the said purpose. 
 
Problem 2.1 Let us consider the heat equation (one can refer [6]) given by: 
 
𝜕𝑈(𝑥, 𝑡)

𝜕𝑡
   =

𝜕2𝑈(𝑥, 𝑡)

𝜕𝑥2
,  𝑡 > 0             (2.1) 

 
with conditions  
 

𝑈(0, 𝑡) = 0 ,   𝑈(𝑥, 0) = 𝑠𝑖𝑛 𝑥   ,
𝜕𝑈(0, 𝑡)

𝜕𝑥
= 𝑒−𝑡 (2.2) 

 
Solution: By taking the DNT of equation (2.1) from both the sides, we get 
 
𝑝

𝑣
𝑁+

2{𝑈(𝑥, 𝑡)} −
𝑁+

2{𝑈(𝑥, 0)}

𝑣
=

𝑠2

𝑢2
𝑁+

2{𝑈(𝑥, 𝑡)} −
𝑠

𝑢2
𝑁+

2{𝑈(0, 𝑡)}   −
1

𝑢
 𝑁+

2 {
𝜕𝑈(0, 𝑡)

𝜕𝑥
}  (2.3) 
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 by taking Natural transform on initial conditions (2.2) gives 
 

𝑁{𝑈(0, 𝑡)} = 0   , 𝑁{𝑈(𝑥, 0)} =
𝑢

𝑠2 + 𝑢2
   , 𝑁 {

𝜕𝑈(0, 𝑡)

𝜕𝑥
} =

1

𝑝 + 𝑣
 (2.4) 

 
from (2.4) and (2.3) we get  
 

[
𝑝

𝑣
−

𝑠2

𝑢2
] [𝑁+

2{𝑈(𝑥, 𝑡)}] =
𝑢

𝑣(𝑠2 + 𝑢2)
−

1

𝑢(𝑝 + 𝑣)
 

 

[𝑁+
2{𝑈(𝑥, 𝑡)}] =

𝑢

(𝑝 + 𝑣)(𝑠2 + 𝑢2)
 

(2.5) 

 
Now by taking inverse double natural transform we get the solution of (2.1) as 
 
𝑈(𝑥, 𝑡) = 𝑒−𝑡 𝑠𝑖𝑛 𝑥 (2.6) 
           
The graphs of the solution of the heat equation (2.1) are presented as Figure 2.1 and Figure 2.2, 
in which the 𝑡 and 𝑥 were fix one by one to obtain  the numerical results shown in Table 2.1 and 
Table 2.2. The range of 𝑥 and 𝑡 are 0 ≤ 𝑥 ≤ 7.5 and 0 ≤ 𝑡 ≤ 3 respectively. 
      

Table 2.1 Values of 𝑈(𝑥, 𝑡) for fixed  𝑡 

 
Fix 𝒕 = 𝟎  Fix 𝒕 = 𝟏 Fix 𝒕 = 𝟐  Fix 𝒕 = 𝟑 

   (𝒙, 𝒕) 𝑼(𝒙, 𝒕)    (𝒙, 𝒕) 𝑼(𝒙, 𝒕)    (𝒙, 𝒕) 𝑼(𝒙, 𝒕)    (𝒙, 𝒕) 𝑼(𝒙, 𝒕) 
(0,0) 0 (0,1) 0 (0,2) 0 (0,3) 0 
(0.5,0) .4794 (0.5,1) .1764 (0.5,2) .0649 (0.5,3) .0239 
(1,0) .8415 (1,1) .3096 (1,2) .1139 (1,3) .0419 
(1.5,0) .9975 (1.5,1) .3670 (1.5,2) .1350 (1.5,3) .0497 
(2, 0) .9093 (2, 1) .3345 (2, 2) .12306 (2, 3) .0453 
(2.5, 0) .5985 (2.5, 1) .2202 (2.5,2) .0810 (2.5,3) .0298 
(3, 0) .1411 (3, 1) .05192 (3, 2) .0191 (3, 3) .0070 
(3.5, 0) -.3508 (3.5, 1) -.1290 (3.5,2) -.0475 (3.5,3) -.0175 
(4, 0) -.7568 (4, 1) -.3784 (4, 2) -.1024 (4, 3) -.0377 
(4.5, 0) -.9775 (4.5, 1) -.3596 (4.5,2) -.1323 (4.5,3) -.0487 
(5,0) -.9589 (5,1) -.3528 (5,2) -.1298 (5,3) -.0478 
(5.5, 0) -.7055 (5.5, 1) -.2596 (5.5,2) -.0955 (5.5,3) -.0351 
(6, 0) -.2794 (6, 1) -.1028 (6, 2) -.0378 (6, 3) -.0139 
(6.5, 0) .2151 (6.5, 1) .0791 (6.5, 2) .0291 (6.5,3) .0107 
(7, 0) .6570 (7, 1) .2417 (7, 2) .08891 (7,3) .0327 
(7.5,0) .938 (7.5,1) .3451 (7.5,2) .1269 (7.5,3) .0467 
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Figure 2.1. Graphical Interpretation of U(x, t) for fixed t. 

 
Discussion: By observing the numerical values in Table 2.1 and the Figure 2.1, that, for fix values 
of 𝑡, the heat flow moves like a sine wave and as the time passes, the amplitude of the waveform 
flow reduced gradually and moving towards the cooldown situation.  
 

Table 2.2 Values of 𝑈(𝑥, 𝑡) for fixed   𝑥 

 
Fix 𝒙 = 𝟎 Fix 𝒙 = 𝟏. 𝟓 Fix 𝒙 = 𝟑 Fix 𝒙 = 𝟒. 𝟓 Fix 𝒙 = 𝟔 Fix 𝒙 = 𝟕. 𝟓 

 (𝒙, 𝒕) 𝑼(𝒙, 𝒕) (𝒙, 𝒕) 𝑼(𝒙, 𝒕) (𝒙, 𝒕) 𝑼(𝒙, 𝒕) (𝒙, 𝒕) 𝑼(𝒙, 𝒕) (𝒙, 𝒕) 𝑼(𝒙, 𝒕) (𝒙, 𝒕) 𝑼(𝒙, 𝒕) 

(0,0) 0 (1.5,0) .09975 (3,0) .1411 (4.5,0) -.9775 (6,0) -.2794 (7.5,0) .9380 
(0,1) 0 (1.5,1) .3670 (3,1) .0519 (4.5,1) -.3596 (6,1) -.1028 (7.5,1) .3451 
(0,2) 0 (1.5,2) .13500 (3,2) .0191 (4.5,2) -.1323 (6,2) -.03781 (7.5,2) .1269 
(0,3) 0 (1.5,3) .04966 (3,3) .0070 (4.5,3) -.0487 (6,3) -.0139 (7.5,3) .0467 
(0,4) 0 (1.5,4) .01827 (3,4) .0026 (4.5,4) -.01790 (6,4) -.0051 (7.5,4) .0171 
(0,5) 0 (1.5,5) .00672 (3,5) .00095 (4.5,5) -.0066 (6,5) -.0019 (7.5,5) .0063 
(0,6) 0 (1.5,6) .0025 (3,6) .00035 (4.5,6) -.0024 (6,6) -.0007 (7.5,6) .0023 

 

 

Figure 2.2: Graphical Interpretation of 𝑈(𝑥, 𝑡) for fixed  𝑥. 
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Discussion: By observing the numerical values in Table 2.2 and Figure 2.2, for fix values of 𝑥, the 
heat flow moves like the exponential wave and moving towards the cooldown situation as time 
passes.  
 
Problem 2.2 Let us consider the heat equation 
 
𝜕𝑈(𝑥, 𝑡)

𝜕𝑡
   =

𝜕2𝑈(𝑥, 𝑡)

𝜕𝑥2
  + 𝑠𝑖𝑛 𝑥 ,    𝑡 > 0  (2.7) 

 
With conditions  
 

𝑈(0, 𝑡) = 𝑒−𝑡 ,   𝑈(𝑥, 0) = 𝑐𝑜𝑠 𝑥  𝑎𝑛𝑑   
𝜕𝑈(0, 𝑡)

𝜕𝑥
= 1 − 𝑒−𝑡 (2.8) 

 
Solution: Applying DNT on the equation (2.7) in both the sides, we get 
 
𝑝

𝑣
𝑁+

2{𝑈(𝑥, 𝑡)} −
1

𝑣
𝑁+

2{𝑈(𝑥, 0)}

=
𝑠2

𝑢2
𝑁+

2{𝑈(𝑥, 𝑡)} −
𝑠

𝑢2
  𝑁+

2{𝑈(0, 𝑡)}  −
1

𝑢
 𝑁+

2 {
𝜕𝑈(0, 𝑡)

𝜕𝑥
} +

𝑢

𝑝(𝑠2 + 𝑢2)
 

 (2.9) 

 
Also by taking Natural transform on initial conditions (2.8) gives 
 

𝑁[𝑈(0, 𝑡)] =
1

𝑝 + 𝑣
   , 𝑁[𝑈(𝑥, 0)] =

𝑠

𝑠2 + 𝑢2
   , 𝑁[

𝜕𝑢(0, 𝑡)

𝜕𝑥
] =

1

𝑝
−

1

𝑝 + 𝑣
  (2.10) 

 
Substitute all these values in (2.9) we get  
 

[
𝑝

𝑣
−

𝑠2

𝑢2
] [𝑁+

2{𝑈(𝑥, 𝑡)}] =
𝑠

𝑣(𝑠2 + 𝑢2)
−

𝑠

𝑢2(𝑝 + 𝑣)
−

1

𝑢
(

1

𝑝
−

1

𝑝 + 𝑣
) +

𝑢

𝑝(𝑠2 + 𝑢2)
 

 

[𝑁+
2{𝑈(𝑥, 𝑡)}] =

𝑠

(𝑝 + 𝑣)(𝑠2 + 𝑢2)
+

𝑢

𝑝(𝑠2 + 𝑢2)
.

𝑣

(𝑝 + 𝑣)
 

(2.11) 

 
Now by taking inverse double natural transform we get the solution of (2.7) as 
 
𝑈(𝑥, 𝑡) = 𝑒−𝑡 𝑐𝑜𝑠 𝑥 + 𝑠𝑖𝑛 𝑥 (1 − 𝑒−𝑡)  (2.12) 
 
The graphs of the solution of the heat equation (2.7) are presented as Figure 2.3 and Figure 2.4, 
where 𝑡 and 𝑥 were fixed one by one respectively to obtain the numerical results as shown in 
Table 2.3 and Table 2.4. The range of 𝑥 and 𝑡 are 0 ≤ 𝑥 ≤ 7.5 and 0 ≤ 𝑡 ≤ 3 respectively. 
 

Table 2.3  Values of U(x,t) for fixed 𝑡 

 
Fix 𝒕 = 𝟎 Fix 𝒕 = 𝟏 Fix 𝒕 = 𝟐 Fix 𝒕 = 𝟑 

   (𝒙, 𝒕) 𝑼(𝒙, 𝒕)    (𝒙, 𝒕) 𝑼(𝒙, 𝒕)    (𝒙, 𝒕) 𝑼(𝒙, 𝒕)    (𝒙, 𝒕) 𝑼(𝒙, 𝒕) 

(0,0) 1 (0,1) .3679 (0,2) .1353 (0,3) .0498 
(0.5,0) .8776 (0.5,1) .6259 (0.5,2) .5333 (0.5,3) .4992 
(1,0) .54030 (1,1) .7307 (1,2) .8685 (1,3) .8265 
(1.5,0) .07074 (1.5,1) .6566 (1.5,2) .8721 (1.5,3) .95135 
(2, 0) -.4161 (2, 1) .4217 (2, 2) .7299 (2, 3) .8433 
(2.5, 0) -.8011 (2.5, 1) .0836 (2.5,2) .4091 (2.5,3) .5288 
(3, 0) -.9900 (3, 1) -.275 (3, 2) -.012 (3, 3) .0848 
(3.5, 0) -.9365 (3.5, 1) -.5662 (3.5,2) -.4300 (3.5,3) -.37994 
(4, 0) -.6536 (4, 1) -.7189 (4, 2) -.7428 (4, 3) -.7517 
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(4.5, 0) -.2108 (4.5, 1) -.6955 (4.5,2) -.8738 (4.5,3) -.9394 
(5,0) .2837 (5,1) -.50180 (5,2) -.7908 (5,3) -.8971 
(5.5, 0) .7087 (5.5, 1) -.1853 (5.5,2) -.5141 (5.5,3) -.6351 
(6, 0) .96017 (6, 1) .1766 (6, 2) -.1117 (6, 3) -.2177 
(6.5, 0) .9766 (6.5, 1) .4952 (6.5, 2) .3182 (6.5,3) .2530 
(7, 0) .7539 (7, 1) .6926 (7, 2) .67010 (7,3) .6618 
(7.5,0) .3466 (7.5,1) .7204 (7.5,2) .85797 (7.5,3) .9086 

 

 
 

Figure 2.3. Graphical Interpretation of 𝑈(𝑥, 𝑡) for fixed  𝑡. 

 

Discussion: By observing the numerical values in Table 2.3 and Figure 2.3, for fix values 
of 𝑡, the heat flow moves like a mixture of sine and cosine wave and overlaps at a point near to 
𝑥 = 1,4,7 as the time passes.  
 

 
Table 2.4 Values of 𝑈(𝑥, 𝑡) for fixed 𝑥 

 
Fix 𝒙 = 𝟎 Fix 𝒙 = 𝟏. 𝟓 Fix 𝒙 = 𝟑 Fix 𝒙 = 𝟒. 𝟓 Fix 𝒙 = 𝟔 Fix 𝒙 = 𝟕. 𝟓 

 (𝒙, 𝒕) 𝑼(𝒙, 𝒕)  (𝒙, 𝒕) 𝑼(𝒙, 𝒕)  (𝒙, 𝒕) 𝑼(𝒙, 𝒕)  (𝒙, 𝒕) 𝑼(𝒙, 𝒕)  (𝒙, 𝒕) 𝑼(𝒙, 𝒕)  (𝒙, 𝒕) 𝑼(𝒙, 𝒕) 

(0,0) 1 (1.5,0) .07074 (3,0) -.99 (4.5,0) -.2108 (6,0) .9601 (7.5,0) .3466 
(0,1) .3679 (1.5,1) .6566 (3,1) -.275 (4.5,1) -.6955 (6,1) .1766 (7.5,1) .7204 
(0,2) .1353 (1.5,2) .8721 (3,2) -.012 (4.5,2) -.8738 (6,2) -.1117 (7.5,2) .858 
(0,3) .0498 (1.5,3) .95135 (3,3) .0848 (4.5,3) -.9394 (6,3) -.2177 (7.5,3) .909 
(0,4) .0183 (1.5,4) .9805 (3,4) .1204 (4.5,4) -.9635 (6,4) -.2567 (7.5,4) .927 
(0,5) .0067 (1.5,5) .9913 (3,5) .1335 (4.5,5) -.9724 (6,5) -.2711 (7.5,5) .934 
(0,6) .0025 (1.5,6) .9952 (3,6) .1383 (4.5,6) -.9756 (6,6) -.2763 (7.5,6) .937 
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Figure 2.4. Graphical Interpretation of 𝑈(𝑥, 𝑡) for fixed  𝑥. 

 
Discussion: By observing the numerical values in Table 2.4 and Figure 2.4, for fix values 
of 𝑥, the heat flow moves like a mixture of the exponential, sine and cosine wave and moving 
towards the cooldown situation as time passes. 

 
Problem 2.3 Let us consider the heat equation 
 
𝜕𝑈(𝒙, 𝒕)

𝜕𝑡
   =

𝜕2𝑈(𝒙, 𝒕)

𝜕𝑥2
  − 3𝑈(𝒙, 𝒕) + 3,    𝑡 > 0 (2.13) 

 
With conditions  
 

𝑈(0, 𝑡) = 1 ,   𝑈(𝑥, 0) = 1 + 𝑠𝑖𝑛 𝑥  ,
𝜕𝑈(0, 𝑡)

𝜕𝑥
= 𝑒−4𝑡  (2.14) 

 
Solution: Applying DNT on the equation (2.13) in both the sides, we get 
 
𝑝

𝑣
𝑁+

2{𝑈(𝑥, 𝑡)} −
𝑁+

2{𝑈(𝑥, 0)}

𝑣

=
𝑠2

𝑢2
𝑁+

2{𝑈(𝑥, 𝑡)} −
𝑠

𝑢2
  𝑁+

2{𝑈(0, 𝑡)}  −
1

𝑢
 𝑁+

2 {
𝜕𝑈(0, 𝑡)

𝜕𝑥
}  −  3𝑁+

2[𝑈(𝑥, 𝑡)] + 3 𝑁+
2[1] 

          (2.15) 
Also, by taking Natural transform on initial conditions (2.14), we get 
 

𝑁[𝑈(0, 𝑡)] =
1

𝑝
   , 𝑁[𝑈(𝑥, 0)] =

1

𝑠
+

𝑢

𝑠2 + 𝑢2
  , 𝑁 {

𝜕𝑢(0, 𝑡)

𝜕𝑥
} =

1

𝑝 + 4𝑣
 (2.16) 

  
from (2.15) and (2.16), we get  
 

[
𝑝

𝑣
−

𝑠2

𝑢2
+ 3] [𝑁+

2{𝑈(𝑥, 𝑡)}] =
1

𝑠𝑣
+

𝑢

𝑣(𝑠2 + 𝑢2)
−

1

𝑢2𝑝
−

1

𝑢(𝑝 + 4𝑣)
+

3

𝑠𝑝
 

 
 (2.17) 
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[𝑁+
2{𝑈(𝑥, 𝑡)}] =

1

𝑠𝑝
+

𝑢

(𝑠2 + 𝑢2)
.

1

(𝑝 + 4𝑣)
 

 
Now by taking inverse double natural transform on equation (2.17) we get  
 
𝑈(𝑥, 𝑡) = 1 + 𝑒−4𝑡 𝑠𝑖𝑛 𝑥 (2.18) 
 
which is the solution of given heat equation (2.13). 
 
The graphs of the solution of the heat equation (2.13) are presented as Figure 2.5 and Figure 2.6, 
in which 𝑡 and 𝑥 were fixed one by one respectively to obtain the numerical results as shown in 
Table 2.5 and Table 2.6. The range of 𝑥 and 𝑡 are 0 ≤ 𝑥 ≤ 7.5 and 0 ≤ 𝑡 ≤ 3, respectively. 
 

Table 2.5 Values of 𝑈(𝑥, 𝑡) for fixed 𝑡 

 

Fix 𝒕 = 𝟎 Fix 𝒕 = 𝟏 Fix 𝒕 = 𝟐 Fix 𝒕 = 𝟑 

(𝒙, 𝒕) 𝑼(𝒙, 𝒕) (𝒙, 𝒕) 𝑼(𝒙, 𝒕) (𝒙, 𝒕) 𝑼(𝒙, 𝒕) (𝒙, 𝒕) 𝑼(𝒙, 𝒕) 

(0,0) 1 (0,1) 1 (0,2) 1 (0,3) 1 
(0.5,0) 1.4794 (0.5,1) 1.0088 (0.5,2) 1.00016 (0.5,3) 1 
(1,0) 1.8415 (1,1) 1.0154 (1,2) 1.0003 (1,3) 1 

(1.5,0) 1.9975 (1.5,1) 1.0183 (1.5,2) 1.0003 (1.5,3) 1.00001 
(2, 0) 1.9093 (2, 1) 1.0167 (2, 2) 1.0003 (2, 3) 1 

(2.5, 0) 1.5985 (2.5, 1) 1.011 (2.5,2) 1.0002 (2.5,3) 1 
(3, 0) 1.1411 (3, 1) 1.003 (3, 2) 1.0005 (3, 3) 1 

(3.5, 0) .6492 (3.5, 1) .9936 (3.5,2) .9999 (3.5,3) 1 
(4, 0) .2432 (4, 1) .9861 (4, 2) .9997 (4, 3) 1 

(4.5, 0) .0225 (4.5, 1) .9821 (4.5,2) .9997 (4.5,3) 1 
(5,0) .0411 (5,1) .9824 (5,2) .9997 (5,3) 1 

(5.5, 0) .2945 (5.5, 1) .9871 (5.5,2) .9998 (5.5,3) 1 
(6, 0) .72058 (6, 1) .9949 (6, 2) .9999 (6, 3) 1 

(6.5, 0) 1.2151 (6.5, 1) 1.0039 (6.5, 2) 1.00007 (6.5,3) 1 
(7, 0) 1.6569 (7, 1) 1.0120 (7, 2) 1.00022 (7,3) 1 

(7.5,0) 1.938 (7.5,1) 1.0172 (7.5,2) 1.0003 (7.5,3) 1 

 
 
 

 
                                                   
                                                 Figure 2.5: Graphical Interpretation of 𝑈(𝑥, 𝑡) for fixed 𝑡 
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Discussion: By observing the numerical values in Table 2.5 and Figure 2.5, for fix values 
of 𝑡, the heat flow moves like a sine wave and as the time passes, the amplitude of the waveform 
flow reduced gradually and moving towards a constant value. 
 

Table 2.6  Values of 𝑈(𝑥, 𝑡) for fixed 𝑥 

 
Fix 𝒙 = 𝟎 Fix 𝒙 = 𝟏. 𝟓 Fix 𝒙 = 𝟑 Fix 𝒙 = 𝟒. 𝟓 Fix 𝒙 = 𝟔 Fix 𝒙 = 𝟕. 𝟓 

(𝒙, 𝒕) 𝑼(𝒙, 𝒕) (𝒙, 𝒕) 𝑼(𝒙, 𝒕) (𝒙, 𝒕) 𝑼(𝒙, 𝒕) (𝒙, 𝒕) 𝑼(𝒙, 𝒕) (𝒙, 𝒕) 𝑼(𝒙, 𝒕) (𝒙, 𝒕) 𝑼(𝒙, 𝒕) 

(0,0) 1 (1.5,0) 1.9975 (3,0) 1.1411 (4.5,0) .0225 (6,0) .72058 (7.5,0) 1.938 
(0,1) 1 (1.5,1) 1.0183 (3,1) 1.003 (4.5,1) .9821 (6,1) .9949 (7.5,1) 1.0172 
(0,2) 1 (1.5,2) 1.0003 (3,2) 1.00005 (4.5,2) .9997 (6,2) .9999 (7.5,2) 1.0003 
(0,3) 1 (1.5,3) 1.00001 (3,3) 1 (4.5,3) .99999 (6,3) 1 (7.5,3) 1 
(0,4) 1 (1.5,4) 1 (3,4) 1 (4.5,4) .99998 (6,4) 1 (7.5,4) 1 
(0,5) 1 (1.5,5) 1 (3,5) 1 (4.5,5) 1 (6,5) 1 (7.5,5) 1 
(0,6) 1 (1.5,6) 1 (3,6) 1 (4.5,6) 1 (6,6) 1 (7.5,6) 1 

 

 
                                        

  Figure 2.6. Graphical Interpretation of 𝑈(𝑥, 𝑡) for fix   𝑥. 

 

Discussion: By observing the numerical values in Table 2.6 and Figure 2.6, for fix values 
of 𝑥, the heat flow moves like the exponential wave and moving towards a constant value. 
 
 
2. CONCLUSION 
 
In this work, the Double Natural transform was applied to find the solution of specific heat 
equations of one dimension under the boundary conditions. The results obtained are comparable 
with the results obtained from the literature with the help of double Laplace Transform and 
double Sumudu Transform (refer [6]). The nature of heat flow can be observed from Figures 2.1, 
2.2, 2.3, 2.4 2.5 and 2.6 for the one-dimensional heat equations with different boundary 
conditions and for different value combinations of 𝑥 and 𝑡 which provides a deep thought of 
application in the relevant field.  
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