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ABSTRACT 

In the subject of engineering, chaotic convection serves a critical function, for instance, magneto-
mechanical devices, lasers, and mechanical and designing electrical circuits, as well as 
understanding fluid dynamics and oscillatory chemical reactions. Nonlinear chaotic systems, for 
instance, turbulence and fluid convection, exist up to modest external forcing levels before 
becoming unstable due to their extreme sensitivity to initial conditions. An uncontrolled system 
of convection will route the systems to unstable. When systems are unstable, it will damage the 
final product produced by industry such as microchips, crystal growth, welding of pipes line, etc. 
This paper developed a mathematical model for chaos convection in a fluid's horizontal layer 
derived using Galerkin truncated approximation techniques. Then, the obtained model was 
solved numerically using a multistep-deep learning neural network (DNN). We compared the 
results obtained graphically using multistep-DNN with the existing methods such as the Runge-
Kutta method (RK), Euler method, and Livermore Solver for Ordinary Differential Equations 
(LSODE) method. It is found that multistep-DNN is able to solve the model efficiently and recover 
the results obtained using the RK method and LSODE method. However, for the Euler method, 
the results only cover small values of the Rayleigh number. 

Keywords: Rayleigh-Bénard convection, chaotic convection, convective heat transfer, 
Galerkin techniques, multistep-DNN 

1 INTRODUCTION 

Convection problems are crucial in the establishment of fresh concepts about the relationship 
between chaos and order in flows, as well as between complexity and simplicity in the hydrodynamic 
object's behaviour and structure. Convective flows may generate greater or fewer ordered spatial 
structures. Studying them adds significantly to grasping the fundamental features of pattern-forming 
systems, which are the main topic of research in a synergetic, dynamic field of modern science. 
Rayleigh-Bénard convection, or convection in a plane horizontal fluid layer heated from below, is the 
most common kind of convection. Since there are no powerful streams driven by external conditions, 
temporal and spatial effects are generally decoupled in this occurrence. 

For example, [8] explored a 2D fluid cell heated below as well as cooled from above, also known as 
the Rayleigh-Bénard problem. In an attempt to explain unexpected weather behaviour, the path to 
chaos in a fluid layer was intensively researched. The author then developed the model of fluid 
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convection, a 3D partial differential equations set. However, the author claimed that it is impossible 
to achieve acceptable precision in extremely long-range prediction since this model leads to chaotic 
behaviour [3]. Moreover, [5] looked at the issue of chaotic convection in porous media when the 
temperature was changed. They discovered that changing the temperature of the borders improves 
the chaotic motion's behaviour. Furthermore, [1] examined chaotic convection in a porous 
viscoelastic fluid saturated medium added with a heat source. Relying on the flow characteristics, the 
asymptotic behaviour might be chaotic, periodic, or stationary. In the meantime, [6] explores 
nonlinear thermal instability in a fluid layer. Moreover, the authors addressed how throughflow and 
gravity modulation, instead of the Rayleigh number, may be utilised to manage the chaos in the 
medium. Apart from that, [15] investigated the chaotic convection in a couple of stress fluid-saturated 
porous mediums under the condition of gravity modulation employing the chaotic Darcy-Brinkman 
model. The chaotic behaviour is linked to the significance threshold of the Rayleigh number that 
relies on the oscillation frequency as well as the Darcy-Brinkman couple stress factor, according to 
their findings.  

The impact of gravity modulation, as well as rotation on chaotic convection, was studied by [7]. The 
author came to the conclusion that the Taylor number values and the g-jitter parameter affect the 
transformation from steady convection to chaos. In addition, [11] investigated chaotic convection in 
a ferrofluid added with internal heat production. They discovered that increasing the internal heat 
production hastens the system's instability. Moreover, raising the magnetic number to 𝑀1 = 2.5 
causes homoclinic bifurcation, which increases the convection process. Also, [4] delved into the 
investigation of chaotic and regular Rayleigh-Bénard convective movements in water and methanol. 
They revealed that in the instance of methanol, the thresholds for the commencement of chaotic and 
regular movements are lower than in water. Their findings also suggest that a growing zone for chaos 
exists before it becomes completely formed.  

Apart from that, [12] modified the Vadasz-Lorenz model to examine phase-lag influences on the 
commencement of Darcy-Bénard chaotic and regular convection in a porous medium. It is discovered 
that the lag effect causes a numeric difference in the two chaos measurements and a qualitative 
variation in the character of chaos. Meanwhile, [9] investigated turbulent Rayleigh-Bénard 
convection within a cylinder in three dimensions. To derive the distinctive modes of turbulent 
thermal convection, the researchers employed the Propers Orthogonal Decomposition (POD) 
approach. Concurrently, in Rayleigh-Bénard convection, [14] investigated the persistence of large-
scale circulation. The author comes to the conclusion that Rayleigh-Bénard convection behaviour 
varies with the Rayleigh number and occurs when Rayleigh number approaches transition levels 
between hard turbulence regimes, soft turbulence, transition, chaotic, convection, as well as 
conduction. By including extra higher-order harmonics in the spectral expansion of periodic 
solutions, [10] studied the systematic comparison that exists between the extended Lorenz equations 
as well as a direct numerical simulation in the 2D Rayleigh-Bénard convection.  

Through the author's knowledge, most of the research that studied chaotic convection behaviour is 
solved conventionally. A system of differential equations (SDE) is explained numerically through the 
discretisation process to obtain the algebraic systems and thus solve it using the classical methods 
such as RK and Euler methods. Recently, deep learning technology has been developed to solve such 
SDE problems without the discretisation process, potentially making deep scientific learning a new 
sub-field of research. One popular method under machine learning, called multistep deep learning 
neural networks (DNN), is developed for solving the SDEs. The benefit of DNN used in this study is it 
can be combined with any optimiser methods to speed up the convergence. Therefore, the goal of 
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this work is to utilise DNN to analyse and resolve chaotic behaviour in a horizontal layer of fluid and 
compare the findings with those acquired by employing other methods. 

2 MATHEMATICAL FORMULATION 

Let a horizontal fluid layer with depth 𝑑 between two parallel infinite stress-free boundaries. The 
fluid is heated below as well as cooled from above. Note that 𝑥-axis is measured along a lower 
boundary. Meanwhile, 𝑧-axis is measured vertically upwards. Furthermore, the lower surface 
adheres at the temperature 𝑇0 meanwhile the upper surface is at 𝑇0 + Δ𝑇, in which Δ𝑇 resembles the 
temperature difference between upper and lower surfaces. 

The Boussinesq approximation is implemented to determine the impacts of density variations in the 
gravity term only. Here, the momentum equation is denoted as  

𝜌 = 𝜌0[1 − 𝛽(𝑇 − 𝑇0)], 

 in which 𝛽 resembles the thermal expansion coefficient. Thus, the sets of non-dimensional equations 
commanding the motion of an incompressible fluid are expressed as follows 
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where 𝑇 is the temperature, 𝑢, 𝑤 denote the component of velocity in 𝑥 and 𝑧-directions respectively, 
𝑃𝑟 is Prandtl number, where 𝑅𝑎 denotes Rayleigh numbers. By incorporating the stream function 

specified by 𝑢 = 𝜕𝜓/𝜕𝑧 as well as 𝑤 = −
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Provided that the boundaries are isothermal and stress-free, hence the boundary conditions are 
expressed as follows  

𝑤 =
𝜕2𝑤

𝜕𝑧2 = 𝑇 = 0    𝑎𝑡    𝑧 = 0    𝑎𝑛𝑑    𝑧 = 1.               (5) 

The nonlinear couple of systems formed by Eqns. (3) and (4), along with the related boundary 
conditions, provide a fundamental stationary conduction solution. The Galerkin truncated 
approximation is subsequently employed to address these problems. 



R. Idris et al. / Numerical Solutions of Chaotic Convection Model in a Horizontal Layer of Fluid… 

354 

2.1 Diminished Set of Equation 

In this section, we will discuss the solutions of Eqns. (3)–(4) for linear stability analysis and weakly 
nonlinear analysis. 

2.1.1 Linear Stability Analysis 

By examining simply the marginal stationary state, the principle of exchange of stabilities (PES) may 
be easily validated. We assume the linear and steady-state versions of Eqns. (3) and (4). Here, 
utilising periodic waves of the form [2] as the solution yields: 

𝜓 = 𝐴0𝑠𝑖𝑛(𝑎𝜋𝑥)𝑠𝑖𝑛(𝜋𝑧),                 (6) 

𝜃 = 𝐵0𝑐𝑜𝑠(𝑎𝜋𝑥)𝑠𝑖𝑛(𝜋𝑧).                 (7) 

Here, 𝐴0 and 𝐵0 are the stream function and temperature values, respectively, while 𝑎 is the 
horizontal wavenumber. We have the normal mode solutions of Eqns. (6) and (7) with the boundary 
conditions in Eqn. (5).  The critical Rayleigh number may be expressed in the following way using the 
conventional process: 

𝑅𝑐 =
27𝜋2

4
.                   (8) 

The critical Rayleigh number resembles the transition behaviour from nonlinear to linear instability. 

2.1.2 Weakly Nonlinear Analysis 

In order to gain the answer to Eqns. (3) and (4), we denote the stream function as well as temperature 
distribution in the following equations  

𝜓 = 𝐴1sin (
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) sin𝜋𝑧 + 𝐵2sin(2𝜋𝑧).              (10) 

Substituting Eqns. (9) and (10) into Eqns. (3) and (4), multiplying the equations by the orthogonal 
eigenfunctions corresponding to Eqns. (9) and (10), as well as integrating these equations with 
respect to the spatial domain, gives a set of three ordinary differential equations (ODE) for the 
amplitudes time evolution given by:  
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From the equations mentioned above, time was rescaled, where additional notation was proposed:  
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It is apparent to establish the additional notation given by:  

𝑅 =
𝑅𝑎

𝜋2𝜃2 ,    𝛼 =
𝑃𝑟𝛾
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 as well as to rescale the amplitudes in the equation of:  

𝑋 = −
𝐴1

2𝜃√2𝛾
,    𝑌 =

𝜋𝑅𝐵1

2√2𝛾
,    𝑎𝑛𝑑    𝑍 = −𝜋𝑅𝐵2.             (16) 

 Then, we obtained the following possible set of systems  

𝑋̇ = 𝛼(𝑌 − 𝑋), 

𝑌̇ = 𝑅𝑋 − 𝑌 − 𝑋𝑍,                (17) 

𝑍̇ = 𝑋𝑌 − 𝛾𝑍, 

in which the dots ( ∙ ) resemble time derivatives of d(  )/d𝜏. Moreover, the system given in (17) equals 
to the Lorenz equations [8, 13]. 

3 RESULTS AND DISCUSSION 

The system of (17) is addressed employing a multistep-DNN approach operating on Jupiter software 
under Google Collaboratory to characterise the dynamic behaviour of thermal convection in a 
horizontal fluid layer. Moreover, the values for 𝛼 and 𝛾 utilized in all computation are 10 and 8/3, 
correspondingly, similar to those values considered by [8]. The common initial conditions used in 
this computation are 𝜏 = 0: 𝑋 = 𝑌 = 𝑍 = 0.9. All computations were performed with the maximum 
time value of 𝜏𝑚𝑎𝑥 = 250 having the step size Δ𝜏 = 0.01. Afterward, the outcomes acquired will be 
compared with the results obtained by [8] as shown in [13] using the Euler method, Runge-Kutta 
(RK) method, and Livermore Solver for Ordinary Differential Equations (LSODE) method. 

Figures 1–7 depicts the projections of the trajectories' data on the 𝑋 − 𝑌 − 𝑍 plane solved using the 
Euler method by [13] as shown in (a), Runge-Kutta method in (b), LSODE in (c), and a new proposed 
method multistep-DNN as plotted in (d). In Figure 1, for 𝑅 = 1.5, the Rayleigh number is a slight loss 
of the motionless solution stability. From the figures, we can detect that the findings are in good 
agreement between the four methods.  
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Figure 1: Phase portrait plot for 𝑅 = 1.5, (a) Runge-Kutta method, (b) Euler method, (c) LSODE 

method, (d) multistep-DNN method 
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For 𝑅 = 15, the spiralling approaches the fixed point, where the motion rate is increasing in the 
angular direction, as shown in Figures 2 (a), (c), and (d) but not in (b). Using the Euler method, (b), 
we can see that a white hole surrounding the convection fixed point illustrates that the maximum 
time distributed for the computation was inadequate for the trajectory to attain the fixed point. 
Similar behaviour also occurs for 𝑅 = 24.74 using RK method, LSODE method, and multistep-DNN 
method, as shown in Figure 3.  
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Figure 2: Phase portrait plot for 𝑅 = 15, (a) Runge-Kutta method, (b) Euler method, (c) LSODE 

method, (d) multistep-DNN method 
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Figure 3: Phase portrait plot for 𝑅 = 24.74, (a) Runge-Kutta method, (b) Euler method, (c) LSODE method, (d) 
multistep-DNN method 

Meanwhile, Figure 4 shows the trajectories data point for 𝑅 = 28. The findings exhibit that 
homoclinic explosion exists while chaotic regime with the strange attractor takes over utilising RK 
method (a), LSODE (c) method, and multistep-DNN method (d). Still, period 8 occurs using the Euler 
method (b).  
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Figure 4: Phase portrait plot for 𝑅 = 28, (a) Runge-Kutta method, (b) Euler method, (c) LSODE method, (d) 

multistep-DNN method 
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A homoclinic explosion to stable periodicity takes over for 𝑅 = 61.5 as presented in Figure 5 (a), (c), 
and (d) using the RK method, LSODE method, and multistep-DNN method. Meanwhile, using the Euler 
method (d), we obtain the chaotic regime. 
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Figure 5: Phase portrait plot for 𝑅 = 61.5, (a) Runge-Kutta method, (b) Euler method, (c) LSODE method, (d) 

multistep-DNN method 
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At 𝑅 = 80, the chaotic regime takes over as shown in Figures 6 (a), (c), and (d). However, for Figure 
6 (b), we cannot conclude any behaviour using the Euler method since this method is numerically 
unstable for many iterations.  
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Figure 6: Phase portrait plot for 𝑅 = 80, (a) Runge-Kutta method, (b) Euler method, (c) LSODE method, (d) 

multistep-DNN method 
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Figures 7 (a) and (c) display that period-2 periodic solution exists at 𝑅 = 147.5. In Figure 7 (d), the 
system remains chaotic. These results occur due to convergence issues. Therefore, we need to 
improve the multistep-DNN method by considering other optimiser methods in order to speed up 
the convergence. Further studies are needed relating to these issues.  
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Figure 7: Phase portrait plot for 𝑅 = 147.5, (a) Runge-Kutta method, (b) Euler method, (c) LSODE method, (d) 
multistep-DNN method 
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4 CONCLUSION 

The chaotic behaviour of a horizontal layer of fluid was explored in this work, and the problem was 
solved utilising the multistep-DNN method. The results obtained are compared with the results using 
the RK method, Euler method, and LSODE method. At a slightly subcritical value of the Rayleigh 
number, the transition from steady convection to chaos occurs via a Hopf bifurcation connected with 
a homoclinic explosion. From the results obtained, we can conclude that the multistep-DNN is 
capable of solving the system of (17) similar to the RK method and LSODE method. However, further 
studies are needed to improve this method for large values of Rayleigh numbers. Furthermore, this 
limitation needs further investigation in order to produce good results to solve the dynamical 
systems of equations. 
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