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ABSTRACT 

This study primarily focuses on comparing the numerical methods of the Adams-Bashforth and 
Trapezoidal methods with the exact solution for solving the Lotka-Volterra prey-predator model. 
These methods are evaluated for their ability to reliably and accurately solve the non-linearity 
of the model. Based on the results, both methods offer precise solutions, with the Adams-
Bashforth method providing a more accurate approximation for short-term predictions and the 
Trapezoidal method demonstrating better stability for long-term simulations. The study utilizes 
data from lynx-rabbit and bat-moth interactions to assess the performance of these methods 
using software tools. For both models, the short-term predictions align closely with observed 
data, while long-term stability analyses reveal the strengths of the Trapezoidal method. The 
equilibrium and stability analyses offer critical insights into the long-term behavior and stability 
of the system. The predator population trails behind the prey population: a rise in prey numbers 
is followed by a delayed increase in predator numbers as predators consume more prey. The 
phase portraits show the regularity of these oscillations. The curves move counterclockwise: prey 
numbers increase when predator numbers are at their lowest, and prey numbers decrease at 
their highest. These insights are essential for understanding and predicting the dynamics of 
predator-prey interactions and have significant implications for ecological modeling and 
conservation strategies. 

Keywords: Adams-Bashforth method, ecological modeling, Lotka-Volterra model, numerical 
methods, stability, Trapezoidal method  

1 INTRODUCTION 

The study applies and compares two numerical methods, the Adams-Bashforth and Trapezoidal 

methods, to solve the Lotka-Volterra prey-predator model. This model is essential for understanding 

the dynamic interactions between predators and their prey, with specific examples drawn from lynx-

rabbit and bat-moth interactions. The goal is to comprehend ecosystem stability and the effects of 

species extinction. The primary challenge is identifying which numerical method, Adams-Bashforth 

or Trapezoidal, provides the best solution for the Lotka-Volterra model. This includes understanding 

the behavior and stability of predator-prey interactions in specific species pairs, such as Iberian 
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lynxes, snowshoe hares, and bats and moths. The research objectives are threefold: first, to compare 

the exact solutions with the Adams-Bashforth and Trapezoidal methods for the Lotka-Volterra prey-

predator model; second, to discuss the impact of carrying capacity on the dynamic behaviors of prey-

predator interactions between species; and third, to analyze the equilibrium and stability of these 

interactions. This research holds significance for ecological studies and conservation efforts, offering 

insights into the dynamics between predator and prey species. Accurate models of these interactions 

are crucial for making effective conservation decisions and understanding the stability of ecosystems. 

Numerical methods involve algorithms that provide approximate solutions to mathematical 

problems instead of exact solutions derived through symbolic manipulation [1]. These methods are 

helpful when analytical solutions are difficult or impossible to obtain. Numerical methods are 

commonly applied to solve linear systems and differential equations and to calculate function 

derivatives [2]. They help researchers tackle complex mathematical problems across various fields 

where finding precise solutions is challenging. 

Studying the extinction dynamics between predator and prey species, such as the lynx-rabbit and 

bat-moth interactions, is an intriguing area within ecology and evolutionary biology. Understanding 

these linkages requires understanding the dynamics of ecosystems, the preservation of biodiversity, 

and the possible ramifications of species extinctions.  

The loss of predator or prey species may majorly affect ecology. In the case of the lynx-rabbit system, 

the system's collapse would likely result from the extinction of either species. This is because lynxes 

and rabbits are essential components of the ecosystem, and their extinction would have a detrimental 

effect on numerous other species. If moths or bats went extinct, it would significantly affect the 

ecosystem. Losing bats would be harmful to plant reproduction because they are essential 

pollinators. Nonetheless, many animals rely on moths for sustenance, so their extinction can throw 

off the balance in the food chain. Understanding the intricacies of these predator-prey interactions 
could have broader implications for ecological management and preservation. Changes in the 

population of one species can have a cascading effect on the environment. For example, a decline in 

bat populations may increase moth populations, affecting other parts of the ecosystem, such as the 

vegetation. Studying the extinction dynamics in interactions between lynx-rabbit and bat-moth can 

help us understand the intricate structure of predator-prey relationships and their impact on 

ecosystem stability. 

As demonstrated in recent research on the extinction of wild species, there are few more remarkable 

instances of two species engaged in a fierce battle for existence than bats and moths. These two 

creatures represent the epitome of an evolutionary arms race, with one attempting to outperform 

the other in the fight for survival between predator and prey. This capacity has dramatically 

increased the strain on the insects that bats prey on, including grasshoppers, lacewings, and crickets. 

To help them survive, many of these insects have developed an astounding variety of counter-

adaptations. And these are nowhere as obvious as they are in months [3]. The lynx population has 

grown significantly in Andalucía, Spain, and new populations have appeared in Extremadura, 

Castilla-La Mancha, and Portugal. This has brought economic and ecological benefits to local 

communities. However, in the 20th century, hunting, agriculture, and industry reduced the lynx 

population by about 90% and destroyed much of its habitat. By the early 2000s, the lynx was the 

world's most endangered cat. In 1953, a law by Spanish dictator Francisco Franco led to the killing 
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of thousands of lynxes and their main food, rabbits. Rabbit diseases in the 1950s and 1980s further 

reduced their food supply. Between 1985 and 2001, the lynx's range shrank by 87%, and the number 

of breeding females dropped by over 90%. By 2002, only two small populations with 25 breeding 

females remained. Rabbits make up 90% of the lynx's diet, with males eating one rabbit daily and 

mothers with kittens needing up to three rabbits daily [4]. Moreover, At the record age of 20, Aura, 

an Iberian lynx that helped save her species from extinction and whose genes are still present in over 

900 spotted and tufty-eared felines, passed away in southern Spain [5]. 

In the previous study on the Lotka-Volterra Prey-Predator Model using other numerical methods, [6] 
proposed an ecological model featuring two prey species with different reproduction rates and 
nutritional values, consumed by generalist and specialist predators. Numerical simulations revealed 
that specialists and generalists can coexist only if the specialist consumes the more nutritious and 
reproductive prey. The study suggests that the generalist's ability to switch prey relieves pressure 
on the limited prey species. Additionally, the generalist can always survive in the environment due 
to access to external food sources, offering new insights for specialized empirical studies. [7] 
presented their work on the predator-prey relationship, which is based on biological evolution and 
eco-epidemiology, characterized by the prey's induced defenses and diseases. Diseases' impact on 
population stability in the predator-prey relationship in which inducible defense is present is 
studied. To improve the completeness of analytical research, numerical simulations are carried out. 
The system's solutions' consistent boundedness and positivity are confirmed by research. Next, the 
stability and existence of the equilibria are examined. The system has a maximum of nine equilibrium 
positions. Through studies, researchers investigate inducible defenses and prey sickness, which gives 
rise to concepts for building mathematical models. Researchers can create more realistic models by 
altering the defensive trait set, the infectious disease transmission mechanism, and the functional 
response functions based on natural biological cases. Moreover, [8] addresses the issue of a 
continuous time delay in a stochastic predator-prey scenario. Methods of Lyapunov analysis are 
applied in the study. Numerical simulations for a fictitious set of parameter values are provided to 
support the analytical results. The circumstances leading to the demise of predator populations have 
been discovered via research. Under certain limitations on noise densities, it is shown that the 
behavior of the stochastic solutions is like the behavior of the corresponding deterministic delayed 
predator-prey system. Also, [9] propose a high-order precise method with Neumann boundary 
conditions to solve the one-dimensional Lotka-Volterra-diffusion problem. An implicit-explicit Runge 
Kutta scheme should be combined with a fourth-order compact finite difference approach for the 
spatial component. The basic concept is to employ an implicit-explicit Runge Kutta method of 
temporal integration and a fourth order near-finite difference scheme to discretize the spatial 
derivative. This produces a nonlinear system of ordinary differential equations. As a result, the 
computational cost of the system decreases. The suggested method's usefulness in stability and 
computation cost is demonstrated. Matlab programming is used in numerical experiments to further 
validate the proposed method's effectiveness and validity in solving the Lotka-Volterra-diffusion 
problem. 

This previous study on the Lotka-Volterra Competitive Model using numerical methods shows that 
the study investigates equilibrium and stability in species interactions, focusing on whether species 
experience competitive exclusion or reach a stable equilibrium. The Runge-Kutta-Fehlberg (RKF) and 
the Taylor Series methods were used for analysis. The RKF method provided a more accurate 
approximation than the Taylor Series method, as confirmed by computations using Mathematica 
13.2. Due to its accuracy and versatility, the research suggests the RKF method is preferable for 
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solving the Lotka-Volterra competitive model [10]. [11] compare the population model's dynamics 
with those generated using dependable numerical methods and a precise solution. The study 
described calculating the numerical solutions to the Lotka-Volterra and the insect population models. 
The researchers used numerical methods to solve the models in this study, including the RKF method 
and the Laplace Adomian Decomposition Method (LADM). The researchers employed the 
intraspecific competition term and the Holling type III functional response to solve modified 
population models numerically. Compared to the LADM solution, numerical solutions produced using 
the RKF approach exhibit high accuracy. These numerical findings demonstrate that the RKF 
approach is an adequate and reliable method for solving linear and nonlinear differential equation 
models based on population models. 

This previous study on the Lotka-Volterra Prey-Predator Model using the Adam Bashforth method 
[12] developed a predator-prey model using time fractional variable and constant orders, solved 
numerically with the Adams–Bashforth–Moulton method. They focused on the Liouville–Caputo 
fractional order and employed the Atangana–Baleanu operator, utilizing a kernel based on the 
generalized Mittag-Leffler function to model complex predator-prey dynamics. Their findings 
showed that the variable-order fractional approach better captured the intricate behavior of the 
system. The model’s results were generated using Matlab on a computer with an Intel Core i7, 2.6 
GHz CPU, and 16 GB RAM. [13] conducted a theoretical and numerical study on the fractional 
Atangana–Baleanu–Caputo prey-predator model. Using the Adams-Bashforth method, they created 
graphical simulations to analyze the model’s behavior. The study applied nonlinear analysis and 
fixed-point theory to achieve results on Ulam-Hyers' stability and existence. A fractional Adams-
Bashforth method was used to approximate solutions, with specific parameter values illustrating the 
model's dynamics. The findings contribute to the understanding of fractional dynamics in real-world 
phenomena. 

A previous study on the trapezoidal method of another mathematical model showed that the study 
discusses various strategies for applying the trapezoidal method to fractional differential equations 
(FDEs) and multistep methods. Numerical experiments highlight the strengths and limitations of 
these methods. Several implicit second-order methods for FDEs were explored, focusing on their 
stability, which varies with the fractional order. The Backward Differentiation Formula (BDF)-based 
method showed the largest stability regions, similar to the results in ordinary differential equations 
(ODEs) [14]. 

Lastly, this previous study on Lotka-Volterra Prey-Predator Model using Analytical Solution Method 
– Exact solution showed that [15] explored a fractional-order delay differential predator-prey model 
with Holling-type III infection in the predator population. They analyzed the system using stability 
criteria, Lyapunov functional, and Laplace transform. Their study found that when time delays exceed 
critical values, the model undergoes Hopf bifurcation, affecting stability. While fractional order 
enhances the dynamics, temporal delays significantly impact stability. Critical conditions were 
identified to ensure local asymptotic stability, with Hopf bifurcation occurring when delays cross 
crucial thresholds. 
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2 MATERIAL AND METHODS 

2.1 Exact Solution  

The logistic equation of the Lotka-Volterra model is used to simulate the development of an isolated 
population: 

𝑑𝑦

𝑑𝑥
= 𝑟𝑦 (1 −

𝑦

𝐾
)  (1) 

where y(x) is the average density (in persons) at time x (in generations), r is the instantaneous rate 

of growth (births/deaths), and K is the carrying capacity. Assume continuous linear density 

dependence (K and r), no time delays, migration, age structure, or restricted resources. Now, a 

straightforward iterative method for calculating 𝐾 and 𝑟 is demonstrated for both lynx-rabbit and 

bat-moth. Simplify the equation (1) to obtain the solution for the initial condition, which gives: 

𝑦 =
𝐾

1+
1

2
𝑒−𝑟𝑥(𝐾−2)

  (2) 

First, the good fit value of 𝑟 and 𝐾 is obtained by using curve fitting using equation (2); the fit is 

reasonable for: 

 

 

 
𝑟 = 0.26 and 𝐾 = 12.111 ____ 

 

 

 
𝑟 = 0.2 and 𝐾 = 1.0567___ 

 

 

 
𝑟 = 0.4 and 𝐾 = 12.0867__ 

 

 

 
𝑟 = 0.38 and 𝐾 = 2.0123 

Figure 1: Curve fitting for growth in isolation 
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Figure 1 shows that the least-squares method fits the data points to the curve. This shows the 

population trends for two pairs of prey and predators across several generations: rabbits with lynxes 

and moths with bats. Each graph illustrates how the population size (mean density) changes over 

time, with fitted curves showing the overall trend. For the rabbits, which have a growth rate (𝑟) of 

0.26 and a carrying capacity (𝐾) of 12.111, the population experiences a rapid increase followed by 

a decline. This pattern is typical for prey species, which grow quickly until predator pressure causes 

numbers to drop. The lynxes, with (𝑟 = 0.2) and (𝐾 = 1.0567), show a delayed population increase 

after the rabbits, reflecting how predator numbers depend on prey availability. In the graph moths, 

with a growth rate of (𝑟 = 0.4) and a carrying capacity of (𝐾 = 12.0867), gradually increase in 

population. Bats, which prey on moths, have a growth rate of (𝑟 = 0.38) and a carrying capacity of 

(𝐾 = 2.0123). Their population exhibits noticeable fluctuations, a hallmark of predator-prey cycles, 

where predator numbers rise and fall in response to prey abundance. Overall, these graphs illustrate 

the interactions between predators and prey, showing how growth rates and carrying capacities 

influence population stability and the cyclical nature of their dynamics. 

2.2 Trapezoidal Method 

The Trapezoidal method is an implicit numerical method for solving ordinary differential equations. 

It is a second-order method that provides more accurate approximation than first-order methods 

such as Euler’s method. The Trapezoidal method averages the values of the function at the current 

and next time steps to compute the solution. 

For Lotka-Volterra equation: 

 
𝑑𝑥

𝑑𝑡
=  𝛼𝑥 −  𝛽𝑥𝑦  (3) 

 
𝑑𝑦

𝑑𝑡
=  𝛿𝑥𝑦 −  𝛾𝑦  (4) 

the Trapezoidal method can be written as: 

𝑥𝑛+1 = 𝑥𝑛 +
ℎ

2
[ 𝑓(𝑥𝑛, 𝑦𝑛) + 𝑓(𝑥𝑛+1, 𝑦𝑛+1)] 

(5) 

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

2
[ 𝑔(𝑥𝑛, 𝑦𝑛) + 𝑔(𝑥𝑛+1, 𝑦𝑛+1)]  (6) 

where 𝑓(𝑥𝑛, 𝑦𝑛) = (𝛼𝑥 −  𝛽𝑥𝑦), 𝑔(𝑥𝑛, 𝑦𝑛) = (𝛿𝑥𝑦 −  𝛾𝑦), ℎ is the time step size, and 𝑥𝑛 and 𝑦𝑛 are the 
populations of prey and predators at the n-th time step, respectively. Solving these equations 
involves iterating to find 𝑥𝑛+1 and 𝑦𝑛+1, as the method is implicit. 
 
To use the Trapezoidal method, the step size, ℎ = 1. 

𝑘1 = 𝑓[𝑥, 𝑦] (7) 

𝑘2 = 𝑓[𝑥, 𝑘1] (8) 
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To find 𝑦1, 𝑦0 = 𝑦 used, the calculation is: 

𝑦𝑑+1 = 𝑦𝑑 +
1

2
𝑘1ℎ +

1

2
𝑘2ℎ 

(9) 

2.3 Adam Bashforth Method 

The Adams-Bashforth method is an explicit multistep method used for solving ordinary differential 
equations. It is known for its efficiency and accuracy, particularly when dealing with systems of 
equations. The Adams-Bashforth method uses information from previous time steps to predict the 
solution at the next time step. 

For the Lotka-Volterra equation in equations (3) and (4) the Adam Bashforth method can be written 
as: 

  𝑥𝑛+1 = 𝑥𝑛 +
ℎ

2
[ 3𝑓(𝑥𝑛 , 𝑦𝑛) − 𝑓(𝑥𝑛−1, 𝑦𝑛−1)] 

(10) 

 𝑦𝑛+1 = 𝑦𝑛 +
ℎ

2
[ 3𝑔(𝑥𝑛, 𝑦𝑛) − 𝑔(𝑥𝑛−1, 𝑦𝑛−1)] (11) 

where 𝑓(𝑥𝑛, 𝑦𝑛) = (𝛼𝑥 −  𝛽𝑥𝑦), 𝑔(𝑥𝑛, 𝑦𝑛) = (𝛿𝑥𝑦 −  𝛾𝑦), ℎ is the time step size, and 𝑥𝑛 and 𝑦𝑛 are the 
populations of prey and predators at the 𝑛-th time step, respectively. This method uses the current 
and previous values of the functions to predict the next value. 
 
For the Adam Bashforth method, the step size, ℎ = 1. 

𝑘1 = 𝑓[𝑥, 𝑦] (12) 

 𝑘2 = 𝑓[𝑥, 𝑘1] (13) 

To find 𝑦2, 𝑦1 = 𝑦 used, the calculation is: 

𝑦𝑑+1 = 𝑦𝑑 +
3

2
𝑘1ℎ −

1

2
𝑘2ℎ 

(14) 

3 RESULTS AND DISCUSSION 

This research compares numerical methods, such as the trapezoidal and Adam Bashforth methods, 

with the exact solution. Tables 1, 2, 3, and 4 show a comparison of Mean Absolute Error (MAE) and 

Root Mean Square Error (RMSE) among the Trapezoidal method and Adam Bashforth method 

compared to the exact solution for the rabbit, lynx, moth, and bat. 
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Table 1: The Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for rabbit 

Error  Trapezoidal method Adam Bashforth method 

MAE 1.63282959 0.580709946 

RMSE 1.744642402 0.656946655 

 

Table 2: The Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for lynx 

Error  Trapezoidal method Adam Bashforth method 

MAE 0.006846623 0.00379602 

RMSE 0.007145827 0.004385323 

 

Table 3: The Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for moth 

Error  Trapezoidal method Adam Bashforth method 

MAE 1.188548068 0.476513744 

RMSE 1.315281789 0.554266522 

 

Table 4: The Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for bat 

Error  Trapezoidal method Adam Bashforth method 

MAE 0.093013576 0.055706854 

RMSE 0.104608473 0.07270618 

Tables 1, 2, 3, and 4 present a comparison of the accuracy between two numerical methods, the 

Trapezoidal and Adams Bashforth methods, using the Mean Absolute Error (MAE) and Root Mean 

Square Error (RMSE) to evaluate the performance in predicting population dynamics for rabbit, lynx, 

moth, and bat. These metrics help assess how closely the predicted values match the observed data, 

with lower values indicating more accurate predictions. The Adams-Bashforth method is much more 

accurate for rabbits than the Trapezoidal method, as evidenced by its significantly lower MAE 

(0.5807 compared to 1.6328) and RMSE (0.6569 compared to 1.7446). This indicates that the Adams-

Bashforth method predicts rabbit population trends more precisely. Similarly, the Adams-Bashforth 

method again shows superior accuracy for lynx, with much lower MAE (0.0038 compared to 0.0068) 

and RMSE (0.0044 compared to 0.0071), suggesting it better captures the lynx population dynamics. 

The pattern continues with moth, where the Adams-Bashforth method has a lower MAE (0.4765 

compared to 1.1885) and RMSE (0.5543 compared to 1.3153), indicating more reliable predictions. 

Lastly, the Adams-Bashforth method performs better for bats, with lower MAE (0.0557 compared to 
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0.0930) and RMSE (0.0727 compared to 0.1046). Significant errors, like those exhibited by the 

Trapezoidal method, could lead to misinterpretations, potentially impacting decision-making or 

interventions. These tables show that the Adams-Bashforth method consistently provides more 

accurate predictions for the population dynamics of all four species than the Trapezoidal method. 

3.1 Lotka-Volterra Prey-Predator Equation 

The Lotka-Volterra predator-prey model is a well-recognized system of differential equations that 

describes the behavior of prey and predator populations as they change over time. 

 

 

 

 

 

 

 

 

Figure 2: Curve approximation for growth in mixed 

Figure 2 shows the population dynamics of two predator-prey pairs, rabbits and lynxes, and moths 

and bats within a mixed environment. In the rabbit-lynx interaction, the rabbit population initially 

rises sharply before declining as the lynx population increases. This illustrates a typical predator-

prey cycle where predators thrive following prey abundance, leading to a subsequent drop in prey 

numbers. In the moth-bat interaction, the moth population gradually increases, peaking towards the 

end of the period. In contrast, the bat population remains relatively stable with minor fluctuations, 

indicating a less immediate response to prey availability. The curve approximations in both graphs 

highlight these trends, showing how prey availability drives predator population changes and 

emphasizing the cyclical nature of predator-prey relationships where predator populations grow in 

response to prey abundance. 
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3.2 Equilibrium and Stability 

 

Figure 3: Phase trajectory with 𝑟 =  0.67  

Figure 3 illustrates that when 𝑥 ≈  1, There are insufficient lynxes to maintain population balance, 

increasing the rabbit population. This breeds more lynx; soon, there are so many lynxes that rabbits 

have difficulty escaping. So, the number of rabbits begins to drop (around 𝑥 ≈  2, When the rabbit 

population is estimated to reach its peak). This indicates that the rabbit population will eventually 

decline. As a result, the lynx population gradually increased. This occurs when populations return to 

their original levels, and the entire cycle begins anew.  

 

Figure 4: Phase trajectory with 𝑟 =  0.42 

Figure 4 illustrates that when 𝑥 ≈  1, There are insufficient bats to maintain population balance, 

increasing moth populations. That leads to more bats, and finally, there are so many bats that moths 

have a difficult time evading them. As a result, the number of moths decreases (about at 𝑥 =  2, where 

the moth population peaks). This indicates that the moth population will eventually decline. As a 

result, the bat population gradually increases. This occurs when populations return to their original 

levels, and the entire cycle begins anew. 
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The Lotka-Volterra model, though simple, makes several assumptions about the environment and 

the evolution of predator and prey populations, which limit its effectiveness in real-world situations. 

These assumptions include the prey always having enough food, predators only eating prey, 

population growth proportional to its current size, a static environment without genetic adaptation, 

and predators having unlimited appetites. Due to these assumptions, the model doesn't restrict 

specific parameters, leading to unrealistic predictions. For example, without predators, the prey 

population grows exponentially, and the rate at which a predator consumes prey increases 

indefinitely as the prey population grows, implying predators never get full. Thus, the Lotka-Volterra 

model fails to produce realistic projections for predator and prey dynamics in nature. 

4 CONCLUSION 

This study uses the Adams-Bashforth and Trapezoidal methods to study the Lotka-Volterra prey-

predator model to understand how predator and prey populations interact and maintain ecosystem 

stability. The Adams-Bashforth method is accurate and efficient for predicting these interactions, 

while the Trapezoidal method offers a more straightforward but less precise approach. Accurate 

models of predator-prey dynamics are crucial for ecological balance, as predators help control prey 

populations and prevent overgrazing. The study focuses on interactions between bats, moths, and 

lynxes and rabbits, showing how their populations fluctuate in cycles. This research underscores the 

importance of numerical methods in ecological modeling for effective conservation and ecosystem 

management. Several steps are recommended to improve the study's results: First, compare different 

numerical methods to find the most effective one. Using real-world data from various species will 

make the models more accurate. Implement adaptive step-size control to enhance the stability and 

precision of the simulations. Broaden research to include more species and interactions to 

understand ecosystems fully. Develop flexible conservation policies based on continuous monitoring 

of population changes. Lastly, ecologists and conservationists should be trained in these methods to 

boost the effectiveness of conservation efforts. While this study focused on theoretical models, future 

research could benefit from incorporating real-world ecological data to improve the applicability of 

the findings. For instance, using population data of actual species like lynx and hares or bat-moth 

dynamics could provide more practical insights into the efficacy of these numerical methods. 
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