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ABSTRACT 

Road asset mapping significantly benefits transportation authorities, infrastructure 
management, and road users. Recent advancements in Geographic Information Systems (GIS) 
and digital mapping technologies have substantially improved inventory and asset management. 
However, technologies such as Light Detection and Ranging (LiDAR) and mobile mapping 
cameras are costly compared to dashcams. Therefore, this study proposes a cost-effective road 
asset mapping system by leveraging dashcam video data, object detection using You Only Look 
Once version 8 (YOLOv8), and GIS for spatial visualization. In this study, images were extracted 
from dashcam videos using VLC Media Player and processed through an annotation pipeline in 
Roboflow, where bounding boxes and labels were assigned to road assets such as road signs, 
streetlights, and traffic lights. The dataset was then divided into training, validation, and test 
sets for model development. YOLOv8, selected for its high accuracy in object detection and 
segmentation, was trained to recognize these assets, achieving a precision of 0.895, recall of 
0.873, and mean Average Precision (mAP) of 0.876 at 50% Intersection over Union (IoU). To 
integrate YOLOv8 with GIS, the detected road assets were geotagged based on GPS metadata 
from the dashcam footage, allowing spatial mapping within a GIS platform. The identified assets 
were then visualized on a GIS interface, facilitating efficient road asset inventory management. 
This approach demonstrates that low-cost dashcam-based data collection, combined with AI-
powered object detection and GIS mapping, offers a viable alternative to expensive mapping 
technologies. Future research should focus on enhancing dataset quality and expanding the 
range of detectable assets to further improve system accuracy and applicability.  

Keywords: deep learning, dashcam, geographic information systems, object recognition, road 
asset mapping. 

1 INTRODUCTION 

Effective road asset mapping is crucial for transportation authorities, infrastructure management, 
and general users, as it facilitates informed decision-making regarding road network expansion, 
safety improvements, and maintenance planning. Traditionally, road asset inventory relies on 
remote sensing technologies such as high-accuracy laser point clouds, terrestrial photographs, aerial 
imagery, and Geographic Information Systems (GIS), significantly enhancing asset management by 
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providing precise spatial information. However, the cost and complexity of existing mobile mapping 
systems (MMS), including Light Detection and Ranging (LiDAR) and multi-sensor integrations, pose 
significant challenges to widespread adoption. Many total station surveys are conducted in remote, 
underdeveloped areas where no local control network is expected to be established and connected 
to a projected coordinate system for real-world applications. While mapping has long been a well-
established engineering discipline with significant influence on urban planning and infrastructure 
development, there is an increasing need for timely and accurate updates of geospatial data. The shift 
toward rapid geospatial data capture has been driven by the advancement of multi-platform and 
multi-sensor integrated mapping technologies, transforming mapping into a dynamic and mobile 
process [2].  

In the 1970s, highway transportation departments utilized photo-logging systems to monitor 
pavement performance, signage, maintenance effectiveness, and encroachments. However, these 
systems lacked three-dimensional (3-D) object-measuring capabilities due to the low accuracy of 
vehicle location and the use of only a single camera configuration. With the development of GPS and 
video imaging technology, inefficient photo-logging methods were replaced with video-logging 
systems based on the Global Positioning System (GPS). Mobile mapping systems now offer complete 
3-D mapping capabilities through integrated multi-sensor data collection and processing 
technologies, distinguishing them from video-logging systems [2]. Despite these advancements, the 
cost and operational complexity of MMS remain significant barriers. The development, hardware 
cost, and accuracy requirements of MMS are interconnected, and their deployment in urban areas is 
expensive due to the need for intricate mathematical methodologies and computationally intensive 
processing steps [3]. The vast amount of data generated by MMS, including LiDAR point clouds, high-
resolution images, and GPS coordinates, requires significant storage and computational resources, 
further adding to operational costs. Moreover, mobile mapping systems typically rely on multiple 
sensors to collect diverse data types simultaneously, necessitating complex calibration, sensor 
fusion, and geometric alignment tasks [4].  

To address these limitations, this study proposes a cost-effective alternative for road asset mapping 
by utilizing a dashcam-based system integrated with You Only Look Once version 8 (YOLOv8) for 
object detection and GIS for spatial mapping. Dashcams offer several advantages, including 
affordability, ease of deployment, and the ability to capture high-resolution video footage under real-
world driving conditions. Unlike expensive LiDAR-based systems, dashcams can be easily installed 
on various vehicles, enabling continuous and standardized data collection with minimal disruption 
to traffic. YOLOv8 was chosen for its ability to perform real-time object detection with high accuracy, 
allowing for automated identification of road assets such as road signs, streetlights, and traffic lights. 
The detected assets are then geotagged using GPS metadata from the dashcam footage and mapped 
in a GIS platform, providing a structured and spatially referenced road asset inventory. By integrating 
YOLOv8 and GIS, this research offers an innovative, low-cost solution for road asset mapping that 
reduces reliance on expensive mobile mapping systems while maintaining accuracy. This approach 
demonstrates the feasibility of using dashcam-based road asset mapping and highlights the potential 
for further improvements through enhanced dataset quality and model optimization. 

2 PREVIOUS STUDIES IN DETECTING ROAD ASSET 

Several studies have been conducted investigating the application of machine learning and deep 
learning techniques for detecting road assets. A support vector machine (SVM), artificial neural 
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network (ANN), Naïve Bayes (NB), and Random Forest (RF) were used to improve the performance 
of the colour segmentation task in traffic light detection [5]. Once the classifier model is established, 
the detection phase can begin. This phase was conducted on a single frame, regardless of whether 
the video was captured in real time. After preprocessing, the method analysed the image by iterating 
through each pixel in a single frame. Each instance detected is explicitly categorized. If a pixel is 
determined to represent a traffic light, the method either advances to the next stage of traffic light 
detection or marks it in the image frame for display on the output device. 

Nandargi et al. [6] employed a practical approach, using semantic segmentation, a deep learning 
technique, to identify the components in an image and perceive the image’s elements [6]. The Light 
Detection and Ranging (LiDAR) input data was processed using deep learning techniques like 
semantic segmentation, a deep learning algorithm that associates each pixel in an image with a label 
or category. The main goal is to classify every pixel in the image as either a road or a non-road, making 
it a practical and efficient method. Other than that, Network-in-Network (NiN) is an implementation 
of the standard convolutional neural network (CNN) architectural design, consisting of a series of 
convolutional and pooling layers, followed by several fully connected layers, the final layer 
performing the loss function. Stochastic gradient descent was used to prepare, and the chain rule 
registers the gradients precisely as in a conventional multilayer perceptron (MLP). 

Another study utilized deep learning architectures, and the model was trained on a vast picture 
dataset consisting of over 56,000 photos of traffic signs [7]. 56,111 images were used from six distinct 
traffic sign classes: stopped, yield, no entrance, obligation, prohibition, and danger. The YOLOv3 
architecture was trained using a hierarchical classification technique. The ResNet152 architecture 
was trained using 27,308 images in the instance of obligation and prohibition, in which a greater 
quantity of images was accessible. It recognized 11 subclasses of pro-prohibition signals, and 14 
obligation sign classifications were made. 

A novel approach was introduced to segmenting urban assets using automated data processing 
workflows and a less expensive Azure Kinect [8]. The method was first validated by detecting road 
signs outside using the Time of Flight (ToF) camera from Azure Kinect. The Region of Interest (ROI) 
was swiftly and effectively retrieved using the data produced by the ToF camera. After converting 
the ROI to an RGB image, a hybrid colour-shape-based technique was used to retrieve the traffic sign 
area. Furthermore, using the depth image as a guide, they measured the distance between Azure 
Kinect and the traffic sign, showcasing the innovative use of technology in urban asset segmentation. 

Transfer learning was employed to recognize traffic signs on dashcam images [9]. The models utilized 
in this task were all obtained using Pytorch’s torch-vision package and pre-trained on COCO. These 
models were meticulously trained using PyCocoTools’ composite loss function, with the primary 
classes being background and sign. For testing, ResNet50-FPN, MobileNetV3-Large FPN, and 
MobileNetV3-Large FPN for mobile platforms were the three Faster R-CNN network backbones used. 
The TDOT dashcam image collection was utilized to train and validate these models. Each model 
completed five training epochs with a batch size of four and a learning rate of 0.0001, and the 
validation performance of each model was compared to ensure the most suitable model for detection 
was selected, providing a thorough and reliable training process. A summary of previous studies has 
been listed in Table 1. 
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Table 1 : Summary of previous studies’ methods and findings 

Author(s) Methods Findings 

Binangkit & 
Widyantoro [5] 

SVM, ANN, NB, 
and RF with 
color models 

Based on all color segmentation algorithms combined, the traffic light 
precision number is 0.43, NB is 0.71, ANN is 0.73, SVM is 0.84, and RF 
is 0.64. SVM with an RBF kernel is the best learning method compared 
to MLP, RF, and NB. Compared to the color segmentation approach, 
the best SVM performance lowers recall by just 5% while improving 
precision by 93%. 

Sairam et al. [1] Laser scanner, 
cameras, 
Inertial 
Measurement 
Unit, and GPS 

A cost-effective mobile mapping system was developed to solve the 
limitations of the previous methods. Despite lacking a single, well-
investigated procedure for automatically extracting characteristics 
from point clouds and images, experiments have demonstrated 
several effective methods for recognizing assets. 

Campbell et al. [10] Deep learning The results show that the F-score is 89.75%, the accuracy is 95.63%, 
the precision is 82.97%, the sensitivity is 82.5%, and the specificity is 
96.98%. Although accuracy shows success despite system adversity, 
this model’s sensitivity and precision findings cannot be compared to 
other systems. A manual check across all images was conducted 
throughout this investigation to yield a 95.63% detection accuracy 
and a 97.77% classification accuracy. 

Elhashash et al. [11] MMS, GNSS, 
LiDAR, IMU, 
DMI, sensor, 
Imaging 
Systems, and 
cameras 

Implementing mobile mapping technology in various applications 
may save operating costs while increasing productivity. 

Domínguez et al. [7] Camera LiDAR 
and deep 
learning 

The accuracy, recall, F-Score, and mean IoU values are 0.611, 0.868, 
0.717, and 0.685, respectively, indicating a notably elevated 
frequency of false positives. The main reason is that the traffic sign 
identification algorithm could recognize traffic signals that the 
manual labeler had overlooked, as they only covered a small enough 
area within the bounding box to be significant. The initial stage's 
traffic sign recognition produced the correct findings. 96 of the 99 
genuine positive detections were correctly identified. There are 47 
prohibition signs; 34 may be identified, and 28 can be correctly 
predicted. 

Qiu et al. [8] MMS and deep 
learning 

The study's method has an accuracy of 0.8216, whereas deep learning 
has an accuracy of 0.7466, suggesting that their approach is more 
flexible and cost-effective. 

 

In summary, previous studies on road asset mapping have primarily relied on expensive and complex 
methods such as mobile mapping systems (MMS), LiDAR, and deep learning models, which require 
high computational power, extensive data processing, and specialized hardware. These approaches 
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face cost, scalability, and flexibility limitations, making them impractical for large-scale 
implementation. Additionally, some methods report elevated false positive rates and challenges in 
real-time processing. In contrast, the proposed dashcam-based approach with YOLOv8 offers a cost-
effective, easily deployable, and scalable solution. Dashcams provide high-resolution, real-world 
video footage, while YOLOv8 ensures accurate, real-time object detection with minimal 
computational requirements. Integrating GIS enables efficient spatial mapping of road assets without 
the need for expensive LiDAR setups, making road asset management more accessible and practical. 

3 MATERIAL AND METHODS 

A review of past studies has offered a thorough evaluation of different methodologies for road asset 
mapping. This research highlighted the systematic approaches for creating effective road asset 
mapping using low-cost dashcams. Figure 1 presents the flowchart outlining this research process. 

 

Figure 1 : Research flowchart 

3.1 Data Collection 

The data used for this research is primary and collected directly from the sources. The dataset was 
collected using a Garmin-branded dashcam around Skudai, Johor. The videos are approximately 10 
minutes long and feature road assets that are valuable for road asset mapping and analysis. 

3.2 Image Preprocessing 

Maharana et al. [12] stated that the first stage of machine learning is called data preprocessing, where 
the data is transformed or encoded to put it in a format that allows the machine to analyze or parse 
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it quickly [12]. Data preprocessing is the most crucial stage in a supervised machine learning 
algorithm’s performance during generalization. The amount of training data increases exponentially 
with the dimension of the input space. According to estimates, preprocessing is vital to model-
building since it can cost as much as 50–80% of the total classification time. Additionally, data quality 
is necessary to improve the model’s performance. Data processing is the set of procedures to be 
completed before beginning the analysis of the model’s actual data. This study used bounding boxes 
and labeling for data preprocessing. 

3.3 Data Partitioning 

One of the most critical steps in video indexing is partitioning a video source into meaningful 
segments. The system uses a set of different metrics to measure how the data changes between movie 
frames. It is a crucial approach in many fields, such as content analysis, video processing, and 
computer vision. Data partitioning is important for identifying and detecting road assets in this study. 
It is simpler to distinguish and follow distinct parts within a video by segmenting the film into 
separate frames. The dataset was split into 70:20:10, where 70% of the dataset is used for training 
the model, 20% of the dataset is used for validation of the model, and the remaining 10% is used for 
testing the model’s performance on unseen data. 

3.4 Model Development 

After applying the data partitioning procedure, the collected data becomes more meaningful, 
allowing us to proceed with the modeling phase, which utilizes You Only Look Once version 8 
(YOLOv8). Figure 2 illustrates the architecture of the YOLOv8 model. 

YOLOv8 generically separates its architecture into three main layers: the Backbone, Neck, and Head. 
The Backbone collects all valuable features from the input image [14]. It is typically a CNN pre-trained 
on large-scale image classification tasks like ImageNet. The Backbone collects features hierarchically 
at various scales. In the first layer, the lower-level features are extracted, and in the following levels, 
high-level features are collected, including object parts and semantic information. According to [15], 
this makes YOLOv8 able to receive more detailed gradient flow information while remaining 
lightweight. At the end of the Backbone, the most usual SPPF module is still applied and passed 
through three serial MaxPools of size 5×5. Afterward, every layer is concatenated to ensure the target 
precision is maintained at different sizes yet lightweight [14]. 

The Neck module acts as a bridge between the Backbone and the Head. It fuses and refines the 
extracted features from the Backbone, typically oriented to achieve enhancements in spatial and 
semantic information at various scales. Additional convolutional layers, feature pyramid work, or 
other methods could be included in the Neck to help refine feature representation. In the neck part, 
YOLOv8 continues to utilize a feature fusion method called PAN-FPN. This method enhances the 
original information of the feature layer, allowing for further fusion and utilization across multiple 
diverse scales [14]. The authors of YOLOv8 designed the Neck module, and the main contents contain 
two up-sampling and several C2f modules with the final decoupled Head structure. YOLOv8 adopted 
the concept of separating the Head, similar to YOLOx, in the last part of the Neck. This further 
development, focused on confidence and regression boxes, achieved a new level of accuracy in 
detection. 
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Figure 2: YOLOv8 model architecture [13] 

The Head is the last component of any object detector, making predictions based on the features 
obtained from the Backbone and Neck. It is typically built from one or more task-specific sub-
networks performing the functions related to classification, localization, and, progressively, instance 
segmentation and pose estimation. The Head processes the Neck’s characteristics and predicts every 
feasible object. To measure how well YOLOv8 predicts object locations, the Intersection over Union 
(IoU) metric is used. IoU quantifies the overlap between the predicted bounding box (𝐵𝑝) and the 

ground-truth bounding box (𝐵𝑔). It is defined as: 

𝐼𝑜𝑈 =
|𝐵𝑝∩𝐵𝑔|

|𝐵𝑝∪𝐵𝑔|
                    (1) 

where |𝐵𝑝 ∩ 𝐵𝑔| is the area of intersection and |𝐵𝑝 ∪ 𝐵𝑔|is the total area covered by both boxes. A 

higher IoU indicates a better bounding box prediction. 

After bounding boxes are predicted, Non-Maximum Suppression (NMS) is applied to filter out 
redundant detections and retain only the most confident predictions. NMS works by selecting the 
bounding box with the highest confidence score and suppressing all other boxes with an IoU greater 
than a predefined threshold. The NMS function is given by: 

𝑆 = {𝑏𝑖|𝐼𝑜𝑈(𝑏𝑖, 𝑏𝑗) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, ∀𝑗 > 𝑖)                (2) 

where S is the final set of selected bounding boxes, and bi and bj are the predicted bounding boxes 
ranked by confidence. 
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To improve localization accuracy, YOLOv8 employs Complete IoU (CIoU) Loss, which enhances 
standard IoU by incorporating distance and aspect ratio penalties. The CIoU Loss is expressed as: 

𝐿𝐶𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +
𝜌2(𝑏𝑝,𝑏𝑔)

𝑐2
+ 𝛼𝑣                                        (3) 

where 𝜌2(𝑏𝑝, 𝑏𝑔) is the Euclidean distance between the centers of the predicted and ground-truth 

boxes, c is the diagonal length of the smallest enclosing box that covers both predicted and ground-
truth boxes, v measures the difference in aspect ratios, and α is a trade-off parameter that balances 
aspect ratio consistency. 

After refining bounding box predictions using CIoU Loss, YOLOv8 optimizes its predictions using a 
combination of classification and regression loss functions: 

1. Classification Loss: Binary Cross-Entropy (BCE) Loss is used to evaluate object classification 

accuracy, ensuring that predicted object categories match ground-truth labels. 

2. Regression Loss: YOLOv8 employs CIoU Loss + Distribution Focal Loss (DFL) to improve 

bounding box localization by focusing on both overlap and fine-grained positional 

adjustments. 

3. Variational Focal Loss (VFL): This loss function incorporates an asymmetric weighting 

procedure to prioritize difficult-to-classify samples while down-weighting easy predictions. 

The generic distribution models the DFL-Box location, allowing the network to emphasize the 
distribution of the site nearest to the target location. This enhances precision by increasing the 
probability density at the most relevant positions. The sigmoid output of the network is denoted by 
si, with interval orders yi and yi+1, and label y, as formulated in equation (4): 

DFL(𝑠𝑖,𝑠𝑖+1) = −((𝑦𝑖+1 − 𝑦) log(𝑠𝑖) + (𝑦 − 𝑦𝑖) log(𝑠𝑖+1)) ( 4 ) 

YOLOv8 uses Anchor-Free rather than Anchor-Base. In version 8, a dynamic TaskAlignedAssigner is 
employed to implement its matching approach. Equation (5) determines the Anchor-level alignment 
degree for each occurrence, where s is the classification score, u is the IOU value, and α and β are the 
weight hyperparameters. It picks m anchors with the highest value (t) in each instance as positive 
samples and the remaining as negative samples before training using the loss function [14]. 

𝑡 = 𝑠𝛼 × 𝑢𝛽 ( 5 ) 

  

3.5 Model Evaluation 

The evaluation process is essential for determining how well the model performs. One of the 
significant tools of prediction analysis within machine learning is the confusion matrix. It can be used 
to estimate a model’s efficiency and effects concerning machine learning in classification. 
Additionally, it is a calculated summary of the number of accurate and inaccurate predictions a 
classifier produced for tasks involving binary classification. An N x N matrix, where N is the number 
of target classes, is called a confusion matrix when assessing a classification model’s effectiveness. By 



Applied Mathematics and Computational Intelligence 
Volume 14, No. 4, 2025 [14 - 29] 

 

22 

visualizing the confusion matrix, one might assess the model’s correctness by analysing the diagonal 
values representing the number of accurate classifications. 

From this matrix, metrics like accuracy, precision, recall, specificity, and F1-score can be calculated. 
Positive observation is known as positive, and negative observation is known as negative. A result 
when the model accurately predicts the positive class is called a True positive (TP), while the model 
correctly predicts the negative classes, known as True Negatives (TN). The model incorrectly predicts 
the positive class when negative, also known as a type 1 error, is a False Positive (FP). Lastly, an 
outcome where the model incorrectly predicts the negative class when it is positive, also known as a 
type 2 error, is a False Negative (FN). 

Precision is the ratio of correctly predicted positive observations to the total predicted positive 
observations. It can be calculated from the confusion matrix using the equation below: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 ( 6 ) 

Average Precision (AP) is the average accuracy of the model. It can be calculated from the equation 
below: 

𝐴𝑃 = ∫ 𝑝(𝑟)𝑑𝑟
1

0

 ( 7 ) 

Mean Average Precision (mAP) is the average value of the AP. It can be calculated from the equation 

below: 

𝑚𝐴𝑃 =
1

𝑘
∑ 𝐴𝑃𝑖

𝑘

𝑖=1
 ( 8 ) 

4 RESULTS AND DISCUSSION 

Data was prepared by extracting images from video obtained from the dashcam. Then, data 
preprocessing, such as bounding box, labelling, and data partitioning, was done using Roboflow. All 
images were resized to 640 x 640 pixels and auto-oriented before being used for model training. 
Figure 3 shows the results obtained from the model training using YOLOv8. The precision values for 
roads (22 instances), streetlights (53 instances), and traffic lights (30 instances) are 1.000, 0.973, and 
0.963, respectively, or overall (105 instances) is 0.979. The high precision indicates that the model’s 
detections are mostly accurate. Next, the mean average precision (mAP) value at 50% for roads, 
streetlights, and traffic lights is 0.988, 0.974, and 0.995, respectively, or overall is 0.974. The high 
mAP score suggests the model performs well in accurately localizing objects across different classes. 
Lastly, the mean average precision (mAP) value at 95% for road signs is 0.874; streetlights are 0.876, 
traffic lights are 0.937, and overall is 0.896. This indicates that the model performs well despite some 
drops compared to the mAP50 score.  
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Figure 3: Summary of model training by using YOLOv8 

Figure 4 shows the training result. It shows that the “metrics/precision(B)" and "metrics/recall(B)" 
graphs are growing, indicating that the model is becoming more accurate in identifying objects while 
resulting in fewer false positives and false negatives. 

 

Figure 4: Training results 

The F1-Confidence curve of the training model is shown in Figure 5. All individual classes, including 
road signs, streetlights, and traffic lights, have good F1 scores across most of the confidence 
thresholds, indicating good performance in class detection. Additionally, the performance across all 
classes is strong, and the thick blue line shows a close-to-1 total F1 score for most of the confidence 
range. In short, the F1 score of 0.727 shows that the system balances precision and recall well.  
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Figure 5: F1-Confidence curve 

Figure 6 shows some images of the model’s predictions on the first batch of the validation dataset, 
while Figure 7 shows the model validation result. In summary, 105 total instances give precision of 
the bounding boxes around detected objects, recall, mAP at 50% Intersection over Union (IoU), and 
mAP averaged over multiple IoU thresholds from 50% to 95% value of 0.895, 0.873, 0.876, and 0.936, 
respectively. This indicates the model detected road signs, streetlights, and traffic lights well. 
Meanwhile, the mAP50 is high across all classes, while the mAP50-95 is lower, indicating that the 
model’s performance changes with the IoU threshold. 

 

Figure 6: Predicted images 
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Figure 7: Validation results 

Based on the results obtained, the model has been deployed for road asset detection. Figure 8 
illustrates the detection of a road sign with a confidence score of 0.93. Such a high confidence score 
suggests that the detection is likely correct. Therefore, identifying the road sign with a 93% 
confidence score is very probable. This implies that the object identified by the model matches the 
actual object in the image, aligning with the ground truth.  

 

Figure 8: Road sign detection 

Besides road signs, other assets such as traffic lights and streetlights have also been tested on the 
model. Table 2 below summarizes the road asset detection results based on its cases. 
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Table 2: Summary of road asset detection results 

No Detection Object Confidence 
Score 

Description 

1 Successful 
detection 

Road sign 0.93 The model’s detected object is present in the image and has been 
correctly identified with a high confidence score. 

2 Streetlight 0.73 

3 False 
detection 

Road sign 0.33 The road sign false detection on road markings had a 0.33 
confidence score. 

4 Streetlight 0.68 The detected object is present in the image, but the confidence 
score for this detection is moderate, allowing it to be accepted or 
discarded. 

5 Traffic light 0.80 The model incorrectly predicted an object’s presence in the 
image, exhibiting excessive confidence with a high confidence 
score. 

6 Missed 
detection 

Traffic light - The model might not have seen enough examples of a particular 
class during training. 

 

After the road asset detection process, frames of road assets detected were combined in a folder. The 
coordinates were then manually extracted into an Excel file as data for GIS purposes. The road asset 
mapping process starts with changing the projection for the coordinate system to ‘WGS 1984’ as the 
standard coordinate in Malaysia. Then, add ‘Google Maps Imagery’ from ‘Portable Basemap Server’ 
to get the world map and drag it as a layer. The longitude and latitude data were added from the Excel 
file. Afterward, it was exported as a shapefile to ensure the data point would show on the map, and 
that file was uploaded. Then, the symbology function was used in ArcGIS to represent the road assets, 
and suitable symbols and colours were chosen to differentiate them.  

The Johor shapefile was added to the layer to show ‘Jalan’ and ‘Daerah_Johor’ as the location is in 
Johor. The map as layout was viewed, and details such as title, legend, scale, and North arrow were 
added to ensure the map layout is clear and visually appealing, as shown in Figure 9 with the title 
“Road Asset Mapping in Skudai, Johor” and the map can be exported into JPG file. As a result, the 
yellow dot represents a road sign, and the red dot represents a streetlight. From Jalan Pendidikan 
and Jalan Pontian Lama to Jalan Pulai, Skudai, Johor, about 1.5 km, the model can detect 36 road 
assets, including nine road signs and 27 streetlights. 
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Figure 9: Road assets mapping in Skudai, Johor. 

5 CONCLUSION 

This study aims to develop a mapping system for road assets using YOLOv8 and GIS. The goal is to 
create a model capable of detecting road assets based on the available data, which can then be 
successfully mapped using GIS. However, the study has some limitations. The model fails to detect 
traffic lights and exhibits false detections (false positives) and missed detections (false negatives) for 
roads and streetlights. In a video that lasted 2 minutes and 5 seconds, comprising 430 frames used 
for testing the model, there were 29 false detections, 30 missed detections, and 36 successful 
detections. Among the false detections, 11 were related to road signs, 17 to streetlights, and 1 to 
traffic lights. For missed detections, there were 5 road signs, 20 streetlights, and 5 traffic lights that 
were not detected. Successful detections included 9 road signs and 27 streetlights. Overall, the model 
achieved an accuracy of only 37.89%. The accuracy for road signs was 36%, while streetlights ’ 
accuracy was 42.19%. These results indicate a significant need for improvement. 
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In comparison, a study in [16] utilized Trident-3D technology, incorporating advanced positioning 
sensors (GPS, INS, DMI), high-quality digital cameras, laser scanners, and photogrammetry. This 
approach demonstrated high efficiency in large-scale data collection and asset management, 
achieving 100% accuracy for manual road sign detection and 99% for automated data extraction. 
Consequently, the low-cost method of detecting road assets using a dashcam is less accurate or 
effective than the high-cost mobile mapping camera systems. 

This study primarily recommends providing sharper, more precise, and higher quality videos. This 
improvement will enable the model to learn from accurate and representative examples, directly 
enhancing its ability to identify and classify objects under specific conditions. As a result, the model’s 
performance can be improved. Additionally, a large dataset is essential for training effective object 
detection models. Large datasets typically include objects, backgrounds, lighting conditions, 
perspectives, and variations. This variety helps the model learn to recognize objects in different 
scenarios and improves its ability to generalize to new, unseen data. 
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