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ABSTRACT 

This paper presents an efficient approach to unconstrained optimization, built upon the gradient 
flow derived from the objective function. By incorporating a linear approximation on the 
gradient flow, the proposed method introduces a modified and enhanced BFGS update that 
improves upon the standard BFGS method. To validate its effectiveness, the approach is 
implemented within a line search framework. Numerical results underscore the significance of 
the modified BFGS method, demonstrating superior performance compared to the standard 
BFGS method, thereby offering a valuable advancement in unconstrained optimization 
techniques. 
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1 INTRODUCTION 

This paper considers the following unconstrained optimization problems: 
 

min
𝑥∈𝑅𝑛 

𝑓(𝑥),                   (1) 

 
where the objective function 𝑓(𝑥) is assumed to be twice continuously differentiable for all 𝑥 in 𝑅𝑛.   
 
Considerable progress has been made in developing a robust suite of algorithms for numerically 
solving (1), with most of these methods being iterative [8, 10–13]. In an iterative algorithm, an initial 
point 𝑥0  is provided, and a new iterative point 𝑥𝑘+1 is computed based on the information available 
at the current point 𝑥𝑘 . Ideally, the sequence {𝑥𝑘} will converge to the solution of the optimization 
problem, 𝑥∗ satisfying the first- and second-order conditions for a local minimum, ∇𝑓(𝑥∗) = 0, and 
∇2𝑓(𝑥∗) is positive definite (or at least positive semi-definite). A broad class of iterative algorithms 
is the so-called line search methods, which is expressible as: 
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𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘,   ∀𝑘 ≥ 0,                 (2) 
 
where 𝛼𝑘  is a stepsize and 𝑑𝑘  denotes a search direction. 
 
Quasi-Newton methods [3, 5, 9, 15, 16] are widely used when the analytical expression of the second 
derivative of 𝑓(𝑥), known as the Hessian, is difficult or costly to compute, or store. Instead, these 
methods compute a search direction as follows: 
 

𝑑𝑘 = −𝐵𝑘
−1∇𝑓(𝑥𝑘), 

 
where 𝐵𝑘 is an 𝑛 × 𝑛 symmetric matrix approximating the Hessian through an update formula, such 
as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula [5, 7, 9, 14, 15]: 
 

𝐵𝑘+1 =  𝐵𝑘  −  
𝐵𝑘𝑠𝑘𝑠𝑘

𝑇𝐵𝑘

𝑠𝑘
𝑇𝐵𝑘𝑠𝑘

 +
𝑦𝑘𝑦𝑘

𝑇

𝑦𝑘
𝑇𝑠𝑘

,                (3) 

 

where 𝑠𝑘  =  𝑥𝑘+1  −  𝑥𝑘  and 𝑦𝑘  = ∇ 𝑓(𝑥𝑘+1)  − ∇ 𝑓(𝑥𝑘). 
 

Using the Sherman-Morrison formula [6], the update formula for the inverse Hessian approximation 
𝐻𝑘 = 𝐵𝑘

−1 can be written as: 
 

𝐻𝑘+1 = (𝐼 −
𝑠𝑘𝑦𝑘

𝑇

𝑦𝑘
𝑇𝑠𝑘

) 𝐻𝑘 (𝐼 −
𝑦𝑘𝑠𝑘

𝑇

𝑦𝑘
𝑇𝑠𝑘

) +
𝑠𝑘𝑠𝑘

𝑇

𝑦𝑘
𝑇𝑠𝑘

.                (4) 

 

After determining the search direction, a step length 𝛼𝑘  is found by performing a line search to ensure 
global convergence.  and the process repeats until the sequence {𝑥𝑘} meets the termination criterion. 
 

2 LINEAR GRADIENT FLOW SYSTEM AND MODIFIED QUASI-NEWTON UPDATE 
 
Historically, partial differential equations (PDEs) and optimization have emerged from distinct 
branches of mathematics and have often been considered separate areas. However, their 
interconnections have captivated the interest of many researchers. In 1941, Courant [4] was the first 
to introduce the gradient method for solving variational PDEs, proposing the gradient flow system: 
 
�̇� (𝑡)  =  −∇ 𝑓(𝑥(𝑡)),                  (5) 
 
with the initial condition 𝑥(0)  =  𝑥0, to find an equilibrium point 𝑥∗ such that 
 
∇ 𝑓(𝑥∗)  =  0. 
 
To solve this system using ordinary differential equations (ODEs), one can discretize time in (5) to 
derive a difference equation. As the focus is on the long-term behaviour of (5) rather than precise 
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intermediate solutions, the implicit (backward) Euler method is employed due to its unconditional 
stability, regardless of the time step size. Applying this method to (5) yields: 
 
𝑥𝑘+1  =  𝑥𝑘  − 𝛼𝑘∇𝑓(𝑥𝑘+1), 𝑘 =  0, 1, 2, ….               (6) 
 
Equation (6) can be viewed as a line search method, where 𝛼𝑘  is a step length and 𝑑𝑘 = −∇𝑓(𝑥𝑘+1) 
is a search direction. In contrast, using the explicit (forward) Euler method in (5) would yield the 
steepest descent method, where 𝑑𝑘 = −∇𝑓(𝑥𝑘), though it requires careful time step selection for 
stability.  
 
A practical challenge with (6) is that it requires computing the gradient at the unknown future point, 
𝑥𝑘+1. Approximating ∇𝑓(𝑥𝑘+1) using first-order Taylor expansion gives 
 
𝑑𝑘 =  −∇𝑓(𝑥𝑘+1) ≈ −(∇𝑓(𝑥𝑘) + 𝛼𝑘∇2𝑓(𝑥𝑘)𝑑𝑘), 
 
where ∇2𝑓(𝑥𝑘) is the Hessian of 𝑓 at 𝑥𝑘 . Thus, the iterative update, after some rearrangement 
becomes 
 

𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘(𝐼 + 𝛼𝑘∇2𝑓(𝑥𝑘))
−1

∇𝑓(𝑥𝑘).               (7) 

 
The implicit Euler method’s stability allows any arbitrarily small 𝛼𝑘 , though convergence speed can 

be improved via variable step length. Obtaining (𝐼 + 𝛼𝑘∇2𝑓(𝑥𝑘))
−1

 exactly in (7) is generally 

infeasible as it may require multiple linear solves for various step lengths. Therefore, we propose 
approximation using an updating matrix  �̂�𝑘+1 that satisfies the quasi-Newton equation 
 

�̂�𝑘+1𝑠𝑘 ≈ (𝐼 + 𝛼𝑘∇2𝑓(𝑥𝑘))𝑠𝑘 = 𝑠𝑘 + 𝛼𝑘∇2𝑓(𝑥𝑘)𝑠𝑘 .              (8) 

 
Note that the mean value theorem would imply that there exists a point 𝜏 ∈ (𝑥𝑘 , 𝑥𝑘+1) such that 
 
∇2𝑓(𝜏)𝑠𝑘 = 𝑦𝑘 , 
 
and hence, for a sufficiently small 𝛼𝑘 , we have 
 
∇2𝑓(𝑥𝑘)𝑠𝑘 ≈ ∇2𝑓(𝜏)𝑠𝑘 = 𝑦𝑘 . 
 
Therefore, we can rewrite the (modified) quasi-Newton equation (8) as 
 

�̂�𝑘+1𝑠𝑘 = �̂�𝑘 ,                   (9) 
 
where �̂�𝑘 = 𝑠𝑘 + 𝛼𝑘𝑦𝑘. The modified inverse BFGS update based on (9) is then given by 
 

�̂�𝑘+1 = (𝐼 −
𝑠𝑘�̂�𝑘

𝑇

�̂�𝑘
𝑇𝑠𝑘

) �̂�𝑘 (𝐼 −
�̂�𝑘𝑠𝑘

𝑇

�̂�𝑘
𝑇𝑠𝑘

) +
𝑠𝑘𝑠𝑘

𝑇

�̂�𝑘
𝑇𝑠𝑘

,             (10) 

 

where �̂�0 = 𝐼. 
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To ensure convergence, the Armijo backtracking line search [2] is the most used strategy where its 
algorithm is given as follows: 
 
Algorithm 1 (Armijo backtracking line search): 
Step 0. Given some constants 𝑐1, 𝑐2 ∈ (0, 1). Set 𝛼𝑘 = 1. 
Step 1. Evaluate the following relation 
 
𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝑐1𝛼𝑘∇𝑓(𝑥𝑘)𝑇𝑑𝑘 .             (11) 
 
Step 3. If (11) is not satisfied, choose a new 𝛼𝑘 ← 𝑐2𝛼2 and go to Step 1. Otherwise, set 𝑥𝑘+1 = 𝑥𝑘 +
𝛼𝑘𝑑𝑘.  
 
Together with the Armijo line search (Algorithm 1), we can now state our main algorithm: 
 
Algorithm 2  

Step 0. Choose an initial point 𝑥0 ∈ 𝑅𝑛, and �̂�0 = 𝐼. Set 𝑘 = 0. 
Step 1. Compute ∇𝑓(𝑥𝑘). If the stopping criterion ‖∇𝑓(𝑥𝑘)‖ ≤ 𝜖 is reached, then stop. Else go to Step 
2. 
Step 2. Compute 𝑑𝑘 = −�̂�k∇𝑓(𝑥𝑘), using (4) and calculate 𝛼𝑘  using Algorithm 1. Set 𝑥𝑘+1 = 𝑥𝑘 −
𝛼𝑘�̂�𝑘𝛻𝑓(𝑥𝑘) and update �̂�𝑘+1. 
Step 3. Set 𝑘 ≔ 𝑘 + 1 and return to Step 1.  
For global convergence to a stationary point (i.e., a point where ∇ 𝑓(𝑥∗)  =  0), we shall make the 
following assumptions: 
 
Assumption 1. 

i. The objective function 𝑓(𝑥) is twice continuously differentiable, 
ii. There exist positive constants 𝑚1 ≤  𝑚2 such that 

𝑚1‖𝑠𝑘‖2 ≤ 𝑠𝑘
𝑇𝑦𝑘 ≤ 𝑚2‖𝑠𝑘‖2, ∀𝑘 ≥ 0.  

iii. The gradient ∇𝑓(𝑥) is Lipschitz continuous, i.e. there exists a positive constant 𝑀 such 
that: 

‖∇𝑓(𝑥) − ∇𝑓(𝑦)‖ ≤  𝑀 ‖𝑥 − 𝑦‖, ∀ 𝑥, 𝑦 ∈ 𝑅𝑛. 
 
Theorem 1. (see [3]) 
Under Assumption 1, if the Armijo condition (4) is satisfied at each iteration, the sequence {𝑥𝑘} 
generated by the standard BFGS algorithm (i.e. Algorithm 1 with standard BFGS update (4)) obeys  
lim

k→∞
‖∇𝑓(𝑥𝑘)‖ = 0.          □  

 
Lemma 1. 
Under Assumption 1, if the stepsize 𝛼𝑘  is chosen by Algorithm 1, then the following holds.  
 
‖𝑠𝑘‖2 ≤ 𝑠𝑘

𝑇�̂�𝑘  ≤ (1 + 𝑚2)‖𝑠𝑘‖2, ∀𝑘 ≥ 0.              (12) 
 
Proof. Since 𝛼𝑘 ∈ (0, 1], we have  
‖𝑠𝑘‖2 = 𝑠𝑘

𝑇𝑠𝑘 ≤ 𝑠𝑘
𝑇�̂�𝑘 = 𝑠𝑘

𝑇𝑠𝑘 + 𝛼𝑘𝑠𝑘
𝑇𝑦𝑘 ≤ (1 + 𝑚2)‖𝑠𝑘‖2.     □ 

 
Inequality (12) implies that Assumption 1 still holds for the modified �̂�𝑘  and thus, this ensures the 
global convergence of the modified BFGS algorithm under Armijo line search. 
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3 NUMERICAL SIMULATION 
 
To validate the performance of our method, a set of 7 test problems with standard starting point is 
considered [1], i.e. Extended DENSCHNB, FH3, Generalized Quartic, HIMMELBG, Diagonal 7, Diagonal 
9 and Extended BD1. We use MATLAB to code the algorithms and implement them on a PC with CPU 
2.5GHz processor with 4.00GB RAM. For each test problem, 3 different dimensions are considered, 
which are 𝑛 =  10, 100, 1000.  The value of constants is set as: 𝑐1 = 0.1, 𝑐2 = 0.5, 𝜖 = 10−4 and we 
also restrict the number of iterations to within 1000. For all the runs which the termination criterion 
is not reached within the allowable number of iterations, we consider it as failure (F). 
 

 

Table 1 : Standard BFGS vs Modified BFGS Method 

Problem Dimension BFGS Modified BFGS 
Iteration Function call Iteration Function call 

Extended 
DENSCHNB 

10 
100 

1000 

6 
6 
6 

9 
9 
9 

6 
6 
6 

9 
9 
9 

FH3 10 
100 

1000 

F 
F 
F 

F 
F 
F 

45 
50 
56 

218 
238 
268 

Generalized 
Quartic 

10 
100 

1000 

25 
115 
170 

45 
240 
351 

29 
44 
43 

47 
111 
112 

HIMMELBG 10 
100 

1000 

48 
48 
49 

203 
203 
204 

40 
41 
41 

169 
170 
170 

Diagonal 7 10 
100 

1000 

4 
4 
5 

5 
5 
6 

4 
4 
5 

5 
5 
6 

Diagonal 9 10 
100 

1000 

39 
F 
F 

68 
F 
F 

5 
6 
7 

6 
7 
8 

Extended 
BD1 

10 
100 

1000 

11 
11 
13 

13 
13 
18 

9 
9 

10 

13 
13 
14 

 
 
In comparing the performance of the standard BFGS method with the proposed method across a suite 
of test problems, it was consistently observed that the standard BFGS method required a higher 
number of iterations and function evaluations to reach convergence. This implies that the proposed 
method demonstrates enhanced efficiency, potentially due to combining two search directions, 
namely the steepest descent and the standard BFGS direction.  Hence, in general we can conclude 
that Algorithm 2 is a promising alternative to BFGS method when solving unconstrained optimization 
problems.  
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4 CONCLUSION 
 
In this paper, a novel quasi-Newton-like approximation has been proposed based on a Euler-based 
method for solving unconstrained optimization problems. The key contribution of this work lies in 
developing a modified approach that utilizes Euler's framework to enhance the efficiency of the 
quasi-Newton method. From a numerical perspective, the proposed method demonstrates significant 
advantages, as it often requires fewer iterations to reach an acceptable solution compared to 
standard BFGS method. This efficiency can lead to reduced computational costs and improved 
performance in solving complex optimization problems. Furthermore, we have established the 
convergence of the modified method under suitable assumptions, ensuring its theoretical reliability 
when Armijo line search is applied. Numerical experiments showed the superiority of the proposed 
method over the standard BFGS method in terms of iteration count and function call. The significance 
of this work lies in its potential to provide a valuable alternative to existing quasi-Newton methods. 
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