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ABSTRACT 

Nowadays, several different structural damage detection techniques are being developed 
with the goal of monitoring structure stability with high accuracy and low cost. One of the 
well-known techniques is inverse analysis based on model updating methods. However, the 
main challenges in this technique is the development of algorithms that assist in the 
processing of the enormous amounts of data for the inverse process. To overcome this, the 
Artificial Neural Network (ANN) has been used by many researchers to complement existing 
approaches. The integration of model updating methods and ANN requires not only a wealth 
of knowledge and experience in structural damage detection, but also appropriate numerical 
techniques, and proficiency in scripting programming languages. In this paper, the objective 
is to construct the formulation of structural damage detection using inverse analysis 
incorporating Artificial Neural Network (ANN) for Kirchhoff plate theory and to establish 
the source code. The output from the process is stiffness reduction ratio (SRF) while natural 
frequencies and mode shape as input data. Finite element method (FEM) was used in 
generating the formulation. The source code of the formulation has been written step-by-
step and kept as simple as possible in Matrix Laboratory (Matlab) programming language. 
The performance of the formulation is verified against numerical work based on simulated 
damaged. The presented result shows that, this formulation exhibits excellent performance 
thus highly potential for damage detection of the plate structure. 

Keywords: Structure Damage Detection, Artificial Neural Network, Inverse Frequency, 
Kirchhoff Plate Theory, Finite Element Method.  

1  INTRODUCTION 

Structural damage detection using a model updating method has gained considerable attention 
from many researchers. This method is based on the fact that damage causes a local change in the 
structural parameters such as stiffness, mass and damping matrices, which change its modal 
parameters, i.e., natural frequency and mode shape. Model updating method is an inverse analysis 
of predicting damage from the differences between the updated structural models and before the 
presence of damage to localize and determine the extent of the damage. (Teughels et al., 2003; 
Perera and Torres, 2006; Kouchmeshky et al., 2007; Meruane and Heylen, 2010, 2011).  However, 
this method involves iteration and optimization process, thus the algorithm is exceedingly slow, 
and the damage assessment process is achieved through costly and time-consuming inverse 
processes.  
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In recent decades, with the rapid development of computer technologies, the Artificial Neural 
Network (ANN) has been intensively studied by many researchers to complement existing 
approaches. ANN is a mathematical model of biological neural system and theoretical mind. It 
functions as a simulation of a brain created in the computer to solve real life problems. ANN is a 
powerful tool to model a complicated relationship between various input and output parameters. 
It has the ability to learn from their experience in order to improve their performance and adapt 
to changes in the environment.  

The first application of ANN in structural damage detection was published by Wu et al. (1992). 
Frequency response function (FRF) acceleration data was used as input whilst binary number (0 
and 1) was used as output to represent undamaged and damaged member of the analysis. The 
same binary system was adopted by Povich and Lim (1994) as output analysis of trusses system. 
Since then, it has been used for various structural elements such as beams (Marwala and Hunt, 
1999), trusses (Yun and Bahng, 2000; He-sheng et al., 2005) and composite frames (Zapico et al., 
2003). The use of ANN to the model updating method has attracted some researches as well. 
Sahoo and Maity (2007), published a hybrid-neuro genetic algorithm in order to automate the 
design by considering the frequency and strain as input parameter, and the location and amount 
of damage as output parameter. Gonzales and Perez (2011), extend the work with the aim of 
establishing the flexural damage in the girders of a bridge. Arangio and Beck (2012) enhanced the 
model by applying Bayesian probability logic and the improvement in the results are discussed. 
Meruane and Mahu (2014) used antiresonant frequencies as input data and developed a 
procedure for mass-spring system and a beam with multiple damage scenarios. A comprehensive 
review has also been published by Sarah et al., (2019) under the topic of dynamic analysis in 
frequency domain for structural health monitoring. The application of ANN in the detection of 
structural damage has been a favourite topic of researchers to date. Kim et al. (2020) used sensor 
fusion incorporating with the ANN model for detecting damage of a bottom-set gillnet. 
Jayasundara et al., (2020) proposed modified forms of the modal flexibility (MMF) and modal 
strain energy (MMSE) based damage indices coupled with the ANN technology to provide damage 
assessment on arch bridges. Padil et al., (2020) proposed a combination of a non-probabilistic 
method with principal component analysis (PCA) to consider the problem of the existing 
uncertainties and the inefficiency of using FRF data in ANN-based damage detection. 

The application of ANN as an alternative to the model updating method requires complex 
mathematical calculation, hence, there is no specific recommendation on suitable design for it 
(Shankar, 2009). The integration of model updating methods and ANN requires not only a wealth 
of knowledge and experience in structural damage detection, but also appropriate numerical 
techniques, and proficiency in scripting programming languages. Therefore, the objective of this 
study is to construct a formulation of structural damage detection using inverse analysis 
incorporating ANN for Kirchhoff plate theory and to establish the source code. The source code 
will be written step-by-step and kept as simple as possible in Matrix Laboratory (Matlab) 
programming language. This work lies in the integrated formulation between Kirchhoff Plate 
Theory and ANN to formulate inverse frequency analysis which in the knowledge of this study, is 
the first-ever done thus improving the current knowledge of the model updating method in 
damage assessment. A two-span plate is used as an example in this study. The effectiveness of the 
developed formulation is then compared with simulated damage. The term ‘simulated damage’ 
refers to the damage structure data generated based on numerical analysis. 
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2 INVERSE FREQUENCY ANALYSIS  

The idea of the developed formulation is based on inverse frequency analysis, which is the 
insertion of the measured natural frequencies and mode shapes into the characteristic dynamic 
equation. Then the equation can be inversed with these known values to yield the damaged 
stiffness matrix of the structure. Finally, this damaged stiffness matrix is compared with the 
undamaged stiffness matrix in determining the magnitude and the location of the damages. This 
correlation requires a sufficient amount of data, therefore ANN has been employed to provide the 
inverse quantities of the problem through a training process. Since this operation is best handled 
by matrix operation, FEM is the best choice of tool. 

Figure 1 shows the overall flowchart of the developed formulation. The first step is build up a 
mathematical model based on Kirchhoff plate theory. Next process is to generate training data 
that will be used as input and output for ANN training process. The data are generated randomly 
with magnitude and the damage location were randomly selected as well. Next, construct an ANN 
model. The two main steps in constructing an ANN model are a selection of ANN architecture and 
ANN training process. Finally, by completing the network training, simulation is performed to 
predict the damage. 

 

Figure 1. Flowchart of an overall developed formulas 

3 MATHEMATICAL MODEL  

The Kirchhoff plate theory is a two-dimensional mathematical model that is used to determine 
the stresses and deformations in thin plates subjected to forces and moments. This theory is an 
extension of Euler-Bernoulli beam theory with the assumption that a mid-surface plane can be 
used to represent a 3-dimensional plate in 2-dimensional form.  
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3.1 Equation of Motion for Kirchhoff Plate Theory 

The damage detection problem can be explained by the equation of motion describing the 
undamped free vibration paradigm. The equation is derived by applying d’Alembert’s dynamic 
equilibrium principle and can be expressed as below; 

𝐷(
𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑥2
+
𝜕4𝑤

𝜕𝑦4
) + 2𝜌ℎ

𝜕2𝑤

𝜕𝑡2
= 0 (1) 

and 

𝐷 =
𝐸ℎ3

12(1 − 𝑣2)
 (2) 

where 𝑤 is the deflection of plate, 𝜌 is the density and 𝐷 is the flexural rigidity of plate. 𝐸 and 𝑣 
are Young’s modulus and Poisson’s ratio, respectively. 

3.2 Numerical Model by Finite Element Method (FEM) 

To obtain the FEM formulation, it is necessary to discretize the Equation (1) by Galerkin 
Weighted-residual Method (Galerkin WRM). The discretization process begins with the provision 
of the interpolation function; 

𝑤(𝑥, 𝑦) = [𝑁𝑖]{𝑑𝑖} (3) 

where 𝑁 is the FEM shape function matrix and 𝑑 represent the vector of nodal point displacement. 
The subscripts 𝑖 refer to the nodal points, which is at each nodal point 3 displacement components 
are to be considered; 

𝑑𝑖 = {

𝑤
𝜃𝑥
𝜃𝑦
}

𝑖

= {

𝑤
𝜕𝑤

𝜕𝑦⁄

−(𝜕𝑤 𝜕𝑥⁄ )

}

𝑖

 (4) 

Inserting Equation (3) into Equation (1) to establish the governing equation in terms of shape 
functions and DoFs, then multiply with weight functions, 𝑁𝑖  consecutively and integrate the inner 
product to obtain the discretised equation. Next, conduct integration by parts (IBP) to optimize 
the continuity relaxation. By expressing the time second derivative by double dot, final equation 
can be given in matrix form as; 

[𝑘]{𝑑} + [𝑚]{�̈�} = 0 (5) 

Where [𝑘] is the stiffness matrix and [𝑚] is the mass matrix. {𝑑} and {�̈�} are vector of 

displacement and acceleration, respectively. The solution of the equation of motion can be 
expressed as; 

{𝑑} = {�̂�}sin(𝜔𝑡) = 0 (6) 
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Based on Equation (6), {𝑑} vary in a harmonic manner with amplitudes {�̂�} and natural 

frequencies 𝜔. Inserting Equation (6) into Equation (5) and by conducting the differentiation in 
time twice would give; 

([𝑘] − 𝜔2[𝑚]){�̂�} = 0 (7) 

Equation (7) is a characteristic equation and the non-trivial solution of this equation is of interest 
in this study. The solution of natural frequencies 𝜔 requires that the determinant of the equations 
equal to zero. The mass matrix [𝑚] is unaltered even in a damaged condition. The matrices [𝑘] 
and [𝑚] can be given as;  

𝑘 = ∫ 𝐵𝑇𝐸𝐵𝑑Ω

Ω

 (8) 

𝑚 = 𝜌∫ 𝑁𝑖
𝑇𝑁𝑗𝑑𝛺

𝛺

 (9) 

where; 

𝐵 =

{
 
 

 
 

𝜕2𝑤
𝜕𝑥2
⁄

𝜕2𝑤
𝜕𝑦2⁄

−2(𝜕
2𝑤

𝜕𝑥𝜕𝑦⁄ )}
 
 

 
 

 (10) 

 𝑁𝑖  and 𝑁𝑗  represent the corresponding matrices of the shape functions. Algorithm 1 shows the 

steps involved in solving the non-trivial solution of a characteristic equation.  

Algorithm 1. Steps in solving the non-trivial solution of a characteristic equation 

Step 1 Data preparation. 

Step 2 Develops matrices [𝑘] and [𝑚]. The Matlab code can be referenced in Appendix A (i). 

Step 3 Assemble local matrix to global matrix. The Matlab code can be referenced in Appendix 

A (ii). 

Step 4 Impose boundary condition. 

Step 5 Solve the equation. This process can automatically be carried out using the built-in 

function ‘eig ()’ in Matlab programming language. 

 

3.3 Validation of the equation 

The characteristic equation in Equation (7) has been validated by comparing the natural 
frequency obtained with the experimental work by Bakhary et al., (2007) and established 
commercial software, i.e., COMSOL. Simply supported element with dimensions of 6400 𝑚𝑚 ×

800 𝑚𝑚 × 100𝑚𝑚 is modelled. The material properties used are: 𝐸 = 3.3 × 1010𝑁
𝑚𝑚2⁄ , 𝜌 =

2.45 × 103
𝑘𝑔

𝑚3⁄ , and 𝑣 = 0.2. Figure 2 and Table 1 show the mode of frequencies and 

comparison results against experimental and COMSOL, respectively. 
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Figure 2. Mode of frequencies 

Table 1 Comparison results for validating 

Mode Bakhary et al. 

(2007) 

(experimental) 

COMSOL 

(FEM) 

Present 

(FEM) 

1 17.81 18.10 18.14 

2 25.46 28.32 28.53 

3 - 72.05 73.15 

4 - 90.97 92.71 

 

Table 1 shows that the natural frequency obtained from the developed formulation has 
magnitude comparable to experimental and commercial software. Figure 3 shows the 
convergence of natural frequency at mode 1 for the developed formulation with an increasing 
number of nodes. Based on that figure, the convergence achieved by the developed formulation 
is shown to be faster and in an excellent agreement against the converged result from commercial 
software with the number of nodes required only less than 150. Such verifications give a 
confirmed level of confidence and validate the use of the developed equation of motion for 
Kirchhoff plate theory in this study. Note that a small discrepancy between the numerical analysis 
and the experimental solution occurs due to uncertainty and experimental errors during the 
sample preparation.  

Figure 3. Convergence of natural frequency at mode 1 

4 GENERATE TRAINING DATA 

The process of ANN model requires a largest possible range of input and output data. The input 
data consist of the normalized data of natural frequencies and mode shapes, which are generated 
randomly from the non-trivial solution of the characteristic equation in Equation (7), and the 
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output layers consist of a stiffness reduction ratio (SRF). The normalized inputs are calculated as 
below; 

𝑃𝑛 =
𝑃 −𝑚𝑖𝑛(𝑃)

max(𝑃) − 𝑚𝑖𝑛(𝑃)
 (11) 

where 𝑃 is a column of frequencies and mode shapes, and 𝑃𝑛 is the normalized values. The SRFs 
are calculated as below; 

𝑆𝑅𝐹 = 1 −
𝐸′

𝐸
 (12) 

where 𝐸 is the Young’s modulus in the undamaged state and 𝐸′ is Young’s modulus at the desired 
damage level. The SRF data is normalized at interval of [0, 1], which is 1 represented fully 
undamaged state and 0 fully damaged state. All the data are obtained from FEM algorithm, which 
is involved generating large numbers of damage cases. Algorithm 2 shows the steps involved in 
generating training data for the ANN model.   

Algorithm 2. Steps in generating training data for the ANN model 

Step 1 Number of training data. 

Step 2 Generates the frequency and mode shape (input) data for undamaged and damage state. 

The Matlab code can be referenced in Appendix B (i). 

Step 3 Generates the normalized input and SRF parameters. The Matlab code can be referenced 

in Appendix B (ii). 

Step 4 Test the data to the ANN model to obtain the locations and severities of damages.  

5 ARTIFICIAL NEURAL NETWORK (ANN) MODEL 

ANN is a self-organizing computational technique and it can solve many functions through 
pattern recognition. ANN can effectively be used to reconstruct nonlinear relationship learning 
from training. There are two main steps in constructing an ANN model which are selection of ANN 
architecture and training procedures for ANN model. 

5.1 ANN Architecture 

ANN architecture consist three different layers which are input layer, hidden layer and output 
layer as shown in Figure 4 (a). These layers are interconnected by the neurons. The main 
elements of an artificial neuron are indicated in Figure 4 (b) which includes weights  𝑤𝑖𝑗 , bias 𝑏𝑖 

and activation function. The neuron that were combined and arranged in layer is known as 
multilayer perceptron (MLP).  
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(a)                                                                                        (b) 

Figure 4. (a) Architecture of ANN-MLP. (b) Elements of an artificial neuron 

In this study, ANN-MLP is used. Outputs 𝑌𝑖  of ANN can be defined by following equation;  

𝑌𝑖 = 𝑓𝑖 (∑ 𝑤𝑖𝑗𝑋𝑖 + 𝑏𝑖

𝑛

𝑗=1

) (13) 

Where 𝑋𝑖  indicates the input values,  𝑤𝑖𝑗  illustrates the connection weight values between input, 

hidden and output layers, 𝑏𝑖 is the bias, and 𝑓𝑖 shows the transfer function.  

5.2 Training an ANN Model 

The ANN training process is a procedure to set the weights in order to minimize the prediction 
error. It can be performed by introducing a set of input and output data to ANN model. The data 
will go through the training process and the output will be compared to the desired output. This 
training process is known as supervised learning which performed by a learning algorithm. 
Through the algorithm, the process will be repeated until the error between the desired and 
predicted output met the stopping criteria that have been appointed. The differences between 
desired and predicted output are combined and denoted by an error function. In this study, Mean 
Squared Error (MSE) has been used as an error function. It can be described as below;  

𝑀𝑆𝐸 =
1

𝑛
∑(𝑂𝑇 − 𝑂𝑃)

2

𝑛

𝑗=1

 (14) 

where 𝑂𝑇 and 𝑂𝑃 are the target and predicted outputs, and 𝑛 is the number of data, respectively. 
The relationship between input and output variables is considered established when MSE value 
is approaching 0. 

5.2.1 Learning Algorithm 

In this study, the Levenberg-Marquardt algorithm is used as the learning algorithm and Sigmoid 
function is employed as non-linear activation functions for all layers. ‘Trainlm’ is a network 
training function that updates weight and bias values according to Levenberg-Marquardt 
optimization. It is often the fastest backpropagation algorithm in the Matlab toolbox, and is highly 
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recommended as a first-choice supervised algorithm. Appendix C shows the Matlab learning 
algorithm of Levenberg-Marquardt with the values of the ‘Trainlm’ training parameters used. 

5.2.2 Stopping Criteria 

The ANN-MLP model is exposing to an over fitting problems. In this case, the training process 
efficiency continues to increase while the performance of the unseen data become worst. To 
overcome this problem, early stopping method was used as the stopping criteria in this study. To 
apply the early stopping method, separate the training data into a training set and validation set. 
Then, start train only on the training set and evaluate the pre-example error on the validation set 
once in a while. In this study the error is assessed in every fifty training cycle (epoch). Stop 
training process when the error function on the validation set is higher than the last time it was 
checked. 

6 NUMERICAL EXAMPLE 

Here, numerical example is presented to evaluate the performance of the developed formulation 
in assessing structural damage detection. A two-span plate with dimension of 6400 𝑚𝑚 ×
800 𝑚𝑚 × 100 𝑚𝑚 was tested. The boundary conditions are idealized as pin supports at the 
middle span and at 200 𝑚𝑚 from left and right end of the plate as illustrated in Figure 5 (a).  

 

Figure 5. (a) A two-span plate model. (b) Segmentation and FEM elements 
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For damage detection purposes, the plate is divided to 7 segments and is modelled with 120 
elements for FEM discretization as suggested in 3.3. Every segment is assumed to have the same 
material properties. The properties used are:  Young Modulus, 𝐸 = 33 × 109 𝑁/𝑚𝑚2, density, 
𝜌 = 2550𝑘𝑔 𝑚3⁄ , and Poisson ratio, 𝜈 = 0.2.  

The procedure of the damage detection by the developed formulation is then assessed based on 
Figure 1. In this example, 2000 cases of data sets are generated to train the ANN model. 
Frequencies and mode shapes for the first four modes and the 𝐸 values for every segment are 
used as the input and output respectively. Three damage scenarios are generated to assess the 
developed formulation performance. Scenario 1 consists of single damage, scenario 2 consists of 
multiple damage, and scenario 3 consists of damage at the support segment. The damage is 
imposed by reducing the 𝐸 values of each corresponding segment. For easy detection of reduced 
stiffness, the value of 𝐸 is assumed to be equal to 1. Table 2 shows the 𝐸 values for all scenarios. 
The frequencies of the first four modes are shown in Table 3. 

Table 2 𝐸 values for scenario 1, 2, and 3 

Segment 1 2 3 4 5 6 7 

Scenario 

1 

i 1.0 × 𝐸 0.85

× 𝐸 

1.0 × 𝐸 1.0 × 𝐸 1.0 × 𝐸 1.0 × 𝐸 1.0 × 𝐸 

ii 1.0 × 𝐸 1.0 × 𝐸 1.0 × 𝐸 1.0 × 𝐸 0.5 × 𝐸 1.0 × 𝐸 1.0 × 𝐸 

Scenario 

2 

i 1.0 × 𝐸 0.7 × 𝐸 1.0 × 𝐸 1.0 × 𝐸 1.0 × 𝐸 0.55

× 𝐸 

1.0 × 𝐸 

ii 1.0 × 𝐸 0.3 × 𝐸 0.7 × 𝐸 1.0 × 𝐸 1.0 × 𝐸 0.5 × 𝐸 1.0 × 𝐸 

Scenario 

3 

i 0.85

× 𝐸 

1.0 × 𝐸 1.0 × 𝐸 0.2 × 𝐸 1.0 × 𝐸 1.0 × 𝐸 0.5 × 𝐸 

ii 0.2 × 𝐸 0.7 × 𝐸 1.0 × 𝐸 0.9 × 𝐸 1.0 × 𝐸 1.0 × 𝐸 0.45

× 𝐸 

 
Table 3 First four frequencies values 

 Undamaged Damaged 

Scenario 1 Scenario 2 Scenario 3 

i ii i ii i ii 

Mode 1 18.187 18.164 17.86 17.78 17.086 17.076 17.643 

Mode 2 28.532 28.684 29.049 29.166 30.035 23.006 27.654 

Mode 3 73.151 73.131 72.999 72.873 71.133 65.765 70.462 

Mode 4 92.705 92.645 95.315 91.796 90.269 72.822 86.943 

7 RESULTS AND DISCUSSION 

The developed formulation has been verified by observing it capabilities to identify location of 
damage in the problem domain. Figure 6 shows the training, validation and test performance of 
the selected ANN model with increasing number of epochs. It is shown that the best validation 
performance at 109𝑛𝑑 epoch with MSE value of validation 0.00013786. Hence, this ANN model 
will be used to cater all the damage cases in Table 2 and the predicted results as in Figure 7.  
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Figure 7 shows the predicted 𝐸 values in comparison with the actual values. Scenario 1 (i) and 
(ii) presented single damage with low and high percentage error, respectively. Scenario 2 shows 
the prediction for multiple damages for two and three segments, and scenario 3 presented 
damage to the support segments. All of these scenarios represent all possible structural damage. 
The results shows the prediction values are almost the same to the actual results. Hence, it can be 
concluded that the develop formulation of damage detection using inverse frequency analysis 
incorporating ANN is able to detect the damage location and SRF values of the structure correctly. 

 

Figure 6: ANN performance with increasing number of epochs 

   
i i i 
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ii ii ii 

(a) (b) (c) 

Figure 7: ANN prediction results for (a) scenario 1, (b) scenario 2, and (c) scenario 3  

8 CONCLUSION 

In this study, the development of structural damage detection formulation using inverse 
frequency analysis with ANN for Kirchhoff plate theory is presented. The integration of the 
formulation through corresponding algorithms have been discussed in a step-by-step manner. 
FEM was used in generating the formulation. The source code of the formulation has been written 
and kept as simple as possible in Matlab programming language. A MLP with Levenberg-
Marquardt back-propagation algorithm is utilized to train the ANN model. Sigmoid functions are 
employed as nonlinear activation functions for all layers. To reduce the effect of overfitting, the 
early-stopping method was applied during the training.  

The input data of the training consist of natural frequencies and mode shapes. The data are 
obtained from the solution of motion equation for Kirchhoff plate theory, which involved 
generating large number of damage cases. The motion equation is solved numerically by using 
FEM. The output layers during the training consists of Young’s modulus, 𝐸 to represent the 
stiffness parameter. In the process the stiffness parameter modified to reproduce the measured 
response as close as possible. Once the ANN model is well-trained, the testing data are then 
applied to obtain the locations and severities of damages. The severities of the damages is 
measured by SRF.  

The developed formulation was applied to a two-span plate element. The plate domain was 
divided into 7 segments and modelled with 120 elements for FEM discretization. 2000 cases of 
data set were used to generate the input data to train the ANN models, with the best validation 
performance was 109𝑛𝑑 epoch with MSE value of validation 0.00013786. Then, the performance 
validation of the developed formulation was compared with the three types of damage scenarios, 
where the results clearly show excellent agreement for all case scenarios. Such verifications 
provide a confirmed level of confidence and validate the use of the developed formulation for 
assessment of damage detection in building structures. 
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