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ABSTRACT 

 
Parameter estimation is the most important part in modelling and predicting time series. 
However, the existence of outliers in the data will affect the estimation, which consequently 
jeopardizes the validity of the model. Therefore, the existence of outliers in the data must be 
first detected before the next process can be performed.  The best outlier detection procedure 
can ensure data are free of outliers and achieve the best value parameter estimation. One of 
the procedures is using the bootstrap method to obtain the variance of the estimated 
magnitude of outlier effects. The variance found directly from the bootstrap method is called 
the 'standard' variance. However, the bootstrap method is quite complex in obtaining the 
variance value. As alternatives, trimming methods involving robust estimators such as a 
median absolute deviation (MADn) and alternative median-based deviation called Tn in the 
'robust' variance calculation are used to replace the 'standard' variance. This method 
involves direct calculation to obtain the value of the variance from the estimated magnitude 
of outlier effects. To see the effectiveness of this method, the bilinear (1,0,1,1) model and two 
robust detection procedures, namely, modified one-step M-estimator (MOM) with MADn and 
MOM with Tn were used. Later, these two procedures are evaluated and compared with the 
bootstrap method through simulation studies based on the probability of outlier detection. 
Through the findings obtained, in general, the standard bootstrap procedure performs 
better than the robust procedure performance in detecting the existence of outliers in the 
bilinear (1,0,1,1) model.  
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1. INTRODUCTION 
 
Time series models can be categorized into linear models and nonlinear models. The linear model 
is more popular among researchers due to its simplicity. However, not all linear models are 
sufficient or appropriate for time series data. Under certain circumstances, the nonlinear model 
may be more appropriate for the data. The bilinear model is the simplest model among nonlinear 
models because it is naturally a continuation of the linear model (Ramakrishnan 
and Morgenthaler, 2010). In this study, the bilinear model is chosen based on the advantages of 
its properties compared to other nonlinear models. Some examples of the application of bilinear 
models in various fields are the use of bilinear models to analyze the macroeconomic and financial 
series (Hristova, 2004), modelling revenue series (Usoro and Omekara, 2008) and estimating the 
rate of death of a particular disease (Shangodoyin, Ojo, Olaomi and Adebile, 2012). In bilinear 
time series model, parameter estimation is the most important part. However, with the existence 
of outliers in the time series data, it will affect the estimated value (Hordo, Kiviste, Sims and Lang, 
2006). Therefore, the outlier detection procedure must be identified to obtain the best parameter 
estimation value. In general, there are four types of outliers (OT), namely, additional outlier (AO), 
innovational outlier (IO), level change (LC) and temporary change (TC). AO and IO are the 
common types of outlier found in bilinear time series data (Zaharim, Ahmad, Mohamed and 
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Yahaya, 2007). AO is the type of outliers that affects a single observation at a time point (Abuzaid, 
Mohamed and Hussin, 2014). Meanwhile, IO is characterized by a single strange observation at a 
time point but also affects subsequent observations with the effect gradually dying out (Abuzaid 
et al., 2014).  

 
In the meantime, the bootstrap method is used to obtain the magnitude of outlier effects in a 
bilinear model. This procedure is carried out through the process of drawing random samples 
with replacement. The bootstrap method is a computer-based method for estimating the 
standard error of 𝜃 (Efron and Tibshirani, 1986). The classical bootstrap procedure yields 
classical bootstrap mean and variance. A study to detect AO and IO has been done in a bilinear 
model using the classical bootstrap procedure (Zaharim et al., 2007). In this study, the bootstrap 
method is used to calculate the estimate variance of the magnitude outlier effect. This variance is 
called the ‘standard’ variance. However, without the use of a computer, the calculation of the 
variance using bootstrap method seems too complicated. Therefore, in this paper, a substitution 
approach using trimming method was used which involves robust estimators of location i.e. 
modified one-step M-step (MOM), as well as robust scale estimators namely median absolute 
deviation (MADn) and Tn. Using this approach, the ‘standard’ variance is replaced by ‘robust’ 
variance. Trimming is a method of eliminating outliers from each distribution tail. This method is 
useful in achieving good efficiency and high power (Md Yusof, Othman and Syed Yahaya, 2008). 
Since the estimators chosen have the highest breaking point, which is least affected by extreme 
values, the method is deemed robust (Syed Yahaya, Othman and Keselman, 2004). Wilcox and 
Keselman (2003) introduced MOM as a measure of central tendency when testing the effects of 
treatment. This estimator is calculated based on data remaining from empirically determined 
trimming. The sample of this estimator can be classified as robust central tendency estimator 
which has the highest breakdown point as it is one of the sample median representatives. 
Meanwhile, MADn and Tn are among the best two robust estimators suggested by Rousseeuw and 
Croux (1993). MADn is a popular robust estimator scale with the highest breakdown point and 
least affected by extreme values. Meanwhile, Tn estimator also has the highest breakdown point 
of 50% and its efficiency is about 52%, making it more effective than MADn and a continuous 
influence function. This scale estimator is also simple and has a unique explicit formula.  

 
This study focuses on the detection of AO and IO in the bilinear (1,0,1,1) model. Two robust 
detection procedures i.e. MOM with MADn and MOM with Tn are introduced to evaluate the 
performance of outlier detection in bilinear (1,0,1,1) model. Through a simulation study, the 
performance of the two robust detection procedures and standard bootstrap detection procedure 
are compared and measured in terms of probability of outlier detection. 
 
 
2. LITERATURE REVIEW 
 
2.1 Robust estimators 
 
In this study, two robust scale estimators, namely, MADn and Tn are used to calculate the 
deviation of observations, while the robust location estimator MOM is used to obtain the mean of 
observations. 
 
(a) MADn 

 
One of the scale estimators considered in this study is MADn which was suggested by Rousseeuw 
and Croux (1993). The formula of this estimator is given by: 
 

jjii xmedxmedMADn −= 4826.1                                                                                                            (1) 
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where ),...,,( 21 nxxxX =
 
represents a random sample of any distribution, ii xmed  represents 

sample median, ni ,...,3,2,1= and nj ,...,3,2,1= .   

 
(b)  Tn  
 
Another scale estimator proposed for this study is Tn by Rousseeuw and Croux (1993). The 
formula for this robust scale estimator is given by:  
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(c) Modified one-step M-estimator (MOM) 
 
Meanwhile, the robust location estimator MOM is given by: 
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Where 
 

( ) jiY = the ith ordered observations in group j, 

jn = number (#) of observations for group j, 

1i = number (#) of observations ijY , such that 

 

( ) ( )jjij MADn24.2M̂Y −− ,                                                                                                                           (4) 

 

2i = number (#) of observations 
ijY , such that 

 

( ) ( )jjij MADn24.2M̂Y − ,                                                                                                                           (5) 

                                                    
For MOM with Tn, just replace MADn in Equations (4) and (5) with Tn. 
 
2.2 Bilinear Model 
 
The bilinear (1,0,1,1) model is given by   
 

ttttt eeYbYaY ++= −−− 111                                                                                                                        (6)

                                      
where 𝑌𝑡  and 𝑒𝑡 each represents the outlier-free observation and outlier-free residual at time t, 
where ,...,,t 321= . Both 𝑌𝑡 and 𝑒𝑡 are also called the “original” observation and the “original” 

residual, respectively. 𝑒𝑡 are assumed to follow a normal distribution with mean zero and 
variance 𝜎2. While, a and b are the coefficients of the model. Meanwhile, the bilinear (1,0,1,1) 
model with the existence of outlier is represented by 
 



Mohd Isfahani Ismail, et al. / The Comparison of Standard Bootstrap and Robust Outlier… 

42 
 

**
1
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*
ttttt eeYbYaY ++= −−−

                                                                                                                        (7)

  

where *
tY  is the contaminated observation and *

te  represents the contaminated residual. *
tY  and 

*
te  exist when there is an outlier in the data at a certain time point t, where n,...,,,t 321=  .  

 
2.2.1 AO Effects on Original Observations and Residuals 

When there is no outlier in the data at a time point t, such that 
n,...,,,t 321= , the observations ( tY ) is known as the “original” observations.  If AO exists in the 

data, the symbol *

, AOtY  
 
is used to signify the existence of the outlier, and is known as “AO effect on 

observation”. The effect of this outlier exists only at a time point dt = with   a magnitude of 

outlier effect from bilinear (1,0,1,1) model. For a time point dt  , clearly 
tAOt YY =*

,
 and the full 

formulation of AO effects on tY  is given by:  
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Equation (8) indicates that the effect of AO on tY
 
occurs only at a one-time point ( )dt =  while the 

rest of the time points are unaffected.   
 

Meanwhile, the “original’ residuals ( te ) are obtained when there is no outlier in the data at a time 

point t. The “AO effect on residual” is denoted by *
,AOte . t

*
AO,t ee =  with a time point dt  , and the 

equation will be different with a time point dt   and 0k .  Generally, for a time point kdt +=

, the formulation for *
,AOkde +  

is given by:  
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a and b are constant numbers. Based on Equation (9), several residuals for a time point dt   

should be affected. 
 
2.2.2 IO Effects on Original Observations and Residuals 

 
The IO effects on observations at a time point dt   is given by 

tIOt YY =*
,

 and the equation of IO 

effects on tY for dt   is given by 
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Equation (10) shows that the existence of IO in bilinear (1,0,1,1) model not only affects tY

 
at a 

one-time point but also some of the subsequent tY . 

 
 
The symbol *

,IOte
 
is used when there is an IO effect on the original residual in bilinear (1,0,1,1) 

model. 
tIOt ee =*

,
 with a time point dt  , and the equation will be different from a time point dt   

and 0h .  Generally, for a time point hdt += , the equation for *
,IOhde +  

is given by:  

 

hdhdIOhd fee +++ += *
,

                                                                                                                                        (11) 
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The equation indicates that the existence of IO not only changes the residual at a time point ( dt =

) but also changes some of the subsequent residuals. 
 
 
3. METHODOLOGY 
 
3.1 Standard Bootstrap Detection Procedure 

 
The full standard bootstrap procedure in detecting the existence of AO or IO in Yt is described 
based on the following phases below. 
 
Phase 1: Constructing null and alternative hypotheses 
 
For a standard bootstrap detection procedure, the hypotheses are, H0: 0=  and H1: 0  in 
bilinear (1,0,1,1) model with an outlier at a time point t. Then, the statistical test for the 
hypothesis is: 
 

( )
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Phase 2: Obtaining the magnitude of outlier effects 
 
The statistics to measure the magnitude of outlier effects for AO and IO can be obtained using the 
least-squares method.  Consider the following equation: 
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Equation (13) is then minimized with respect to  , yielding the following measures of outlier 
effects: 



Mohd Isfahani Ismail, et al. / The Comparison of Standard Bootstrap and Robust Outlier… 

44 
 

  




−

=

−

=

+−

=
dn

0k

2
OT,k

dn

0k

OT,k
*

kd

l

OT

A

Ae1

̂                                                                                                                           (14) 

where 









−+−

=

=

=

−+−+ 1kforYb)eba(

0kfor1

A
k

1j

*
AO,jkdj11kd1kk

AO,k  

and 









−

=

=

=

−−+ 1kforAYb

0kfor1

A
k

1m

IO,mk
*

IO,1kdm1
IO,k  

*OT = AO or IO 
 
Phase 3: Obtaining a standard deviation of magnitude of outlier effects 
 
Observing Equation (14), the complexity of the equation makes the determination of an algebraic 
expression for a standard deviation of 𝜔𝑂𝑇 insurmountable. The bootstrap procedure is used to 
obtain the estimates of the standard deviation of 𝜔𝑂𝑇. The procedure, which is carried out 
through the process of drawing random samples with replacement from the residuals, is 
described as follows:  
 
(a) Let n21 e...,,e,e  be the “original” residuals. Sampling with replacement is carried out from the 

“original” residuals giving a bootstrap sample of size n, say, 
( ) .e , ,e ,e  e *

n
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(b) Let B be the number of bootstrap samples. The process to obtain ( ) *
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repeated B times and the bootstrap samples of B sets is given by ( ) ( ) ( )B*2*1* e...,,e ,e . 

(c) Calculate 
M

~  for each bootstrap sample ( )M*e , where B,...,2,1M = .  

(d) The sample standard deviation of 
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Efron and Tibshirani (1986) has shown that as →B , dardtans

~  approaches ̂ , the bootstrap 

estimate of the standard deviation. Furthermore, it has been reported that a decent estimate can 
be obtained using 25B = and 200B= (Efron and Tibshirani, 1993). In this paper, Equation (15) 
refers to the standard deviation with the bootstrap procedure.  
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Phase 4: Detecting the existence of AO or IO 
 
The complete steps to detect the existence of AO or IO are described below.  
 

(1) Compute statistical test value, t,S,OT̂ based on the estimated   in Phase 2 for each t , where 

n,...,,,t 321= . S refers to the standard formula. 

(2) The maximum value of t,S,OT̂ is determined, which is represented by   t,S,OT
n1,2,...,t

t,S
ˆmax 

=
= .  

(3) For any t  if CVη t,S   ( CV  is a critical  value), then H0 is rejected. 

 
Finally, the existence of AO or IO in Yt is detectable. 
 
3.2 Robust Estimators of the Magnitude of Outlier Effect 

 
In the proposed robust detection procedures, instead of employing the bootstrap method to 
calculate the standard deviation of the magnitude of outlier effect, ̂ , this study proposes to 
separately use two robust scale estimators MADn and Tn, while the robust location estimator 

MOM is used to obtain a mean of the magnitude of outlier effect, 
~ .  

 
The MADn for the standard deviation of ̂  is given by: 
 


~ˆmedian4826.1~

nMAD −=                                                                                                     (16) 

where 
~  is the median of ̂ .  

 

Meanwhile, the Tn  for the standard deviation of ̂ is given by: 
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While the Modified one-step M-estimator (MOM) for the mean of the magnitude of the outlier 
effect is given by: 
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where  
 

( ) ji̂ = the ith ordered ̂  in group j. 

jn = number (#) of ̂  for group j. 

1i = number (#) of ij̂ , such that 

 

( ) ( )jjij MADn24.2~ˆ −−


.                                                                                                                              (19) 

 

2i = number (#) of ij
~ , such that 



Mohd Isfahani Ismail, et al. / The Comparison of Standard Bootstrap and Robust Outlier… 

46 
 

( ) ( )jjij MADn24.2~ˆ −


.                                                                                                                                (20) 

 
This yields the formula for MOM with MADn. To obtain the formula for MOM  with Tn , the 

MADn in Equations (19) and  (20) is replaced with Tn .  
 
3.3 Robust Bootstrap Detection Procedure 

 
Meanwhile, to detect AO and IO in Yt, the robust bootstrap detection procedure is used and 
described in the following phases below. 
 
Phase 1: Constructing the null and alternative hypotheses 
 
For a robust detection procedure, the hypotheses are,  H0: 0=  and H1: 0  in bilinear 
(1,0,1,1) model with an outlier at a time point t. Then, the statistical test for the hypothesis is: 
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where OT  represents the type of outlier, AO or IO and n,...,1t = .  

 
Phase 2: Obtaining the magnitude of outlier effects  
 
This step is the same as Phase 2 of the standard bootstrap detection procedure. 
 
Phase 3: Obtaining robust variance of the magnitude of outlier effects 
 
Calculate t,MADn,OT

~  using a robust formula of MADn in Equation (16) and calculate t,Tn,OT
~  using 

a robust formula of Tn in Equation (17), while for  t,MOM,OT
~  is obtained from MOM in Equation 

(18). 
 
Phase 4: Detecting the existence of AO or IO  
 
The complete steps to detect the existence of AO or IO are described as follows: 
 

(1) Compute statistical test value, t,F,OT̂
 
based on Equation (21) and Equation (22) for each t , 

where n,...,2,1t = . F refers to MADn and Tn formula in Equation (16) and Equation (17), 

respectively.   

(2) The maximum value of t,F,OT̂ is determined, which is represented by   t,F,OT
n1,2,...,t

t,F
ˆmax 

=
=

. 

(3) For any t, where n,...,2,1t = , if CVη t,F   ( CV  is a critical value), then 0H  is rejected.  

 
Finally, the existence of AO or IO in 𝑌𝑡  is detectable using the two robust detection procedures of 
MOM with MADn and MOM with 𝑇𝑛. 
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4. SIMULATION AND RESULTS 
 
A simulation study has been conducted to observe the performance of the investigated 
procedures in detecting AO and IO. The robust outlier detection procedures performance using 
both MOM with MADn and MOM with Tn are compared to the standard bootstrap detection 
procedure. The effectiveness of the proposed procedure is measured by the probability of outlier 
detection. The data were simulated using S-Plus package. To investigate the performance of the 
proposed detection procedures, the combinations of the following factors are considered: 
 
(a) Two types of outliers: AO and IO. 
(b) Five underlying bilinear (1,0,1,1) model with different combinations of coefficients (a,b) for 

both types of outliers. 
(c) A single outlier will be introduced at a time point 40=t  in sample size (n) of 100. 

(d) 100=B  for the number of sets of bootstrap samples. 
(e) Two different values of the magnitude of the outlier effect: = 3, 5. 

(f) Five different levels of critical values (CV): CV =2.0, 2.5, 3.0, 3.5, 4.0. 
 
For each given bilinear (1,0,1,1) model, 100 series of length 100 is generated using rnorm 
procedure in S-Plus. The series is generated to contain only one of the outlier types. For the 
magnitude of the outlier effect ( ) , this study uses 3=  and 5= . These values are selected to 

see the change of the probability of outlier detection when the value of the outlier effect is 
increased from 3 to 5. These values are selected based on earlier studies by Mohamed et al. 
(2011). The performance of outlier detection procedure in bilinear (1,0,1,1) model can be 
observed in Tables 1-5 for AO while Tables 6-10 for IO. In the tables, the values in columns 3-5 
represent the probability of outlier detection of the respective type of outlier with the correct 
location at a time point 40t = . 
 
The results across the tables show that the performance of the standard bootstrap outlier 
detection procedure is better than the proposed robust outlier detection procedure for almost all 
the models used. For example, in Tables 1, 2 and 6 it can be observed that the results for all the 
critical values used are in favour of the standard bootstrap method. The same situation happens 
when the magnitude of outlier effect is 3=  combined with a critical value greater than 2.5, the 
performance of standard bootstrap detection procedure is the best compared to the robust 
detection procedure for all models used. A very low proportion of correct detection is observed 
especially in the case of robust detection procedure when the critical values are increased to 3.5 
and 4.0. This happens because the values of the outlier for those cases are not as large as that 
critical value. Critical value values between 2.0 to 3.0 are considered to be most appropriate to 
detect the existence of outliers for both detection procedures.  
 
In this study, the coefficient values between 0.1 and 0.5 are selected as a sufficient condition for 
the existence of a stationary process for the model, (Ismail, 2009). The selection of a combination 
of coefficients (a, b) may affect the probability of detection. When the coefficient value is 
increased, the probability of detection decreases for both AO and IO cases due to the larger value 
of coefficients used as shown in tables. Meanwhile, the performance of the proposed outlier 
detection procedures is better when larger   is used. In general, the comparison reveals that the 
standard bootstraps detection procedure performs better than the proposed robust detection 
procedure in detecting the AO and IO. 
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Table 1 The performance in detecting AO in bilinear (1,0,1,1) model with coefficient (a=0.1, b =0.1)  
 

  C.V Standard MOM  with Tn MOM  with MADn 
 
 

3 

2.0 0.62 0.39 0.47 
2.5 0.62 0.16 0.23 
3.0 0.51 0.05 0.10 
3.5 0.26 0.00 0.05 
4.0 0.15 0.00 0.02 

 
 

5 

2.0 0.96 0.95 0.94 
2.5 0.96 0.81 0.81 
3.0 0.93 0.55 0.64 
3.5 0.85 0.27 0.42 
4.0 0.71 0.12 0.21 

 

Table 2 The performance in detecting AO in bilinear (1,0,1,1) model with coefficient (a=0.3, b =0.1) 
  

  C.V Standard MOM  with Tn MOM  with MADn 
 
 

3 

2.0 0.66 0.35 0.39 
2.5 0.59 0.15 0.23 
3.0 0.38 0.04 0.12 
3.5 0.20 0.01 0.03 
4.0 0.07 0.01 0.02 

 
 

5 

2.0 0.97 0.94 0.93 
2.5 0.97 0.80 0.83 
3.0 0.95 0.46 0.60 
3.5 0.85 0.21 0.38 
4.0 0.64 0.08 0.18 

 

Table 3 The performance in detecting AO in bilinear (1,0,1,1) model with coefficient (a=0.1, b =0.5) 
  

  C.V Standard MOM  with Tn MOM  with MADn 
 
 

3 

2.0 0.41 0.32 0.39 
2.5 0.38 0.15 0.26 
3.0 0.34 0.07 0.13 
3.5 0.21 0.03 0.04 
4.0 0.12 0.01 0.01 

 
 

5 

2.0 0.60 0.71 0.71 
2.5 0.60 0.60 0.65 
3.0 0.60 0.29 0.56 
3.5 0.59 0.13 0.34 
4.0 0.51 0.03 0.17 

 

Table 4 The performance in detecting AO in bilinear (1,0,1,1) model with coefficient (a=-0.1, b =-0.1) 
  

  C.V Standard MOM  with Tn MOM  with MADn 
 
 

3 

2.0 0.53 0.43 0.47 
2.5 0.51 0.20 0.27 
3.0 0.38 0.05 0.09 
3.5 0.19 0.01 0.02 
4.0 0.09 0.00 0.01 

 
 

5 

2.0 0.95 0.95 0.95 
2.5 0.95 0.76 0.77 
3.0 0.95 0.55 0.58 
3.5 0.90 0.25 0.36 
4.0 0.75 0.19 0.17 
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Table 5 The performance in detecting AO in bilinear (1,0,1,1) model with coefficient (a=-0.3, b =0.1) 
  

  C.V Standard MOM  with Tn MOM  with MADn 
 
 

3 

2.0 0.70 0.52 0.52 
2.5 0.67 0.17 0.33 
3.0 0.48 0.06 0.19 
3.5 0.24 0.02 0.08 
4.0 0.12 0.01 0.03 

 
 

5 

2.0 0.98 0.98 0.94 
2.5 0.98 0.80 0.82 
3.0 0.98 0.54 0.66 
3.5 0.89 0.25 0.47 
4.0 0.73 0.10 0.23 

 

Table 6 The performance in detecting IO in bilinear (1,0,1,1) model with coefficient (a=0.1, b =0.1) 
 

  C.V Standard MOM  with Tn MOM  with MADn 
 
 

3 

2.0 0.60 0.39 0.47 
2.5 0.58 0.16 0.23 
3.0 0.36 0.05 0.10 
3.5 0.18 0.00 0.05 
4.0 0.01 0.00 0.02 

 
 

5 

2.0 0.98 0.95 0.94 
2.5 0.98 0.81 0.81 
3.0 0.96 0.55 0.64 
3.5 0.89 0.27 0.42 
4.0 0.69 0.12 0.21 

 

Table 7 The performance in detecting IO in bilinear (1,0,1,1) model with coefficient (a=0.3, b =0.1) 
 

  C.V Standard MOM  with Tn MOM  with MADn 
 
 

3 

2.0 0.55 0.35 0.39 
2.5 0.55 0.15 0.23 
3.0 0.41 0.04 0.12 
3.5 0.23 0.01 0.03 
4.0 0.09 0.01 0.02 

 
 

5 

2.0 0.92 0.94 0.93 
2.5 0.92 0.80 0.83 
3.0 0.90 0.46 0.60 
3.5 0.74 0.21 0.38 
4.0 0.60 0.08 0.18 

 

Table 8 The performance in detecting IO in bilinear (1,0,1,1) model with coefficient (a=0.1, b =0.5)  
 

  C.V Standard MOM  with Tn MOM  with MADn 
 
 

3 

2.0 0.29 0.32 0.39 
2.5 0.21 0.15 0.26 
3.0 0.18 0.07 0.13 
3.5 0.12 0.03 0.04 
4.0 0.07 0.01 0.01 

 
 

5 

2.0 0.65 0.71 0.71 
2.5 0.65 0.60 0.65 
3.0 0.63 0.29 0.56 
3.5 0.62 0.13 0.34 
4.0 0.50 0.03 0.17 
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Table 9 The performance in detecting IO in bilinear (1,0,1,1) model with coefficient (a=-0.1, b =-0.1) 
 

  C.V Standard MOM  with Tn MOM  with MADn 
 
 

3 

2.0 0.49 0.43 0.47 
2.5 0.49 0.20 0.27 
3.0 0.37 0.05 0.09 
3.5 0.15 0.01 0.02 
4.0 0.07 0.00 0.01 

 
 

5 

2.0 0.94 0.95 0.95 
2.5 0.94 0.76 0.77 
3.0 0.91 0.55 0.58 
3.5 0.85 0.25 0.36 
4.0 0.67 0.19 0.17 

 

Table 10 The performance in detecting IO in bilinear (1,0,1,1) model with coefficient (a=-0.3, b =0.1) 

 
  C.V Standard MOM  with Tn MOM  with MADn 

 
 

3 

2.0 0.52 0.52 0.52 
2.5 0.50 0.17 0.33 
3.0 0.36 0.06 0.19 
3.5 0.23 0.02 0.08 
4.0 0.08 0.01 0.03 

 
 

5 

2.0 0.95 0.98 0.94 
2.5 0.95 0.80 0.82 
3.0 0.92 0.54 0.66 
3.5 0.86 0.25 0.47 
4.0 0.63 0.10 0.23 

 
 

5. CONCLUSION 
 
This paper proposed two outlier detection procedures for bilinear (1,0,1,1) model to detect AO 
and IO. The procedures are the standard bootstrap and the robust MOM with Tn and MOM with 
MADn. The robust procedures are compared with the standard bootstrap procedures under 
various factors. Based on the simulation results, the probability of outlier detection using MOM 
with Tn and MOM with MADn is almost identical, otherwise, the best result is the standard 
bootstrap procedure. In general, the performance of the standard bootstrap detection procedure 
is better than both robust detection procedures based on the results obtained. 
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