

# A Scalar Modification of Three-term PRP-DL Conjugate Gradient Method for Solving Large-scaled Unconstrained Optimization Problems

Muhammad Aqiil Iqmal Ishak<br/>1, Nurin Athirah  $\mathrm{Azmi}^{2^*},$ Siti Mahani Marjugi^3

<sup>1,2\*,3</sup>Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

> Received: 23 August 2024 Revised: 1 September 2024 Accepted: 18 October 2024

#### ABSTRACT

Unconstrained optimization problems arise in numerous fields. This study presents the introduction of a hybrid Polak-Ribi'ere-Polyak(PRP)-Dai-Liao(DL) conjugate gradient(CG) method with a modified scalar for the purpose of solving large-scaled unconstrained optimization problems. The proposed method involves the modification of the scalar in the PRP-DL conjugate gradient method in order to improve the performance of the algorithm, specifically when addressing large-scale problems. The convergence analysis of the proposed method is established and proved under the strong Wolfe-Powell line search. Numerical results on various test functions show that the proposed method is more efficient and robust than several existing CG methods. Overall, the proposed method is a new promising CG method for solving unconstrained optimization problems.

**Keywords:** global convergence, large-scale unconstrained problems, line search, modified hybrid conjugate gradient method, test functions.

# 1 INTRODUCTION

Unconstrained optimization problem covers a diverse range of problem types that arise in various science and engineering areas in order to find the minimum value of certain function.

In general, the problem of unconstrained optimization can be formulated as

 $\min_{x \in R^n} f(x),$ 

where  $f: \mathbb{R}^n \to \mathbb{R}$  is continuously differentiable smooth and bounded.

Various approaches, including the conjugate gradient method can be utilized to address the previously mentioned problems. The CG method is widely recognized as an iterative technique that is highly regarded for its computational efficiency and ability to handle a wide range of problem conditions. This method was developed by Eduard Stiefel and Magnus [1]. Due to its efficient use of memory and ability to converge quickly, the CG method has found applications in many fields of research [2].

CG method involves refining an initial approximation with each iteration, resulting in the formation of a sequence denoted as  $x_k$  of the form

$$x_{k+1} = x_k + \alpha_k d_k, k = 0, 1, 2, \dots$$
(1)

where  $x_k$  is the  $k^{th}$  iterative point and  $d_k$  is the search direction and  $\alpha_k > 0$  is the step size. Step size is determined via a one-dimensional search known as line search. Developed as an extension of the well-known Wolfe-Powell line search, the Strong Wolfe-Powell variant introduces additional conditions to ensure a more robust and reliable convergence towards the optimal solution. It is presented in the form of

$$f(x_k + \alpha_k d_k) \le f(x_k) + \delta \alpha_k g_k^T d_k, \tag{2}$$

$$|g(x_k + \alpha_k d_k)^T d_k| \ge \sigma |g_k^T d_k|,\tag{3}$$

where scalar  $g_k$  is the derivative of f(x) at the point of  $x_k$ ,  $g_k^T$  is the transpose of  $g_k$  and  $\delta$  is a very small positive value,  $0 < \delta < \sigma < 1$ .

A major criterion for a line search algorithm in the convergence analysis is that the search direction  $d_k$  has to satisfy the sufficient descent property, which is defined in the form:

$$g_k^T d_k \le -c||g_k||^2,\tag{4}$$

where c > 0 is a constant.

The search direction,  $d_k$  is determined by:

$$d_{k} = \begin{cases} -g_{k}, & \text{if } k = 0, \\ -g_{k} + \beta_{k} d_{k-1}, & \text{if } k \ge 1. \end{cases}$$
(5)

where  $\beta_k$  is known as the CG coefficient.

There are several formulas available for  $\beta_k$ , such as the Fletcher-Reeves (FR) by [3], Polak-Ribière-Polyak (PRP) by [4], Hestenes-Stiefel (HS) by [5], Liu-Storey by [6] (LS), Dai-Yuan (DY) by [7], and Conjugate Descent (CD) by [8] as stated below:

$$\beta_{k}^{\text{HS}} = \frac{g_{k}^{T} y_{k-1}}{d_{k-1}^{T} y_{k-1}}, \quad \beta_{k}^{\text{PRP}} = \frac{g_{k}^{T} y_{k-1}}{g_{k-1}^{T} g_{k-1}}, \quad \beta_{k}^{\text{LS}} = \frac{g_{k}^{T} y_{k-1}}{-d_{k-1}^{T} g_{k-1}}$$

$$\beta_{k}^{\text{DY}} = \frac{g_{k}^{T} g_{k}}{d_{k-1}^{T} y_{k-1}}, \quad \beta_{k}^{\text{FR}} = \frac{g_{k}^{T} g_{k}}{g_{k-1}^{T} g_{k-1}}, \quad \beta_{k}^{\text{CD}} = \frac{g_{k}^{T} g_{k}}{-d_{k-1}^{T} g_{k-1}}$$
where  $q_{k} = q_{k}$ 

where  $y_{k-1} = g_k - g_{k-1}$ .

Hybrid conjugate gradient method is a method that combines several standard CG methods in order to exploit the attractive features of each of them. It is often said that the hybrid CG method is more efficient and more robust than the standard CG methods. Born out of the need to address both the computational efficiency and memory constraints posed by large-scale optimization challenges, this hybrid method provides a balanced approach that seeks to accelerate convergence and minimize memory requirements.

Three-term CG method is an extension of the CG method that introduces a novel recursion formula involving three terms. The three-term recursion formula in the method introduces a new level of sophistication to the optimization process, allowing for enhanced convergence speed and efficiency compared to two-term methods. While the three-term method may require more complex calculations in each iteration compared to the standard CG method, its potential for faster convergence and improved performance on certain types of optimization problems makes it a valuable addition to the toolkit of optimization practitioners.

According to [9], numerical performance of algorithm of new hybrid three-term CG method with modified secant condition(HTTCGSC) was presented and compared with other methods such as modified three-term Hestenes–Stiefel (MTTHS) by [10]. It is shown that HTTCGSC outperform by solving the test problems with the least iteration number, least number of computing functions and gradients and least CPU time consumed. [11] studied a hybrid CG method(HCGM) that combines PRP method with FR method. HCGM is said to has the sufficient descent property under the suggestion of a suitable line search and appropriate conditions. MZZ is the method suggest by [12] in which it guarantees the sufficient descent condition. Subsequently, the new modified hybrid three-term(MTT) CG method proposed in this study will also be compared with MTTHS, MZZ, HTTCGSC and HCGM in the unconstrained optimization problem.

This study aims to address these challenges by proposing a new modified hybrid PRP-DL conjugate gradient optimization algorithm tailored specifically for unconstrained optimization problems. The three-term conjugate gradient method is chosen as the foundation due to its efficiency and widespread use in optimization tasks. Following the inspiration provided by [9], some modifications to the scalar of the presented method have been made by adopting an idea from the research conducted by [11]. The modification involves incorporating novel strategies and inquiries to enhance the convergence speed, stability, and ability of the algorithm.

This paper is organised as follows. In section 2, the underlying idea of modification of the algorithm will be presented. In section 3, sufficient descent property and global convergence property with the strong Wolfe-Powell line search will be established. For section 4, a numerical result of the proposed method will be discussed. Finally, the conclusions will be highlighted in section 5.

## 2 MODIFICATIONS

The primary sources of our motivation are the works of [9] and [11], wherein

$$\beta_k^{\rm N} = \frac{g_k^T(y_{k-1} - ts_{k-1})}{\max\{y_{k-1}^T s_{k-1}, ||g_{k-1}||^2\}},\tag{6}$$

$$\delta_k^{\rm N} = \frac{g_k^T s_{k-1}}{\max\{y_{k-1}^T s_{k-1}, ||g_{k-1}||^2\}}.$$
(7)

The parameter t is defined as  $t = \max\{\bar{t}, \frac{||y_k||^2 g_{k-1}^T s_k}{z_k}\}$  Some modification on (6) and (7) have been made. The parameter  $s_{k-1}^T g_{k-1}$  has been inserted in both numerator and denominator of (6) and (7) while referring on the study of [11]. The new CG coefficient is defined as below,

$$\beta_k^{\text{MTT}} = \frac{g_k^T(s_{k-1}^T y_{k-1} g_{k-1} - t || s_{k-1} ||^2 g_{k-1})}{\max\{||s_{k-1}||^2 g_{k-1}^T y_{k-1}, ||g_{k-1}||^2 g_{k-1}^T s_{k-1}\}},\tag{8}$$

$$\delta_k^{\text{MTT}} = \frac{||s_{k-1}||^2 g_k^T g_{k-1}}{\max\{||s_{k-1}||^2 g_{k-1}^T y_{k-1}, ||g_{k-1}||^2 g_{k-1}^T s_{k-1}\}}.$$
(9)

According to [13],  $\bar{t} = 0.1$  is an appropriate choice. Therefore,  $t = \max\{0.1, \frac{||y_k||^2 g_{k-1}^T s_k}{z_k}\}$  is assigned.

#### Algorithm 1: Modified three-term(MTT) PRP-DL conjugate gradient method

Step 1: Let k = 0. Choose a starting point  $x_0 \in \mathbb{R}^n$ . Obtain  $g(x_0)$  and assign  $d_0 = -g_0$ . Step 2: If  $||g_k|| \leq \varepsilon$ ,  $\varepsilon = 10^{-6}$ , then stop, otherwise proceed to the next step. Step 3: Determine the step size  $\alpha_k$  along the direction  $d_k$  by using the Strong Wolfe-Powell line search stated in (2) and (3).

**Step 4**: Let  $x_{k+1} = x_k + \alpha_k d_k$  to compute the new iterative point.

**Step 5**: Calculate the search direction  $d_k$  by using:

$$d_k^{\text{MTT}} = \begin{cases} -g_k, & \text{if } k = 0, \\ -g_k + \beta_k^{\text{MTT}} s_{k-1} - \delta_k^{\text{MTT}} y_{k-1}, & \text{if } k \ge 1, \end{cases}$$

where  $s_{k-1} = \alpha_{k-1}d_{k-1}$  and  $y_{k-1} = g_k - g_{k-1}$ .

**Step 6**: Set k = k + 1 and repeat Step 1.

#### **3 CONVERGENCE ANALYSIS**

In the upcoming discussion, clarification will be established that Algorithm 1 possesses a sufficient descent property, regardless of the line search technique employed.

**Lemma 1.** Algorithm 1 generated the sequence  $\{d_k^{MTT}\}$  independent on any line search, and it always holds that:

$$g_k^T d_k^{\text{MTT}} \le -||g_k||^2, \forall k \ge 0.$$

$$\tag{10}$$

*Proof.* When k = 0, then  $d_0 = -g_0$ , and it holds that  $g_0^T = -||g_0||^2$ . For  $k \ge 1$ , the subsequent

inequality obtained according to the definition of  $d_k^{\rm MTT} :$ 

$$\begin{split} g_k^T d_k^{\text{MTT}} &= -||g_k||^2 + \beta_k^{\text{MTT}} g_k^T s_{k-1} - \delta_k^{\text{MTT}} d_k^T y_{k-1} \\ &= -||g_k||^2 + \frac{g_k^T (s_{k-1}^T y_{k-1} g_{k-1} - t ||s_{k-1}||^2 g_{k-1})}{\max\{||s_{k-1}||^2 g_{k-1}^T y_{k-1}, ||g_{k-1}||^2 g_{k-1}^T s_{k-1}\}} g_k^T s_{k-1} \\ &- \frac{||s_{k-1}||^2 g_k^T g_{k-1}}{\max\{||s_{k-1}||^2 g_{k-1}^T y_{k-1}, ||g_{k-1}||^2 g_{k-1}^T s_{k-1}\}} g_k^T y_{k-1} \\ &= -||g_k||^2 + \frac{g_k^T ||s_{k-1}||^2 y_{k-1} g_{k-1} g_k^T}{\max\{||s_{k-1}||^2 g_{k-1}^T y_{k-1}, ||g_{k-1}||^2 g_{k-1}^T s_{k-1}\}} \\ &- \frac{t ||s_{k-1}||^2 g_{k-1} g_k^T s_{k-1}}{\max\{||s_{k-1}||^2 g_{k-1}^T g_k^T y_{k-1}} \\ &- \frac{||s_{k-1}||^2 g_k^T g_{k-1} g_k^T y_{k-1}}{\max\{||s_{k-1}||^2 g_{k-1}^T g_k^T y_{k-1}\}} \\ &= -||g_k||^2 - \frac{t ||s_{k-1}||^2 g_{k-1}^T g_k^T s_{k-1}\}}{\max\{||s_{k-1}||^2 g_{k-1}^T y_{k-1}, ||g_{k-1}||^2 g_{k-1}^T s_{k-1}\}} \\ &= -||g_k||^2 - \frac{t ||s_{k-1}||^2 g_{k-1}^T y_{k-1}, ||g_{k-1}||^2 g_{k-1}^T s_{k-1}\}}{\max\{||s_{k-1}||^2 g_{k-1}^T y_{k-1}, ||g_{k-1}||^2 g_{k-1}^T s_{k-1}\}} \end{aligned}$$

where the last inequality holds when  $t \ge 0$ . Then, equation (10) holds. This completes the proof.  $\Box$ 

Lemma (1) indicates that, regardless of the line search method, the new direction satisfies the sufficient descent property. On top of that, a conjugate condition plays an essential role to numerical performance. For MTT, by the design of the direction  $d_k^{\text{MTT}}$ ,

$$(d_{k}^{\text{MTT}})^{T}y_{k-1} = -g_{k}^{T}y_{k-1} + \frac{g_{k}^{T}(s_{k-1}^{T}y_{k-1}g_{k-1} - t ||s_{k-1}||^{2}g_{k-1})}{\max\{||s_{k-1}||^{2}g_{k-1}^{T}y_{k-1}, ||g_{k-1}||^{2}g_{k-1}^{T}s_{k-1}\}} y_{k-1}^{T}s_{k-1} \\ - \frac{||s_{k-1}||^{2}g_{k-1}^{T}y_{k-1}, ||g_{k-1}||^{2}g_{k-1}^{T}s_{k-1}\}}{\max\{||s_{k-1}||^{2}g_{k-1}^{T}y_{k-1}, ||g_{k-1}||^{2}g_{k-1}^{T}s_{k-1}\}} ||y_{k-1}||^{2}} \\ = -g_{k}^{T}y_{k-1} + \frac{||s_{k-1}||^{2}y_{k-1}g_{k-1}}{\max\{||s_{k-1}||^{2}g_{k-1}^{T}y_{k-1}, ||g_{k-1}||^{2}g_{k-1}^{T}s_{k-1}\}} g_{k}^{T}y_{k-1}^{T}} \\ - \frac{y_{k-1}^{T}(t||s_{k-1}||^{2}g_{k-1})}{\max\{||s_{k-1}||^{2}g_{k-1}^{T}y_{k-1}, ||g_{k-1}||^{2}g_{k-1}^{T}s_{k-1}\}} g_{k}^{T}s_{k-1}} \\ - \frac{||y_{k-1}||^{2}(s_{k-1}g_{k-1})}{\max\{||s_{k-1}||^{2}g_{k-1}^{T}y_{k-1}, ||g_{k-1}||^{2}g_{k-1}^{T}s_{k-1}\}} g_{k}^{T}s_{k-1}} \\ \leq -\frac{ty_{k-1}^{T}||s_{k-1}||^{2}g_{k-1}^{T}y_{k-1}, ||g_{k-1}||^{2}g_{k-1}^{T}s_{k-1}\}}{\max\{||s_{k-1}||^{2}g_{k-1}^{T}y_{k-1}, ||g_{k-1}||^{2}g_{k-1}^{T}s_{k-1}\}} g_{k}^{T}s_{k-1}}.$$

$$(11)$$

From (11), it holds that the new direction  $d_k^{\text{MTT}}$  satisfies DL conjugate condition, in an extent form in which  $(d_k^{\text{MTT}})^T y_{k-1} \leq -t_1 g_k^T s_{k-1}$  where  $t_{1} = -\frac{ty_{k-1}^{T}||s_{k-1}||^{2}g_{k-1}+||y_{k-1}||^{2}s_{k-1}g_{k-1}}{\max\{||s_{k-1}||^{2}g_{k-1}^{T}y_{k-1},||g_{k-1}||^{2}g_{k-1}^{T}s_{k-1}\}}.$  In fact, if we adopt the line search technique which results in  $||s_{k-1}||^{2}g_{k-1}^{T}y_{k-1} \ge 0$ , then it holds that  $t_{1} = -\frac{ty_{k-1}^{T}||s_{k-1}||^{2}g_{k-1}+||y_{k-1}||^{2}s_{k-1}g_{k-1}}{\max\{||s_{k-1}||^{2}g_{k-1}^{T}y_{k-1},||g_{k-1}||^{2}g_{k-1}^{T}s_{k-1}\}} > 0.$ 

In this part, the convergence characteristics of the  $\beta_k^{\text{MTT}}$  will be examined and investigated. Assume that for all values of  $k, g_k \neq 0$ . If  $g_k$  is equal to zero, it indicates the presence of a stationary point. The convergence of nonlinear conjugate gradient algorithms is frequently demonstrated based on the subsequent assumptions.

**Assumption 1.** The level set  $T := \{x \in \mathbb{R}^n : f(x) \leq f(x_0)\}$  is bounded where  $x_0$  is the initial point, then it means there exist a constant X > 0 in such a way that:

$$||x|| \le X, \quad \forall x \in T.$$

$$\tag{12}$$

**Assumption 2.** In some neighborhood N of T, the gradient of function f(x) and g(x) known as Lipschitz continuous, which means there exists a constant L > 0 such that:

$$||g(x) - g(y)|| \le L||x - y||, \quad \forall x, y \in N.$$
 (13)

It should be noted that, according to Assumption 1 and Assumption 2, there is a positive constant G that satisfies the following condition:

$$||g(x)|| \le G, \quad \forall x \in T.$$

$$\tag{14}$$

In the following analysis, the sequence  $d_k^{\rm MTT}$  produced by Algorithm 1 is bounded will be demonstrated.

**Lemma 2.** Consider the condition  $0 < t \le T$ , and assume that both Assumption 1 and Assumption 2 are satisfied. For any line search technique, consider the sequence  $\{d_k^{MTT}\}$  generated by Algorithm 1. If the objective function f exhibits uniform convexity on the set T, it can be concluded that  $||d_k^{MTT}||$  is bounded.

*Proof.* Given that the function f exhibits uniform convexity on the set N, it follows that for any x,  $y \in N$ , the following inequality holds:

$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge \tilde{u} ||x - y||^2,$$

where  $\tilde{u} > 0$  is the uniform convexity parameter. In particular, when assigning  $x = x_k$  and  $y = x_{k-1}$ , the following equation is true:

$$||s_{k-1}||^2 g_{k-1}^T y_{k-1} \ge \tilde{u}||s_{k-1}||^2 > 0.$$

In the subsequent analysis, the boundedness of the parameters  $\beta_k^{\text{MTT}}$  and  $\delta_k^{\text{MTT}}$  will be proved.

According to their respective definitions, observe that:

$$\begin{split} |\boldsymbol{\beta}_{k}^{\text{MTT}}| &= \left| \frac{g_{k}^{T}(s_{k-1}^{T}y_{k-1}g_{k-1} - t||s_{k-1}||^{2}g_{k-1})}{\max\{||s_{k-1}||^{2}g_{k-1}^{T}y_{k-1}, ||g_{k-1}||^{2}g_{k-1}^{T}s_{k-1}\}|} \right| \\ &\leq \frac{||g_{k}||(||s_{k-1}^{T}||||y_{k-1}||||g_{k-1}|| + t||s_{k-1}||^{2}||g_{k-1}||)}{||max\{||s_{k-1}||^{2}g_{k-1}^{T}y_{k-1}, ||g_{k-1}||^{2}g_{k-1}^{T}s_{k-1}\}|} \\ &\leq \frac{||g_{k}||(||s_{k-1}^{T}|||y_{k-1}|||g_{k-1}|| + t||s_{k-1}||^{2}||g_{k-1}||)}{||s_{k-1}||^{2}g_{k-1}^{T}y_{k-1}} \\ &\leq \frac{(L+T)||s_{k-1}||}{\tilde{u}||s_{k-1}||^{2}}||g_{k}|| \\ &= \frac{(L+T)}{\tilde{u}}\frac{||g_{k}||}{||s_{k-1}||}. \end{split}$$

$$\begin{aligned} |\boldsymbol{\delta}_{k}^{\text{MTT}}| &= \left| \frac{||s_{k-1}||^{2}g_{k-1}^{T}y_{k-1}, ||g_{k-1}||^{2}g_{k-1}^{T}s_{k-1}\}|}{\max\{||s_{k-1}||^{2}g_{k-1}^{T}y_{k-1}, ||g_{k-1}||^{2}g_{k-1}^{T}s_{k-1}\}|} \\ &\leq \frac{||s_{k-1}||^{2}||g_{k}||||g_{k-1}||}{|max\{||s_{k-1}||^{2}g_{k-1}^{T}y_{k-1}, ||g_{k-1}||^{2}g_{k-1}^{T}s_{k-1}\}|} \\ &\leq \frac{||s_{k-1}||^{2}||g_{k}||||g_{k-1}||}{||s_{k-1}||^{2}g_{k-1}^{T}y_{k-1}} \\ &\leq \frac{||s_{k-1}||^{2}||g_{k}||||g_{k-1}||}{\tilde{u}||s_{k-1}||^{2}} \\ &\leq \frac{||s_{k-1}||^{2}||g_{k}||||g_{k-1}||}{\tilde{u}||s_{k-1}||^{2}} \\ &\leq \frac{||s_{k-1}||^{2}||g_{k}||||g_{k-1}||}{\tilde{u}||s_{k-1}||^{2}} \\ &= \frac{1}{\tilde{u}}||g_{k}||||g_{k-1}||. \end{aligned}$$

Hence, according to the definition of  $d_k^{\rm MTT}$  :

$$\begin{split} ||d_{k}^{\text{MTT}}|| &= \left|\left|-g_{k} + \beta_{k}^{\text{MTT}}s_{k-1} + \delta_{k}^{\text{MTT}}y_{k-1}\right|\right| \\ &\leq ||g_{k}|| + |\beta_{k}^{\text{MTT}}|||s_{k-1}|| + |\delta_{k}^{\text{MTT}}|||y_{k-1}|| \\ &\leq ||g_{k}|| + \frac{(L+T)}{\tilde{u}} \frac{||g_{k}||}{||s_{k-1}||} ||s_{k-1}|| + \frac{1}{\tilde{u}}||g_{k}||||g_{k-1}||||y_{k-1}|| \\ &\leq ||g_{k}|| + \frac{(L+T)}{\tilde{u}} ||g_{k}|| + \frac{L}{\tilde{u}}||g_{k}|| \\ &= \left(1 + \frac{2L+T}{\tilde{u}} + \frac{L}{\tilde{u}}\right) ||g_{k}|| \\ &\leq \left(1 + \frac{2L+T}{\tilde{u}} + \frac{L}{\tilde{u}}\right) G. \end{split}$$

where the last inequality is satisfied by (14). Then, this completes the proof.

The subsequent Lemma presented serves as a crucial role in the global convergence theorem of the proposed method.

**Lemma 3.** Suppose that Assumption 1 and Assumption 2 are satisfied. Consider iterative method represented by equation 1, where  $d_k$  fulfils the sufficient descent condition and  $\alpha_k$  is established using the strong Wolfe-Powell line search stated in (2) and (3). According to [9], if the aforementioned relationship holds:

$$\sum_{k\geq 0} \frac{1}{||d_k||^2} = +\infty,\tag{15}$$

then, the method exhibits global convergence as such:

 $\lim_{k \to +\infty} \inf ||g_k|| = 0.$ <sup>(16)</sup>

A proof that Algorithm 1 is globally converge for uniformly convex objective functions will be presented in the next discussion.

**Theorem 3.1.** Suppose that Assumption 1 and Assumption 2 are satisfied wherein  $\alpha_k$  is established using the strong Wolfe-Powell line search stated in (2) and (3). If the objective function f exhibits uniform convexity on the set N, it can be concluded that Algorithm 1 achieves global convergence in a way that:

 $\lim_{k \to +\infty} ||g_k|| = 0.$ <sup>(17)</sup>

Proof. According to Lemma 1, it can be concluded that the direction  $d_k^{\text{MTT}}$  exhibits the sufficient descent property with a constant value of c = 1. According to the inequality stated in equation (2), it can be observed that the sequence  $\{f(x_k)\}_{k\geq 0}$  is monotonically decreasing, and  $\{x_k\}_{k\geq 0}$  belongs to the set of natural numbers, N. The validity of equation (15) can be established by utilizing the boundedness property of  $d_k^{\text{MTT}}$  as stated in Lemma 2. Subsequently, equation (16) satisfies. As f is uniformly convex, (17) holds. The proof is now complete.

#### 4 RESULTS AND DISCUSSIONS

This section focuses on the numerical performance of Algorithm 1 and its comparison with the HTTCGSC by [9], MZZ by [12], MTTHS by [14] and HCGM by [11]. The parameters for each of the aforementioned methods are taken into account and being used in this study.

The tests have been conducted on a Personal Computer DELL (Intel Core i5-6440HQ CPU @ 2.60GHz, with 8.00 GB RAM, Windows 10). All the problems listed in Appendix (Table 3) have been resolved using MATLAB R2023a. The parameters used are  $\delta = 0.0001$  and  $\sigma = 0.009$ .

The numerical results are evaluated by comparing the number of iterations(NOI) and computational(CPU) time. The testing terminated if either the total number of iterations exceeds 10,000 or CPU times took longer than 120 seconds.

138 test problems with various initial points and dimensions are considered in this study. The numerical results of Algorithm 1 along with other compared existing methods are shown in Table 1 and Table 2. The numerical performances are depicted in Figure 1 and Figure 2, correspondingly, utilizing the performance profile method developed by [15].

| No | Functions                     | MTT | ר<br>-    | HTT( | CGSC   | MZZ |          |
|----|-------------------------------|-----|-----------|------|--------|-----|----------|
| NO | Functions                     | NOI | CPU       | NOI  | CPU    | NOI | CPU      |
| 1  | Extended White Holst          | 9   | 1.4627    | -    | -      | 20  | 2.9973   |
| 2  | Extended White Holst          | 9   | 2.2906    | -    | -      | 16  | 3.7468   |
| 3  | Extended White Holst          | 10  | 46.1012   | -    | -      | 13  | 49.6204  |
| 4  | Extended Rosenbrock           | 14  | 0.6426    | -    | -      | 21  | 0.7261   |
| 5  | Extended Rosenbrock           | 14  | 1.352     | -    | -      | 21  | 1.553    |
| 6  | Extended Rosenbrock           | 14  | 23.5483   | -    | -      | 20  | 22.0262  |
| 7  | Extended Freudenstein Roth    | 10  | 0.0507    | -    | -      | 17  | 0.0356   |
| 8  | Extended Freudenstein Roth    | -   | -         | -    | -      | -   | -        |
| 9  | Extended Freudenstein Roth    | 10  | 2.3928    | -    | -      | -   | -        |
| 10 | Extended Beale                | 10  | 0.0445    | 995  | 1.7941 | 13  | 0.0451   |
| 11 | Extended Beale                | 10  | 1.2099    | -    | -      | 14  | 1.3205   |
| 12 | Extended Beale                | 10  | 2.6315    | -    | -      | 15  | 2.8063   |
| 13 | Raydan 1                      | 24  | 0.0068    | 18   | 0.0058 | 20  | 0.0064   |
| 14 | Raydan 1                      | 48  | 0.0053    | 56   | 0.0062 | 58  | 0.0071   |
| 15 | Raydan 1                      | 68  | 0.0211    | 295  | 0.0475 | 68  | 0.0172   |
| 16 | Extended Tridiagonal 1        | 11  | 0.0093    | 23   | 0.0078 | 7   | 0.0085   |
| 17 | Extended Tridiagonal 1        | 11  | 0.0031    | 21   | 0.0045 | 7   | 0.0055   |
| 18 | Extended Tridiagonal 1        | 11  | 0.0053    | 24   | 0.0074 | 9   | 0.0046   |
| 19 | Diagonal 4                    | 2   | 0.0074    | 465  | 0.3049 | 3   | 0.0085   |
| 20 | Diagonal 4                    | 2   | 0.0374    | 479  | 1.2495 | 3   | 0.0263   |
| 21 | Diagonal 4                    | 2   | 0.0603    | 192  | 6.2568 | 3   | 0.088    |
| 22 | Extended Himmelblau           | 7   | 0.0171    | 28   | 0.0338 | 11  | 0.0204   |
| 23 | Extended Himmelblau           | 7   | 0.2593    | 29   | 0.7804 | 12  | 0.4062   |
| 24 | Extended Himmelblau           | 7   | 0.5279    | 30   | 1.687  | 11  | 0.7477   |
| 25 | FLETCHCR                      | 33  | 0.016     | 119  | 0.0286 | 44  | 0.0181   |
| 26 | FLETCHCR                      | 40  | 0.1885    | 154  | 0.4831 | 38  | 0.1436   |
| 27 | FLETCHCR                      | 40  | 1.4865    | 147  | 5.4633 | 37  | 1.2617   |
| 28 | NONSCOMP                      | 11  | 0.0211    | 676  | 0.0251 | 20  | 0.0126   |
| 29 | NONSCOMP                      | 271 | 0.017     | -    | -      | 231 | 0.0144   |
| 30 | Extended DENSCHNB             | 5   | 0.0135    | 9    | 0.0196 | 7   | 0.0144   |
| 31 | Extended DENSCHNB             | 5   | 0.1668    | 10   | 0.2764 | 7   | 0.1976   |
| 32 | Extended DENSCHNB             | 5   | 0.335     | 10   | 0.5641 | 7   | 0.402    |
| 33 | Extended Penalty Function U52 | 10  | 0.0102    | 73   | 0.0102 | 11  | 0.0083   |
| 34 | Extended Penalty Function U52 | 11  | 0.0007021 | 40   | 0.0086 | 15  | 0.000817 |
| 35 | Extended Penalty Function U52 | 17  | 0.0032    | 382  | 0.0311 | 10  | 0.0047   |
| 36 | Hager                         | 9   | 0.0055    | 11   | 0.0052 | 9   | 0.0054   |
| 37 | Hager                         | 12  | 0.0005922 | 11   | 0.0011 | 13  | 0.000548 |
| 38 | Hager                         | 19  | 0.0033    | 31   | 0.0036 | 20  | 0.0041   |
| 39 | Cube                          | 25  | 0.0151    | -    | -      | 12  | 0.2249   |
| 40 | Extended Maratos              | 14  | 0.0084    | 5753 | 0.188  | 25  | 0.0091   |
| 41 | Extended Maratos              | 14  | 0.0033    | -    | -      | 25  | 0.006    |

Table 1 : Numerical results for MTT with HTTCGSC and MZZ in terms of NOI and CPU Time

| Table | e 1. Numerical results for MTTT with |     | JGSU and M |      | lerms of NO. | i and C | FU Time (Continued) |
|-------|--------------------------------------|-----|------------|------|--------------|---------|---------------------|
| 42    | Extended Maratos                     | 14  | 0.0044     | 3916 | 0.6855       | 21      | 0.0051              |
| 43    | Six Hump Camel                       | 5   | 0.0247     | 10   | 0.0054       | 8       | 0.0058              |
| 44    | Six Hump Camel                       | 8   | 0.011      | 10   | 0.0016       | 8       | 0.0011              |
| 45    | Three Hump Camel                     | 27  | 0.0155     | -    | -            | -       | -                   |
| 46    | Booth                                | 2   | 0.0051     | 33   | 0.0062       | 3       | 0.0053              |
| 47    | Booth                                | 2   | 0.0001685  | 10   | 0.0003998    | 3       | 0.000214            |
| 48    | Trecanni                             | 1   | 0.0039     | 1    | 0.0036       | 1       | 0.0043              |
| 49    | Trecanni                             | 4   | 0.0011     | 9    | 0.0012       | 10      | 0.0011              |
| 50    | Zettl                                | 1   | 0.0046     | 2    | 0.0047       | 2       | 0.0057              |
| 51    | Zettl                                | 11  | 0.0011     | 108  | 0.0037       | 19      | 0.000687            |
| 52    | Shallow                              | 3   | 0.0113     | 18   | 0.0236       | 3       | 0.013               |
| 53    | Shallow                              | 4   | 0.1468     | 61   | 1.6884       | 3       | 0.0976              |
| 54    | Shallow                              | 4   | 0.2769     | 68   | 3.6071       | 3       | 0.1973              |
| 55    | Generalized Quartic                  | 9   | 0.0147     | 5    | 0.0082       | -       | -                   |
| 56    | Generalized Quartic                  | 8   | 0.0844     | 9    | 0.0315       | -       | -                   |
| 57    | Generalized Quartic                  | 9   | 0.2161     | 9    | 0.0635       | 18      | 0.1552              |
| 58    | Quadratic QF2                        | 26  | 0.0084     | 77   | 0.0093       | 28      | 0.0073              |
| 59    | Quadratic QF2                        | 102 | 0.0185     | 685  | 0.0862       | 102     | 0.0175              |
| 60    | Quadratic QF2                        | 342 | 0.2856     | 7382 | 9.028        | 305     | 0.2179              |
| 61    | Leon                                 | 17  | 0.0055     | -    | -            | 39      | 0.0172              |
| 62    | Leon                                 | 14  | 0.0008994  | -    | -            | 68      | 0.0044              |
| 63    | Generalized Tridiagonal 1            | 20  | 0.0107     | 47   | 0.0103       | 22      | 0.0104              |
| 64    | Generalized Tridiagonal 1            | 29  | 0.0023     | 59   | 0.0048       | 33      | 0.0026              |
| 65    | Generalized Tridiagonal 1            | 36  | 0.0172     | 68   | 0.0208       | 34      | 0.0148              |
| 66    | Generalized Tridiagonal 2            | 28  | 0.0101     | 65   | 0.0104       | -       | -                   |
| 67    | Generalized Tridiagonal 2            | 44  | 0.005      | 79   | 0.0063       | -       | -                   |
| 68    | Generalized Tridiagonal 2            | 46  | 0.0381     | -    | -            | -       | -                   |
| 69    | POWER                                | 10  | 0.0052     | 785  | 0.0275       | 33      | 0.0062              |
| 70    | POWER                                | 66  | 0.0071     | -    | -            | 177     | 0.0153              |
| 71    | POWER                                | 773 | 0.3253     | -    | -            | 2249    | 0.8647              |
| 72    | Quadratic QF1                        | 56  | 0.0146     | 683  | 0.0872       | 63      | 0.0159              |
| 73    | Quadratic QF1                        | 187 | 0.1162     | 7056 | 9.3302       | 206     | 0.1651              |
| 74    | Quadratic QF1                        | 606 | 3.0397     | -    | -            | 665     | 4.2917              |
| 75    | Extended Quadratic Penalty QP2       | 15  | 0.0012     | -    | -            | 19      | 0.0104              |
| 76    | Extended Quadratic Penalty QP2       | 24  | 0.0183     | -    | -            | 37      | 0.0135              |
| 77    | Extended Quadratic Penalty QP2       | 41  | 0.0832     | -    | -            | 53      | 0.0958              |
| 78    | Extended Quadratic Penalty QP1       | 7   | 0.0094     | 60   | 0.0019       | 10      | 0.0096              |
| 79    | Extended Quadratic Penalty QP1       | 7   | 0.0525     | 69   | 0.0115       | 10      | 0.05792             |
| 80    | Extended Quadratic Penalty QP1       | 7   | 0.0026     | -    | -            | 11      | 0.0058              |
| 81    | Quartic                              | 544 | 0.0297     | 6496 | 0.1877       | 240     | 0.0166              |
| 82    | Quartic                              | 30  | 0.0015     | 3884 | 0.1083       | 72      | 0.0025              |
| 83    | Matyas                               | 1   | 0.0049     | 1    | 0.0062       | 1       | 0.0053              |
| 84    | Matyas                               | 1   | 0.000186   | 1    | 0.0001359    | 1       | 0.0001404           |
| 85    | Colville                             | 14  | 0.0088     | 4804 | 0.0974       | 35      | 0.0092              |

Table 1: Numerical results for MTT with HTTCGSC and MZZ in terms of NOI and CPU Time (Continued)

| 87         Dixon and Price         79         0.0644         -         -         90         0.0739           88         Dixon and Price         79         0.4333         -         -         90         0.7724           90         Sphere         1         0.0063         1         0.0067         1         0.0057           91         Sphere         1         0.0073         1         0.0061         1         0.0073           92         Sphere         1         0.0073         1         0.0061         1         0.0057           93         Sum Squares         178         0.1577         6267         6.0348         178         0.1248           94         Sum Squares         1310         30.7119         -         -         1310         47.4673           95         Sum Squares         1310         30.7119         -         -         1310         47.4673           96         DENSCHNA         6         0.0205         30         0.033         8         0.132           97         DENSCHNA         6         0.0364         14         0.011         14         0.016           98         DENSCHNB         8                                                                                                                           | 86  | Colville                       | 84   | 0.0026    | 8881 | 0.1864    | 74   | 0.0023    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------|------|-----------|------|-----------|------|-----------|
| 88Dixon and Price790.4333900.472489Dixon and Price794.6986904.517390Sphere10.006310.006810.005791Sphere10.006710.0110.005792Sphere10.067710.016110.062593Sum Squares1780.157762676.03481780.124894Sum Squares1780.157762676.03481780.124895Sum Squares131030.711913104.7467396DENSCHNA60.020530.05380.015397DENSCHNA60.0886386.676481.30298DENSCHNB80.027710.5244120.3894100DENSCHNB80.0287170.5244120.3894101DENSCHNC70.01311250.408100.0132103DENSCHNF110.0177104DENSCHNF120.0762105DENSCHNF130.0131120.41480.017106DENSCHNF130.0163100.016107DENSCHNF130.016430.00880.017 <td>87</td> <td>Dixon and Price</td> <td>79</td> <td>0.0644</td> <td>-</td> <td>-</td> <td>90</td> <td>0.0739</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87  | Dixon and Price                | 79   | 0.0644    | -    | -         | 90   | 0.0739    |
| 89         Dixon and Price         79         4.6986         -         -         90         4.5173           90         Sphere         1         0.0063         1         0.0067         1         0.007           91         Sphere         1         0.0098         1         0.0161         1         0.009           92         Sphere         1         0.0077         12         0.0616         1         0.0025           93         Sum Squares         178         0.1577         6267         6.0348         1.78         0.128           94         Sum Squares         578         2.5561         -         -         578         3.6725           95         Sum Squares         1310         3.7119         -         -         1310         7.4673           96         DENSCHNA         6         0.026         14         0.011         14         0.016           99         DENSCHNB         8         0.027         17         0.5244         12         0.3894           101         DENSCHNC         7         0.0383         129         1.0174         11         0.128           102         DENSCHNC         7         0                                                                                                                       | 88  | Dixon and Price                | 79   | 0.4333    | -    | -         | 90   | 0.4724    |
| 90Sphere10.006310.006810.005791Sphere10.006710.00110.002593Sum Squares1780.157762676.03481780.124894Sum Squares1780.37119-13.0137.467395Sum Squares131030.7119-13.0147.467396DENSCHNA60.0205300.05380.132897DENSCHNA60.0868386.676481.30298DENSCHNA60.8686386.676481.30299DENSCHNB80.0324140.016140.0163100DENSCHNB80.287916.20.0454130.483101DENSCHNC70.083312910174140.132103DENSCHNC70.808312910174110.132104DENSCHNF130.0716105DENSCHNF130.0141140.0342106DENSCHNF130.0141140.0342107DENSCHNF130.014180.0342108Extended Block-Diagonal BD170.2876331.089680.2723110HIMMELBG10.001330.011710.0046113HIMMELBG10.0013130.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 89  | Dixon and Price                | 79   | 4.6986    | -    | -         | 90   | 4.5173    |
| 91         Sphere         1         0.0098         1         0.01         1         0.0092           92         Sphere         1         0.067         1         0.0616         1         0.0625           93         Sum Squares         178         0.1577         6267         6.0348         178         0.1248           94         Sum Squares         178         0.1577         -         1.310         47.4673           95         Sum Squares         1310         307.119         -         -         1.310         47.4673           96         DENSCHNA         6         0.0263         30         0.053         8         0.0163           97         DENSCHNA         6         0.0264         34         0.4433         8         0.1328           98         DENSCHNB         8         0.0326         16         0.054         13         0.0483           101         DENSCHNB         8         0.0326         14         0.017         14         0.0132           102         DENSCHNC         7         0.0833         129         1.0174         11         0.132           104         DENSCHNF         12         0.0762                                                                                                                     | 90  | Sphere                         | 1    | 0.0063    | 1    | 0.0068    | 1    | 0.0057    |
| 92         Sphere         1         0.067         1         0.0616         1         0.0625           93         Sum Squares         178         0.1577         6267         6.0348         178         0.1248           94         Sum Squares         1310         30.7119         -         -         578         3.6725           95         Sum Squares         1310         30.7119         -         -         1310         4.74673           96         DENSCHNA         6         0.0205         30         0.053         8         0.0133           97         DENSCHNA         6         0.0866         38         6.6764         8         1.1302           98         DENSCHNB         8         0.0326         16         0.0524         12         0.384           100         DENSCHNC         7         0.0131         125         0.4048         10         0.0132           103         DENSCHNC         7         0.8081         124         1.807         13         1.3674           104         DENSCHNF         11         0.017         -         -         -         -           105         DENSCHNF         13 <td< td=""><td>91</td><td>Sphere</td><td>1</td><td>0.0098</td><td>1</td><td>0.01</td><td>1</td><td>0.009</td></td<>           | 91  | Sphere                         | 1    | 0.0098    | 1    | 0.01      | 1    | 0.009     |
| 93Sum Squares1780.157762676.03481780.124894Sum Squares5782.85615783.672595Sum Squares131030.7119131047.467396DENSCHNA60.0205300.05380.015397DENSCHNA60.0205300.05380.132898DENSCHNA60.8686386.676481.130299DENSCHNB80.0236160.054130.4433101DENSCHNB80.2879170.5244120.3894102DENSCHNC70.01311250.4048100.0132103DENSCHNC70.08831291.0174110.1238104DENSCHNC70.808613414.8962131.3674105DENSCHNF110.0177106DENSCHNF120.0762107DENSCHNF120.0763310.104480.017108Extended Block-Diagonal BD170.2876331.089680.0172111HIMMELBG10.002430.001710.0046112HIMMELBG10.003130.002610.0012114HIMMELBG10.003130.00264<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 92  | Sphere                         | 1    | 0.067     | 1    | 0.0616    | 1    | 0.0625    |
| 94         Sum Squares         578         2.8561         -         -         578         3.6725           95         Sum Squares         1310         30.7119         -         -         1310         47.4673           96         DENSCHNA         6         0.0205         30         0.053         8         0.0153           97         DENSCHNA         6         0.0866         34         0.443         8         0.1328           98         DENSCHNB         8         0.0094         14         0.011         14         0.0166           100         DENSCHNB         8         0.0287         17         0.5244         12         0.3894           101         DENSCHNC         7         0.0131         125         0.0408         10         0.123           104         DENSCHNC         7         0.8096         134         14.8062         13         1.3674           105         DENSCHNF         11         0.0177         -         -         -         -           106         DENSCHNF         12         0.0763         31         1.0464         8         0.0342           101         DENSCHNF         13         0                                                                                                                       | 93  | Sum Squares                    | 178  | 0.1577    | 6267 | 6.0348    | 178  | 0.1248    |
| 95         Sum Squares         1310         30.7119         -         -         1310         47.4673           96         DENSCHNA         6         0.0205         30         0.053         8         0.0153           97         DENSCHNA         6         0.0918         34         0.443         8         0.0132           98         DENSCHNB         6         0.0926         16         0.011         14         0.0106           100         DENSCHNB         8         0.0326         16         0.054         12         0.3894           101         DENSCHNB         8         0.2879         17         0.5244         12         0.3894           102         DENSCHNC         7         0.0831         129         1.0174         11         0.1238           104         DENSCHNF         11         0.0177         -         -         -         -           105         DENSCHNF         12         0.0762         -         -         -         -           106         DENSCHNF         13         0.7105         -         -         -         -           108         Extended Block-Diagonal BD1         7         0.2876                                                                                                                       | 94  | Sum Squares                    | 578  | 2.8561    | -    | -         | 578  | 3.6725    |
| 96         DENSCHNA         6         0.0205         30         0.053         8         0.0153           97         DENSCHNA         6         0.0918         34         0.443         8         0.1328           98         DENSCHNA         6         0.8668         38         6.6764         8         1.1302           99         DENSCHNB         8         0.0326         16         0.011         14         0.0166           100         DENSCHNB         8         0.0326         16         0.048         10         0.0132           101         DENSCHNC         7         0.0171         12         0.3894         101           102         DENSCHNC         7         0.883         129         1.0174         11         0.1238           104         DENSCHNF         11         0.0177         -         -         -         -           105         DENSCHNF         13         0.7105         -         -         -         -           106         DENSCHNF         13         0.0132         38         0.0107         -         -           108         Extended Block-Diagonal BD1         7         0.2876         33 <td>95</td> <td>Sum Squares</td> <td>1310</td> <td>30.7119</td> <td>-</td> <td>-</td> <td>1310</td> <td>47.4673</td>     | 95  | Sum Squares                    | 1310 | 30.7119   | -    | -         | 1310 | 47.4673   |
| 97         DENSCHNA         6         0.0918         34         0.443         8         0.1328           98         DENSCHNA         6         0.8686         38         6.6764         8         1.1302           99         DENSCHNB         8         0.0094         14         0.011         14         0.0166           100         DENSCHNB         8         0.0326         16         0.0544         13         0.0483           101         DENSCHNC         7         0.0131         125         0.0408         10         0.0132           103         DENSCHNC         7         0.0833         129         1.0174         11         0.1238           104         DENSCHNF         11         0.0177         -         -         -         -           105         DENSCHNF         13         0.7105         -         -         -         -           106         DENSCHNF         13         0.7105         -         -         -         -           107         DENSCHNF         13         0.713         28         0.0139         8         0.017           110         Extended Block-Diagonal BD1         7         0.2876 </td <td>96</td> <td>DENSCHNA</td> <td>6</td> <td>0.0205</td> <td>30</td> <td>0.053</td> <td>8</td> <td>0.0153</td>     | 96  | DENSCHNA                       | 6    | 0.0205    | 30   | 0.053     | 8    | 0.0153    |
| 98         DENSCHNA         6         0.8686         38         6.6764         8         1.1302           99         DENSCHNB         8         0.0094         14         0.011         14         0.0166           100         DENSCHNB         8         0.0326         16         0.048         12         0.3894           102         DENSCHNC         7         0.0131         125         0.0408         10         0.0132           103         DENSCHNC         7         0.0893         129         1.0174         11         0.1288           104         DENSCHNC         7         0.8906         134         14.8902         13         1.3674           105         DENSCHNF         12         0.0762         -         -         -         -           106         DENSCHNF         13         0.7105         -         -         -         -           108         Extended Block-Diagonal BD1         7         0.2876         33         1.0896         8         0.2723           111         HIMMELBG         1         0.0019         2         0.0117         1         0.0046           112         HIMMELBG         1                                                                                                                          | 97  | DENSCHNA                       | 6    | 0.0918    | 34   | 0.443     | 8    | 0.1328    |
| 99         DENSCHNB         8         0.0094         14         0.011         14         0.0106           100         DENSCHNB         8         0.0326         16         0.054         13         0.0483           101         DENSCHNB         8         0.2879         17         0.5244         12         0.3894           102         DENSCHNC         7         0.0833         129         1.0174         11         0.1238           103         DENSCHNC         7         0.8096         134         14.8962         13         1.3674           105         DENSCHNF         11         0.01762         -         -         -         -           106         DENSCHNF         13         0.7105         -         -         -         -           106         DENSCHNF         13         0.7105         -         -         -         -           108         Extended Block-Diagonal BD1         7         0.0345         31         0.1044         8         0.037           109         Extended Block-Diagonal BD1         7         0.2876         33         0.0014         8         0.0342           110         HMMELBG         1 <td>98</td> <td>DENSCHNA</td> <td>6</td> <td>0.8686</td> <td>38</td> <td>6.6764</td> <td>8</td> <td>1.1302</td> | 98  | DENSCHNA                       | 6    | 0.8686    | 38   | 6.6764    | 8    | 1.1302    |
| 100         DENSCHNB         8         0.0326         16         0.054         13         0.0483           101         DENSCHNB         8         0.2879         17         0.5244         12         0.3894           102         DENSCHNC         7         0.0131         125         0.0048         10         0.132           103         DENSCHNC         7         0.8096         134         14.8962         13         1.3674           104         DENSCHNC         7         0.8096         134         14.8962         13         1.3674           105         DENSCHNF         11         0.0177         -         -         -         -           106         DENSCHNF         13         0.7105         -         -         -         -           108         Extended Block-Diagonal BD1         7         0.0345         31         0.1044         8         0.0342           111         HIMMELBG         1         0.0109         2         0.0117         1         0.0046           111         HIMMELBG         1         0.0024         3         0.0012         1         1         0.0012           114         HIMMELBG                                                                                                                        | 99  | DENSCHNB                       | 8    | 0.0094    | 14   | 0.011     | 14   | 0.0106    |
| 101DENSCHNB80.2879170.5244120.3894102DENSCHNC70.01311250.0408100.0132103DENSCHNC70.08831291.0174110.1238104DENSCHNC70.080613414.8962131.3674105DENSCHNF110.0177106DENSCHNF120.0762107DENSCHNF130.7105108Extended Block-Diagonal BD170.0345310.104480.0342110Extended Block-Diagonal BD170.2876331.089680.2723111HIMMELBG10.010920.011710.0095112HIMMELBG10.002430.002610.0012113HIMMELBH40.0011160.00240.0028114HIMMELBH40.0011160.00240.0028115HIMMELBH220.2521370.3296116HIMMELBH220.25214665.0033120Linear Perturbed540.01516200.0805540.0144121Linear Perturbed4061.03544060.9988122Linear Perturbed4061.0354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100 | DENSCHNB                       | 8    | 0.0326    | 16   | 0.054     | 13   | 0.0483    |
| 102       DENSCHNC       7       0.0131       125       0.0408       10       0.0132         103       DENSCHNC       7       0.0883       129       1.0174       11       0.1238         104       DENSCHNC       7       0.8096       134       14.8092       13       1.3674         105       DENSCHNF       11       0.0177       -       -       -         106       DENSCHNF       12       0.0762       -       -       -         107       DENSCHNF       13       0.7105       -       -       -         108       Extended Block-Diagonal BD1       6       0.0113       28       0.0139       8       0.0107         109       Extended Block-Diagonal BD1       7       0.3455       31       0.044       8       0.3723         111       HIMMELBG       1       0.0024       3       0.0019       1       0.0046         113       HIMMELBG       1       0.0031       3       0.0026       1       0.0012         114       HIMMELBH       4       0.0011       16       0.002       4       0.0028         115       HIMMELBH       22       0.2571                                                                                                                                                                                                     | 101 | DENSCHNB                       | 8    | 0.2879    | 17   | 0.5244    | 12   | 0.3894    |
| 103       DENSCHNC       7       0.0883       129       1.0174       11       0.1238         104       DENSCHNC       7       0.8096       134       14.8962       13       1.3674         105       DENSCHNF       11       0.0177       -       -       -       -         106       DENSCHNF       12       0.0762       -       -       -       -         107       DENSCHNF       13       0.7105       -       -       -       -         108       Extended Block-Diagonal BD1       6       0.0113       28       0.0139       8       0.0147         109       Extended Block-Diagonal BD1       7       0.2876       33       1.0896       8       0.2723         111       HIMELBG       1       0.0024       3       0.0017       1       0.0046         113       HIMMELBG       1       0.0031       3       0.0026       1       0.0012         114       HIMELBH       4       0.0011       16       0.0024       4       0.0012         117       Extended Hiebert       22       0.2521       -       -       46       5.0033         119       Ext                                                                                                                                                                                                      | 102 | DENSCHNC                       | 7    | 0.0131    | 125  | 0.0408    | 10   | 0.0132    |
| 104DENSCHNC70.809613414.8962131.3674105DENSCHNF110.0177106DENSCHNF120.0762107DENSCHNF130.7105108Extended Block-Diagonal BD160.0113280.013980.0107109Extended Block-Diagonal BD170.0345310.104480.0342110Extended Block-Diagonal BD170.2876331.089680.2723111HIMMELBG10.010920.011710.0046113HIMMELBG10.002430.001910.0046114HIMMELBG10.003130.002610.0012114HIMMELBH40.001150.00240.0028115HIMMELBH40.001160.00340.0012116HIMMELBH220.4374330.0608117Extended Hiebert220.2521370.3296118Extended Hiebert222.29754665.0033120Linear Perturbed540.01516200.8055540.0144121Linear Perturbed4061.0354131048.7352123QUA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 103 | DENSCHNC                       | 7    | 0.0883    | 129  | 1.0174    | 11   | 0.1238    |
| 105DENSCHNF110.0177106DENSCHNF120.0762107DENSCHNF130.7105108Extended Block-Diagonal BD160.0113280.013980.0107109Extended Block-Diagonal BD170.0345310.104480.0342110Extended Block-Diagonal BD170.2876331.089680.2723111HIMMELBG10.001920.011710.0095112HIMMELBG10.002430.002610.0012114HIMMELBG10.003130.002610.0028115HIMMELBH40.0079140.006740.0028116HIMMELBH40.0011160.00340.0012117Extended Hiebert220.2521430.0608118Extended Hiebert220.2521465.0033120Linear Perturbed540.01516200.0805540.0144121Linear Perturbed13045.8803131048.7352123QUARTICM10951.23996322.40398726.093124QUARTICM10951.23996322.40398726.0931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 104 | DENSCHNC                       | 7    | 0.8096    | 134  | 14.8962   | 13   | 1.3674    |
| 106       DENSCHNF       12       0.0762       -       -       -       -         107       DENSCHNF       13       0.7105       -       -       -         108       Extended Block-Diagonal BD1       6       0.0113       28       0.0139       8       0.0107         109       Extended Block-Diagonal BD1       7       0.0345       31       0.1044       8       0.0342         110       Extended Block-Diagonal BD1       7       0.2876       33       1.0896       8       0.2723         111       HIMMELBG       1       0.0024       3       0.0019       1       0.0046         113       HIMMELBG       1       0.0021       3       0.0026       1       0.0012         114       HIMMELBH       4       0.0011       15       0.002       4       0.0028         115       HIMMELBH       4       0.0011       16       0.003       4       0.0012         117       Extended Hiebert       22       0.2521       -       -       37       0.3296         118       Extended Hiebert       22       0.2975       -       -       466       5.0033         120                                                                                                                                                                                           | 105 | DENSCHNF                       | 11   | 0.0177    | -    | -         | -    | -         |
| 107       DENSCHNF       13       0.7105       -       -       -         108       Extended Block-Diagonal BD1       6       0.0113       28       0.0139       8       0.0107         109       Extended Block-Diagonal BD1       7       0.0345       31       0.1044       8       0.0342         110       Extended Block-Diagonal BD1       7       0.2876       33       1.0896       8       0.2723         111       HIMMELBG       1       0.0109       2       0.0117       1       0.0095         112       HIMMELBG       1       0.0024       3       0.0019       1       0.0046         113       HIMMELBH       4       0.0079       14       0.0067       4       0.0012         114       HIMMELBH       4       0.0011       15       0.002       4       0.0028         115       HIMMELBH       4       0.0011       16       0.003       4       0.0012         117       Extended Hiebert       22       0.2521       -       -       43       0.6068         118       Extended Hiebert       22       2.2975       -       -       46       5.0033         1                                                                                                                                                                                    | 106 | DENSCHNF                       | 12   | 0.0762    | -    | -         | -    | -         |
| 108       Extended Block-Diagonal BD1       6       0.0113       28       0.0139       8       0.0107         109       Extended Block-Diagonal BD1       7       0.0345       31       0.1044       8       0.0342         110       Extended Block-Diagonal BD1       7       0.2876       33       1.0896       8       0.2723         111       HIMMELBG       1       0.0109       2       0.0117       1       0.0095         112       HIMMELBG       1       0.0024       3       0.0019       1       0.0046         113       HIMMELBG       1       0.0031       3       0.0026       1       0.0012         114       HIMMELBH       4       0.001       15       0.002       4       0.0088         115       HIMMELBH       4       0.001       15       0.002       4       0.0028         116       HIMMELBH       22       0.2521       -       -       43       0.0608         119       Extended Hiebert       22       2.2975       -       -       46       5.0033         120       Linear Perturbed       406       1.0354       -       -       406       0.9988 <td>107</td> <td>DENSCHNF</td> <td>13</td> <td>0.7105</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>                                                                          | 107 | DENSCHNF                       | 13   | 0.7105    | -    | -         | -    | -         |
| 109       Extended Block-Diagonal BD1       7       0.0345       31       0.1044       8       0.0342         110       Extended Block-Diagonal BD1       7       0.2876       33       1.0896       8       0.2723         111       HIMMELBG       1       0.0109       2       0.0117       1       0.0095         112       HIMMELBG       1       0.0024       3       0.0019       1       0.0046         113       HIMMELBG       1       0.0031       3       0.0026       1       0.0012         114       HIMMELBH       4       0.001       15       0.002       4       0.0028         115       HIMMELBH       4       0.0011       16       0.003       4       0.0012         117       Extended Hiebert       22       0.0437       -       -       43       0.0608         118       Extended Hiebert       22       0.2521       -       -       46       5.0033         120       Linear Perturbed       54       0.0151       620       0.0805       54       0.0144         121       Linear Perturbed       406       1.0354       -       -       406       0.9988 <td>108</td> <td>Extended Block-Diagonal BD1</td> <td>6</td> <td>0.0113</td> <td>28</td> <td>0.0139</td> <td>8</td> <td>0.0107</td>                                            | 108 | Extended Block-Diagonal BD1    | 6    | 0.0113    | 28   | 0.0139    | 8    | 0.0107    |
| 110Extended Block-Diagonal BD17 $0.2876$ $33$ $1.0896$ 8 $0.2723$ 111HIMMELBG1 $0.0109$ 2 $0.0117$ 1 $0.0095$ 112HIMMELBG1 $0.0024$ 3 $0.0019$ 1 $0.0046$ 113HIMMELBG1 $0.0031$ 3 $0.0026$ 1 $0.0012$ 114HIMMELBH4 $0.0079$ 14 $0.0067$ 4 $0.0068$ 115HIMMELBH4 $0.0011$ 15 $0.002$ 4 $0.0028$ 116HIMMELBH4 $0.0011$ 16 $0.003$ 4 $0.0012$ 117Extended Hiebert22 $0.2521$ 43 $0.6608$ 118Extended Hiebert22 $0.2521$ 46 $5.0033$ 120Linear Perturbed54 $0.0151$ $620$ $0.0805$ 54 $0.0144$ 121Linear Perturbed406 $1.0354$ 1310 $48.7352$ 123QUARTICM42 $0.2271$ 30 $0.1585$ 35 $0.1897$ 124QUARTICM109 $51.2399$ $63$ $22.4039$ $87$ $26.093$ 125Zirill or Aluffi-Pentini's4 $0.002242$ 5 $0.0002545$ 4 $0.0001465$ 126Zirill or Aluffi-Pentini's4 $0.00242$ 5 $0.0109$ 16 $0.0101$ 128Extended Quadratic Penalty QP310 $0.0115$ 15 $0.0109$ 16 $0.0016$ <td>109</td> <td>Extended Block-Diagonal BD1</td> <td>7</td> <td>0.0345</td> <td>31</td> <td>0.1044</td> <td>8</td> <td>0.0342</td>                                                                                                                                                                                                                                                                            | 109 | Extended Block-Diagonal BD1    | 7    | 0.0345    | 31   | 0.1044    | 8    | 0.0342    |
| 111HIMMELBG10.010920.011710.0095112HIMMELBG10.002430.001910.0046113HIMMELBG10.003130.002610.0012114HIMMELBH40.0079140.006740.0068115HIMMELBH40.0011150.00240.0028116HIMMELBH40.0011160.00340.0012117Extended Hiebert220.2521430.6068118Extended Hiebert222.2975465.0033120Linear Perturbed540.01516200.0805540.0144121Linear Perturbed4061.03544060.9988122Linear Perturbed131045.8803131048.7352123QUARTICM10951.23996322.40398726.093124QUARTICM10951.23996322.40398726.093125Zirilli or Aluffi-Pentini's40.00224250.000254540.001465126Zirilli or Aluffi-Pentini's40.00224250.000254540.001465127Extended Quadratic Penalty QP3100.0115150.0109160.0101128Extended Quadratic Penalty QP3100.0018 <td>110</td> <td>Extended Block-Diagonal BD1</td> <td>7</td> <td>0.2876</td> <td>33</td> <td>1.0896</td> <td>8</td> <td>0.2723</td>                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110 | Extended Block-Diagonal BD1    | 7    | 0.2876    | 33   | 1.0896    | 8    | 0.2723    |
| 112HIMMELBG10.002430.001910.0046113HIMMELBG10.003130.002610.0012114HIMMELBH40.0079140.006740.0068115HIMMELBH40.0011150.00240.0012116HIMMELBH40.0011160.00340.0012117Extended Hiebert220.0437430.0608118Extended Hiebert220.2521370.3296119Extended Hiebert222.2975465.0033120Linear Perturbed540.01516200.0805540.0144121Linear Perturbed4061.03544060.9988122Linear Perturbed131045.8803131048.7352123QUARTICM10951.23996322.40398726.093124QUARTICM10951.23996322.40398726.093125Zirilli or Aluffi-Pentini's40.006550.011240.0058126Zirilli or Aluffi-Pentini's40.00224250.000254540.0001465127Extended Quadratic Penalty QP3100.0115150.0109160.0101128Extended Quadratic Penalty QP3100.002450.0109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 111 | HIMMELBG                       | 1    | 0.0109    | 2    | 0.0117    | 1    | 0.0095    |
| 113HIMMELBG1 $0.0031$ 3 $0.0026$ 1 $0.0012$ 114HIMMELBH4 $0.0079$ 14 $0.0067$ 4 $0.0068$ 115HIMMELBH4 $0.001$ 15 $0.002$ 4 $0.0028$ 116HIMMELBH4 $0.0011$ 16 $0.003$ 4 $0.0012$ 117Extended Hiebert22 $0.437$ 43 $0.6608$ 118Extended Hiebert22 $0.2521$ 37 $0.3296$ 119Extended Hiebert22 $2.2975$ 46 $5.0033$ 120Linear Perturbed54 $0.0151$ $620$ $0.0805$ 54 $0.0144$ 121Linear Perturbed406 $1.0354$ 1310 $48.7352$ 123QUARTICM42 $0.2271$ 30 $0.1585$ 35 $0.1897$ 124QUARTICM109 $51.2399$ $63$ $22.4039$ $87$ $26.093$ 125Zirilli or Aluffi-Pentini's4 $0.0002242$ $5$ $0.0002545$ $4$ $0.001465$ 126Zirilli or Aluffi-Pentini's4 $0.00151$ $15$ $0.0109$ $16$ $0.001465$ 127Extended Quadratic Penalty QP310 $0.0115$ $15$ $0.0109$ $16$ $0.0016$ 128Extended Quadratic Penalty QP310 $0.0016$ $16$ $0.0016$                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 112 | HIMMELBG                       | 1    | 0.0024    | 3    | 0.0019    | 1    | 0.0046    |
| 114HIMMELBH4 $0.0079$ 14 $0.0067$ 4 $0.0068$ 115HIMMELBH4 $0.001$ 15 $0.002$ 4 $0.0028$ 116HIMMELBH4 $0.0011$ 16 $0.003$ 4 $0.0012$ 117Extended Hiebert22 $0.0437$ 43 $0.0608$ 118Extended Hiebert22 $0.2521$ 37 $0.3296$ 119Extended Hiebert22 $2.2975$ 46 $5.0033$ 120Linear Perturbed54 $0.0151$ $620$ $0.0805$ 54 $0.0144$ 121Linear Perturbed406 $1.0354$ 406 $0.9988$ 122Linear Perturbed1310 $45.8803$ 1310 $48.7352$ 123QUARTICM42 $0.2271$ 30 $0.1585$ 35 $0.1897$ 124QUARTICM109 $51.2399$ $63$ $22.4039$ $87$ $26.093$ 125Zirilli or Aluffi-Pentini's4 $0.0065$ 5 $0.0112$ 4 $0.0058$ 126Zirilli or Aluffi-Pentini's4 $0.002242$ 5 $0.0109$ 16 $0.0101$ 128Extended Quadratic Penalty QP310 $0.018$ 16 $0.0016$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 113 | HIMMELBG                       | 1    | 0.0031    | 3    | 0.0026    | 1    | 0.0012    |
| 115HIMMELBH4 $0.001$ 15 $0.002$ 4 $0.0028$ 116HIMMELBH4 $0.0011$ 16 $0.003$ 4 $0.0012$ 117Extended Hiebert22 $0.0437$ 43 $0.0608$ 118Extended Hiebert22 $0.2521$ 37 $0.3296$ 119Extended Hiebert22 $2.2975$ 46 $5.0033$ 120Linear Perturbed54 $0.0151$ $620$ $0.0805$ 54 $0.0144$ 121Linear Perturbed406 $1.0354$ 406 $0.9988$ 122Linear Perturbed1310 $45.8803$ 1310 $48.7352$ 123QUARTICM42 $0.2271$ 30 $0.1585$ 35 $0.1897$ 124QUARTICM109 $51.2399$ $63$ $22.4039$ $87$ $26.093$ 125Zirilli or Aluffi-Pentini's4 $0.0002242$ 5 $0.0002545$ 4 $0.0001465$ 126Zirilli or Aluffi-Pentini's4 $0.0015$ 15 $0.0109$ 16 $0.0101$ 128Extended Quadratic Penalty QP310 $0.0115$ 15 $0.0109$ 16 $0.0101$ 128Extended Quadratic Penalty QP310 $0.0018$ 16 $0.0016$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 114 | HIMMELBH                       | 4    | 0.0079    | 14   | 0.0067    | 4    | 0.0068    |
| 116HIMMELBH4 $0.0011$ 16 $0.003$ 4 $0.0012$ 117Extended Hiebert22 $0.0437$ 43 $0.0608$ 118Extended Hiebert22 $0.2521$ 37 $0.3296$ 119Extended Hiebert22 $2.2975$ 46 $5.0033$ 120Linear Perturbed54 $0.0151$ $620$ $0.0805$ 54 $0.0144$ 121Linear Perturbed406 $1.0354$ 406 $0.9988$ 122Linear Perturbed1310 $45.8803$ 1310 $48.7352$ 123QUARTICM42 $0.2271$ 30 $0.1585$ 35 $0.1897$ 124QUARTICM109 $51.2399$ $63$ $22.4039$ $87$ $26.093$ 125Zirilli or Aluffi-Pentini's4 $0.002242$ 5 $0.0002545$ 4 $0.0001465$ 126Zirilli or Aluffi-Pentini's4 $0.00115$ 15 $0.0109$ 16 $0.0101$ 128Extended Quadratic Penalty QP310 $0.0115$ $15$ $0.0109$ 16 $0.0016$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 115 | HIMMELBH                       | 4    | 0.001     | 15   | 0.002     | 4    | 0.0028    |
| 117Extended Hiebert22 $0.0437$ $ -$ 43 $0.0608$ 118Extended Hiebert22 $0.2521$ $  37$ $0.3296$ 119Extended Hiebert22 $2.2975$ $  46$ $5.0033$ 120Linear Perturbed $54$ $0.0151$ $620$ $0.0805$ $54$ $0.0144$ 121Linear Perturbed $406$ $1.0354$ $  406$ $0.9988$ 122Linear Perturbed $1310$ $45.8803$ $  1310$ $48.7352$ 123QUARTICM42 $0.2271$ $30$ $0.1585$ $35$ $0.1897$ 124QUARTICM109 $51.2399$ $63$ $22.4039$ $87$ $26.093$ 125Zirilli or Aluffi-Pentini's $4$ $0.0065$ $5$ $0.0112$ $4$ $0.0058$ 126Zirilli or Aluffi-Pentini's $4$ $0.002242$ $5$ $0.0002545$ $4$ $0.0001465$ 127Extended Quadratic Penalty QP3 $10$ $0.0115$ $15$ $0.0109$ $16$ $0.0101$ 128Extended Quadratic Penalty QP3 $10$ $0.0018$ $  16$ $0.0016$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 116 | HIMMELBH                       | 4    | 0.0011    | 16   | 0.003     | 4    | 0.0012    |
| 118Extended Hiebert22 $0.2521$ $  37$ $0.3296$ 119Extended Hiebert22 $2.2975$ $  46$ $5.0033$ 120Linear Perturbed $54$ $0.0151$ $620$ $0.0805$ $54$ $0.0144$ 121Linear Perturbed $406$ $1.0354$ $  406$ $0.9988$ 122Linear Perturbed $1310$ $45.8803$ $  1310$ $48.7352$ 123QUARTICM42 $0.2271$ $30$ $0.1585$ $35$ $0.1897$ 124QUARTICM $109$ $51.2399$ $63$ $22.4039$ $87$ $26.093$ 125Zirilli or Aluffi-Pentini's $4$ $0.0065$ $5$ $0.0112$ $4$ $0.0058$ 126Zirilli or Aluffi-Pentini's $4$ $0.0002242$ $5$ $0.0002545$ $4$ $0.0001465$ 127Extended Quadratic Penalty QP3 $10$ $0.0115$ $15$ $0.0109$ $16$ $0.0101$ 128Extended Quadratic Penalty QP3 $10$ $0.0018$ $  16$ $0.0016$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 117 | Extended Hiebert               | 22   | 0.0437    | -    | -         | 43   | 0.0608    |
| 119Extended Hiebert22 $2.2975$ $  46$ $5.0033$ 120Linear Perturbed $54$ $0.0151$ $620$ $0.0805$ $54$ $0.0144$ 121Linear Perturbed $406$ $1.0354$ $  406$ $0.9988$ 122Linear Perturbed $1310$ $45.8803$ $  1310$ $48.7352$ 123QUARTICM $42$ $0.2271$ $30$ $0.1585$ $35$ $0.1897$ 124QUARTICM $109$ $51.2399$ $63$ $22.4039$ $87$ $26.093$ 125Zirilli or Aluffi-Pentini's $4$ $0.0065$ $5$ $0.0112$ $4$ $0.0058$ 126Zirilli or Aluffi-Pentini's $4$ $0.0002242$ $5$ $0.0002545$ $4$ $0.0001465$ 127Extended Quadratic Penalty QP3 $10$ $0.0115$ $15$ $0.0109$ $16$ $0.0101$ 128Extended Quadratic Penalty QP3 $10$ $0.0018$ $  16$ $0.0016$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 118 | Extended Hiebert               | 22   | 0.2521    | -    | -         | 37   | 0.3296    |
| 120Linear Perturbed54 $0.0151$ $620$ $0.0805$ $54$ $0.0144$ 121Linear Perturbed $406$ $1.0354$ $406$ $0.9988$ 122Linear Perturbed $1310$ $45.8803$ $1310$ $48.7352$ 123QUARTICM $42$ $0.2271$ $30$ $0.1585$ $35$ $0.1897$ 124QUARTICM $109$ $51.2399$ $63$ $22.4039$ $87$ $26.093$ 125Zirilli or Aluffi-Pentini's $4$ $0.0065$ $5$ $0.0112$ $4$ $0.0058$ 126Zirilli or Aluffi-Pentini's $4$ $0.0002242$ $5$ $0.0002545$ $4$ $0.0001465$ 127Extended Quadratic Penalty QP3 $10$ $0.0115$ $15$ $0.0109$ $16$ $0.0101$ 128Extended Quadratic Penalty QP3 $10$ $0.0018$ $16$ $0.0016$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119 | Extended Hiebert               | 22   | 2.2975    | -    | -         | 46   | 5.0033    |
| 121Linear Perturbed406 $1.0354$ 406 $0.9988$ 122Linear Perturbed1310 $45.8803$ 1310 $48.7352$ 123QUARTICM42 $0.2271$ 30 $0.1585$ 35 $0.1897$ 124QUARTICM109 $51.2399$ $63$ $22.4039$ $87$ $26.093$ 125Zirilli or Aluffi-Pentini's4 $0.0065$ 5 $0.0112$ 4 $0.0058$ 126Zirilli or Aluffi-Pentini's4 $0.0002242$ 5 $0.0002545$ 4 $0.0001465$ 127Extended Quadratic Penalty QP310 $0.0115$ 15 $0.0109$ 16 $0.0101$ 128Extended Quadratic Penalty QP310 $0.0018$ 16 $0.0016$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120 | Linear Perturbed               | 54   | 0.0151    | 620  | 0.0805    | 54   | 0.0144    |
| 122Linear Perturbed1310 $45.8803$ 1310 $48.7352$ 123QUARTICM42 $0.2271$ 30 $0.1585$ 35 $0.1897$ 124QUARTICM109 $51.2399$ $63$ $22.4039$ $87$ $26.093$ 125Zirilli or Aluffi-Pentini's4 $0.0065$ 5 $0.0112$ 4 $0.0058$ 126Zirilli or Aluffi-Pentini's4 $0.0002242$ 5 $0.0002545$ 4 $0.0001465$ 127Extended Quadratic Penalty QP310 $0.0115$ 15 $0.0109$ 16 $0.0101$ 128Extended Quadratic Penalty QP310 $0.0018$ 16 $0.0016$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 121 | Linear Perturbed               | 406  | 1.0354    | -    | -         | 406  | 0.9988    |
| 123QUARTICM42 $0.2271$ 30 $0.1585$ 35 $0.1897$ 124QUARTICM109 $51.2399$ $63$ $22.4039$ $87$ $26.093$ 125Zirilli or Aluffi-Pentini's4 $0.0065$ 5 $0.0112$ 4 $0.0058$ 126Zirilli or Aluffi-Pentini's4 $0.0002242$ 5 $0.0002545$ 4 $0.0001465$ 127Extended Quadratic Penalty QP310 $0.0115$ 15 $0.0109$ 16 $0.0101$ 128Extended Quadratic Penalty QP310 $0.0018$ 16 $0.0016$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 122 | Linear Perturbed               | 1310 | 45.8803   | -    | -         | 1310 | 48.7352   |
| 124QUARTICM10951.23996322.40398726.093125Zirilli or Aluffi-Pentini's40.006550.011240.0058126Zirilli or Aluffi-Pentini's40.000224250.000254540.0001465127Extended Quadratic Penalty QP3100.0115150.0109160.0101128Extended Quadratic Penalty QP3100.0018160.0016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 123 | QUARTICM                       | 42   | 0.2271    | 30   | 0.1585    | 35   | 0.1897    |
| 125Zirilli or Aluffi-Pentini's4 $0.0065$ 5 $0.0112$ 4 $0.0058$ 126Zirilli or Aluffi-Pentini's4 $0.0002242$ 5 $0.0002545$ 4 $0.0001465$ 127Extended Quadratic Penalty QP310 $0.0115$ 15 $0.0109$ 16 $0.0101$ 128Extended Quadratic Penalty QP310 $0.0018$ 16 $0.0016$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 124 | QUARTICM                       | 109  | 51.2399   | 63   | 22.4039   | 87   | 26.093    |
| 126       Zirilli or Aluffi-Pentini's       4       0.0002242       5       0.0002545       4       0.0001465         127       Extended Quadratic Penalty QP3       10       0.0115       15       0.0109       16       0.0101         128       Extended Quadratic Penalty QP3       10       0.0018       -       -       16       0.0016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 125 | Zirilli or Aluffi-Pentini's    | 4    | 0.0065    | 5    | 0.0112    | 4    | 0.0058    |
| 127Extended Quadratic Penalty QP310 $0.0115$ 15 $0.0109$ 16 $0.0101$ 128Extended Quadratic Penalty QP310 $0.0018$ 16 $0.0016$ 129Extended Quadratic Penalty QP315 $0.0024$ 16 $0.0016$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 126 | Zirilli or Aluffi-Pentini's    | 4    | 0.0002242 | 5    | 0.0002545 | 4    | 0.0001465 |
| 128Extended Quadratic Penalty QP310 $0.0018$ -16 $0.0016$ 120Extended Quadratic Penalty QP315 $0.0034$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 127 | Extended Quadratic Penalty QP3 | 10   | 0.0115    | 15   | 0.0109    | 16   | 0.0101    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 128 | Extended Quadratic Penalty QP3 | 10   | 0.0018    | -    | -         | 16   | 0.0016    |
| 129 Extended Quadratic Penalty QP3 15 0.0084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 129 | Extended Quadratic Penalty QP3 | 15   | 0.0084    | -    | -         | -    | -         |

Table 1: Numerical results for MTT with HTTCGSC and MZZ in terms of NOI and CPU Time (Continued)

| Tabl | e 1: Numerical results for M11 | WITH HII | CGSC and M | IZZ III | terms of NC | л and v | CPU Time (Continued) |
|------|--------------------------------|----------|------------|---------|-------------|---------|----------------------|
| 130  | DIAG-AUP1                      | 4        | 0.1897     | 15      | 0.124       | 26      | 0.1993               |
| 131  | Strait                         | 17       | 0.0282     | 790     | 0.5186      | 55      | 0.056                |
| 132  | Strait                         | 16       | 1.1067     | 809     | 59.9595     | 38      | 3.0691               |
| 133  | Strait                         | 24       | 16.2049    | -       | -           | 50      | 47.1011              |
| 134  | Perturbed Quadratic            | 2        | 0.0093     | 10      | 0.0097      | 3       | 0.0077               |
| 135  | Perturbed Quadratic            | 2        | 0.0001905  | 11      | 0.0023      | 4       | 0.0001688            |
| 136  | Perturbed Quadratic            | 2        | 0.0001502  | 12      | 0.0013      | 4       | 0.0001942            |
| 137  | Diagonal 2                     | 9        | 0.0113     | 7       | 0.0105      | 7       | 0.0111               |
| 138  | Diagonal 2                     | 97       | 0.0063     | 18      | 0.0018      | 19      | 0.0195               |

Table 1: Numerical results for MTT with HTTCGSC and MZZ in terms of NOI and CPU Time (Continued)

Table 2 : Numerical results for MTT with MTTHS and HCGM in terms of NOI and CPU Time

| Ne  | Dunctions                  | MTT | ר<br>-  | MTT | HS      | HCG  | M        |
|-----|----------------------------|-----|---------|-----|---------|------|----------|
| INO | Functions                  | NOI | CPU     | NOI | CPU     | NOI  | CPU      |
| 1   | Extended White Holst       | 9   | 1.4627  | 18  | 2.1081  | -    | -        |
| 2   | Extended White Holst       | 9   | 2.2906  | 13  | 3.9432  | -    | -        |
| 3   | Extended White Holst       | 10  | 46.1012 | 17  | 32.0173 | -    | -        |
| 4   | Extended Rosenbrock        | 14  | 0.6426  | 22  | 0.7138  | 5429 | 221.1279 |
| 5   | Extended Rosenbrock        | 14  | 1.352   | 19  | 1.3355  | -    | -        |
| 6   | Extended Rosenbrock        | 14  | 23.5483 | 24  | 28.3459 | -    | -        |
| 7   | Extended Freudenstein Roth | 10  | 0.0507  | -   | -       | -    | -        |
| 8   | Extended Freudenstein Roth | -   | -       | 34  | 1.7817  | -    | -        |
| 9   | Extended Freudenstein Roth | 10  | 2.3928  | 83  | 8.9313  | -    | -        |
| 10  | Extended Beale             | 10  | 0.0445  | 12  | 0.0453  | 1089 | 2.1014   |
| 11  | Extended Beale             | 10  | 1.2099  | 14  | 1.2874  | -    | -        |
| 12  | Extended Beale             | 10  | 2.6315  | 16  | 3.9427  | -    | -        |
| 13  | Raydan 1                   | 24  | 0.0068  | 18  | 0.0066  | 55   | 0.0067   |
| 14  | Raydan 1                   | 48  | 0.0053  | 59  | 0.0057  | 283  | 0.0225   |
| 15  | Raydan 1                   | 68  | 0.0211  | 68  | 0.017   | 363  | 0.0481   |
| 16  | Extended Tridiagonal 1     | 11  | 0.0093  | 8   | 0.0083  | 2133 | 0.0999   |
| 17  | Extended Tridiagonal 1     | 11  | 0.0031  | 10  | 0.0032  | -    | -        |
| 18  | Extended Tridiagonal 1     | 11  | 0.0053  | 14  | 0.0061  | -    | -        |
| 19  | Diagonal 4                 | 2   | 0.0074  | 3   | 0.0087  | 111  | 0.0809   |
| 20  | Diagonal 4                 | 2   | 0.0374  | 4   | 0.2801  | 257  | 0.659    |
| 21  | Diagonal 4                 | 2   | 0.0603  | 5   | 0.154   | 340  | 12.9754  |
| 22  | Extended Himmelblau        | 7   | 0.0171  | 7   | 0.0159  | 30   | 0.0389   |
| 23  | Extended Himmelblau        | 7   | 0.2593  | 8   | 0.2615  | 39   | 1.62     |
| 24  | Extended Himmelblau        | 7   | 0.5279  | 8   | 0.5204  | -    | -        |
| 25  | FLETCHCR                   | 33  | 0.016   | 43  | 0.0175  | -    | -        |
| 26  | FLETCHCR                   | 40  | 0.1885  | 49  | 0.194   | -    | -        |
| 27  | FLETCHCR                   | 40  | 1.4865  | 36  | 1.3561  | -    | -        |
| 28  | NONSCOMP                   | 11  | 0.0211  | 13  | 0.0204  | 1974 | 0.0507   |

| 29 | NONSCOMP                      | 271 | 0.017     | 135  | 0.0198    | -    | -         |
|----|-------------------------------|-----|-----------|------|-----------|------|-----------|
| 30 | Extended DENSCHNB             | 5   | 0.0135    | 6    | 0.0131    | 17   | 0.027     |
| 31 | Extended DENSCHNB             | 5   | 0.1668    | 6    | 0.1726    | -    | -         |
| 32 | Extended DENSCHNB             | 5   | 0.335     | 6    | 0.349     | 12   | 0.9354    |
| 33 | Extended Penalty Function U52 | 10  | 0.0102    | 6    | 0.0084    | 79   | 0.01      |
| 34 | Extended Penalty Function U52 | 11  | 0.0007021 | 13   | 0.0006407 | 109  | 0.0048    |
| 35 | Extended Penalty Function U52 | 17  | 0.0032    | 10   | 0.0018    | 381  | 0.03      |
| 36 | Hager                         | 9   | 0.0055    | 9    | 0.0071    | 10   | 0.0051    |
| 37 | Hager                         | 12  | 0.0005922 | 13   | 0.0005144 | 20   | 0.0008025 |
| 38 | Hager                         | 19  | 0.0033    | 20   | 0.003     | 49   | 0.0049    |
| 39 | Cube                          | 25  | 0.0151    | 30   | 0.0226    | -    | -         |
| 40 | Extended Maratos              | 14  | 0.0084    | 26   | 0.0079    | 209  | 0.0138    |
| 41 | Extended Maratos              | 14  | 0.0033    | 16   | 0.0023    | -    | -         |
| 42 | Extended Maratos              | 14  | 0.0044    | 20   | 0.0046    | -    | -         |
| 43 | Six Hump Camel                | 5   | 0.0247    | 6    | 0.0058    | 10   | 0.0048    |
| 44 | Six Hump Camel                | 8   | 0.011     | 7    | 0.0021    | 25   | 0.0036    |
| 45 | Three Hump Camel              | 27  | 0.0155    | 6    | 0.0077    | -    | -         |
| 46 | Booth                         | 2   | 0.0051    | 3    | 0.005     | 21   | 0.0055    |
| 47 | Booth                         | 2   | 0.0001685 | 3    | 0.0001341 | 69   | 0.0013    |
| 48 | Trecanni                      | 1   | 0.0039    | 1    | 0.0039    | 1    | 0.0036    |
| 49 | Trecanni                      | 4   | 0.0011    | 7    | 0.0012    | 28   | 0.0015    |
| 50 | Zettl                         | 1   | 0.0046    | 2    | 0.0048    | 2    | 0.0045    |
| 51 | Zettl                         | 11  | 0.0011    | 17   | 0.0005669 | 176  | 0.0058    |
| 52 | Shallow                       | 3   | 0.0113    | 3    | 0.0037    | 11   | 0.0194    |
| 53 | Shallow                       | 4   | 0.1468    | 3    | 0.0983    | 9    | 0.2905    |
| 54 | Shallow                       | 4   | 0.2769    | 3    | 0.2086    | 7    | 0.4699    |
| 55 | Generalized Quartic           | 9   | 0.0147    | 5    | 0.0089    | 5    | 0.0013    |
| 56 | Generalized Quartic           | 8   | 0.0844    | 5    | 0.0197    | 6    | 0.0244    |
| 57 | Generalized Quartic           | 9   | 0.2161    | 5    | 0.0409    | 7    | 0.052     |
| 58 | Quadratic QF2                 | 26  | 0.0084    | 28   | 0.0088    | 83   | 0.0089    |
| 59 | Quadratic QF2                 | 102 | 0.0185    | 87   | 0.015     | 651  | 0.0796    |
| 60 | Quadratic QF2                 | 342 | 0.2856    | 327  | 0.2348    | 6928 | 7.1401    |
| 61 | Leon                          | 17  | 0.0055    | 53   | 0.0121    | -    | -         |
| 62 | Leon                          | 14  | 0.0008994 | 59   | 0.0033    | -    | -         |
| 63 | Generalized Tridiagonal 1     | 20  | 0.0107    | 21   | 0.0093    | 50   | 0.0026    |
| 64 | Generalized Tridiagonal 1     | 29  | 0.0023    | 36   | 0.0026    | 70   | 0.0044    |
| 65 | Generalized Tridiagonal 1     | 36  | 0.0172    | -    | -         | 75   | 0.0253    |
| 66 | Generalized Tridiagonal 2     | 28  | 0.0101    | 28   | 0.009     | 127  | 0.0039    |
| 67 | Generalized Tridiagonal 2     | 44  | 0.005     | 46   | 0.0048    | 211  | 0.018     |
| 68 | Generalized Tridiagonal 2     | 46  | 0.0381    | 48   | 0.0231    | -    | -         |
| 69 | POWER                         | 10  | 0.0052    | 46   | 0.007     | 500  | 0.014     |
| 70 | POWER                         | 66  | 0.0071    | 266  | 0.0214    | -    | -         |
| 71 | POWER                         | 773 | 0.3253    | 3133 | 1.3455    | -    | -         |
| 72 | Quadratic QF1                 | 56  | 0.0146    | 63   | 0.0156    | 510  | 0.0699    |

Table 2: Numerical results for MTT with MTTHS and HCGM in terms of NOI and CPU Time (Continued)

| Tabl | e 2. Numerical festilis for MTTT with |      | is and not | TVI III 0 | erms or nor |      | i o i inte (continued) |
|------|---------------------------------------|------|------------|-----------|-------------|------|------------------------|
| 73   | Quadratic QF1                         | 187  | 0.1162     | 211       | 0.1643      | 7049 | 8.5846                 |
| 74   | Quadratic QF1                         | 606  | 3.0397     | 744       | 4.732       | -    | -                      |
| 75   | Extended Quadratic Penalty QP2        | 15   | 0.0012     | 20        | 0.0103      | -    | -                      |
| 76   | Extended Quadratic Penalty QP2        | 24   | 0.0183     | 30        | 0.0076      | -    | -                      |
| 77   | Extended Quadratic Penalty QP2        | 41   | 0.0832     | 97        | 0.1428      | -    | -                      |
| 78   | Extended Quadratic Penalty QP1        | 7    | 0.0094     | 9         | 0.0094      | 53   | 0.0096                 |
| 79   | Extended Quadratic Penalty QP1        | 7    | 0.000525   | 9         | 0.0004641   | 64   | 0.0025                 |
| 80   | Extended Quadratic Penalty QP1        | 7    | 0.0026     | 12        | 0.0033      | -    | -                      |
| 81   | Quartic                               | 544  | 0.0297     | 87        | 0.0115      | 6351 | 0.1725                 |
| 82   | Quartic                               | 30   | 0.0015     | 122       | 0.0045      | 3084 | 0.0811                 |
| 83   | Matyas                                | 1    | 0.0049     | 1         | 0.0047      | 2    | 0.0045                 |
| 84   | Matyas                                | 1    | 0.000186   | 1         | 0.0001429   | 2    | 0.0001414              |
| 85   | Colville                              | 14   | 0.0088     | 34        | 0.0096      | 1045 | 0.0308                 |
| 86   | Colville                              | 84   | 0.0026     | 48        | 0.0014      | -    | -                      |
| 87   | Dixon and Price                       | 79   | 0.0644     | 64        | 0.0552      | -    | -                      |
| 88   | Dixon and Price                       | 79   | 0.4333     | 64        | 0.3669      | -    | -                      |
| 89   | Dixon and Price                       | 79   | 4.6986     | 64        | 3.6279      | -    | -                      |
| 90   | Sphere                                | 1    | 0.0063     | 1         | 0.0058      | 1    | 0.0055                 |
| 91   | Sphere                                | 1    | 0.0098     | 1         | 0.0088      | 1    | 0.0093                 |
| 92   | Sphere                                | 1    | 0.067      | 1         | 0.059       | 1    | 0.0602                 |
| 93   | Sum Squares                           | 178  | 0.1577     | 179       | 0.1357      | 5588 | 5.7609                 |
| 94   | Sum Squares                           | 578  | 2.8561     | 588       | 3.6287      | -    | -                      |
| 95   | Sum Squares                           | 1310 | 30.7119    | 1363      | 49.4167     | -    | -                      |
| 96   | DENSCHNA                              | 6    | 0.0205     | 7         | 0.0234      | 53   | 0.0874                 |
| 97   | DENSCHNA                              | 6    | 0.0918     | 7         | 0.1119      | 54   | 0.7111                 |
| 98   | DENSCHNA                              | 6    | 0.8686     | 8         | 1.1948      | 22   | 3.8829                 |
| 99   | DENSCHNB                              | 8    | 0.0094     | 7         | 0.0099      | 18   | 0.0123                 |
| 100  | DENSCHNB                              | 8    | 0.0326     | 9         | 0.0544      | -    | -                      |
| 101  | DENSCHNB                              | 8    | 0.2879     | 9         | 0.3183      | -    | -                      |
| 102  | DENSCHNC                              | 7    | 0.0131     | 8         | 0.0142      | 119  | 0.0421                 |
| 103  | DENSCHNC                              | 7    | 0.0883     | 8         | 0.093       | 115  | 0.953                  |
| 104  | DENSCHNC                              | 7    | 0.8096     | 10        | 0.9925      | 138  | 18.1472                |
| 105  | DENSCHNF                              | 11   | 0.0177     | -         | -           | -    | -                      |
| 106  | DENSCHNF                              | 12   | 0.0762     | -         | -           | -    | -                      |
| 107  | DENSCHNF                              | 13   | 0.7105     | -         | -           | -    | -                      |
| 108  | Extended Block-Diagonal BD1           | 6    | 0.0113     | 8         | 0.0115      | 23   | 0.0138                 |
| 109  | Extended Block-Diagonal BD1           | 7    | 0.0345     | 8         | 0.0374      | 31   | 0.1184                 |
| 110  | Extended Block-Diagonal BD1           | 7    | 0.2876     | 9         | 0.287       | 13   | 0.6905                 |
| 111  | HIMMELBG                              | 1    | 0.0109     | 3         | 0.0119      | 7    | 0.0121                 |
| 112  | HIMMELBG                              | 1    | 0.0024     | 3         | 0.0021      | 7    | 0.0033                 |
| 113  | HIMMELBG                              | 1    | 0.0031     | 3         | 0.0036      | 7    | 0.0045                 |
| 114  | HIMMELBH                              | 4    | 0.0079     | 4         | 0.0074      | 15   | 0.0072                 |
| 115  | HIMMELBH                              | 4    | 0.001      | 4         | 0.0006591   | 19   | 0.0029                 |
| 116  | HIMMELBH                              | 4    | 0.0011     | 4         | 0.0013      | 22   | 0.0043                 |

Table 2: Numerical results for MTT with MTTHS and HCGM in terms of NOI and CPU Time (Continued)

| rabr |                                |      |           | 111 0 |           | and O |           |
|------|--------------------------------|------|-----------|-------|-----------|-------|-----------|
| 117  | Extended Hiebert               | 22   | 0.0437    | 36    | 0.0472    | -     | -         |
| 118  | Extended Hiebert               | 22   | 0.2521    | 58    | 0.4567    | -     | -         |
| 119  | Extended Hiebert               | 22   | 2.2975    | 112   | 8.044     | -     | -         |
| 120  | Linear Perturbed               | 54   | 0.0151    | 54    | 0.0145    | 629   | 0.0772    |
| 121  | Linear Perturbed               | 406  | 1.0354    | 410   | 1.0398    | -     | -         |
| 122  | Linear Perturbed               | 1310 | 45.8803   | 1363  | 49.7695   | -     | -         |
| 123  | QUARTICM                       | 42   | 0.2271    | 13    | 0.086     | -     | -         |
| 124  | QUARTICM                       | 109  | 51.2399   | 18    | 10.5822   | -     | -         |
| 125  | Zirilli or Aluffi-Pentini's    | 4    | 0.0065    | 5     | 0.0066    | 9     | 0.0073    |
| 126  | Zirilli or Aluffi-Pentini's    | 4    | 0.0002242 | 4     | 0.000123  | 5     | 0.000211  |
| 127  | Extended Quadratic Penalty QP3 | 10   | 0.0115    | 14    | 0.0098    | -     | -         |
| 128  | Extended Quadratic Penalty QP3 | 10   | 0.0018    | -     | -         | -     | -         |
| 129  | Extended Quadratic Penalty QP3 | 15   | 0.0084    | -     | -         | -     | -         |
| 130  | DIAG-AUP1                      | 4    | 0.1897    | 14    | 0.1192    | 16    | 0.1582    |
| 131  | Strait                         | 17   | 0.0282    | 36    | 0.0423    | 449   | 0.3066    |
| 132  | Strait                         | 16   | 1.1067    | 34    | 2.1641    | -     | -         |
| 133  | Strait                         | 24   | 16.2049   | 50    | 47.4095   | -     | -         |
| 134  | Perturbed Quadratic            | 2    | 0.0093    | 3     | 0.0001826 | 14    | 0.0078    |
| 135  | Perturbed Quadratic            | 2    | 0.0001905 | 4     | 0.0001576 | 9     | 0.0002933 |
| 136  | Perturbed Quadratic            | 2    | 0.0001502 | 4     | 0.0001928 | 17    | 0.0006843 |
| 137  | Diagonal 2                     | 9    | 0.0113    | 7     | 0.0123    | 16    | 0.0104    |
| 138  | Diagonal 2                     | 97   | 0.0063    | 24    | 0.0052    | 61    | 0.0045    |

Table 2: Numerical results for MTT with MTTHS and HCGM in terms of NOI and CPU Time (Continued)

Figure 1 and Figure 2 showed the performance profiles based on the number of iterations and CPU time, respectively. The analysis of Figure 2 was conducted by considering the CPU time, measured in seconds. The analysis was performed in order to estimate the time required to generate search direction with a specific objective of executing a line search and convergence test.



Figure 1 : Performance profile corresponding to the Number of Iterations

Figure 1 showed that the proposed method, MTT outperformed the HTTCGSC, MZZ, MTTHS, and HCGM in terms of number of iterations, as it exhibits less number of iterations. According to the data presented in Figure 1, the MTT method achieves a success rate of 99% in solving the test problems with the least iteration number. Meanwhile, it can be inferred that the MTTHS method at 94%, the MZZ method at 93%, the HTTCGSC method at 70%,, and the HCGM method at 60% in solving the test problems. As shown in Figure 1, it can be clearly seen that there is no competition between MTT with other methods. Furthermore, it is evident that the proposed method, MTT is the only method that approaches 1.0 the fastest. This indicates that MTT method performs the best and more robust than all other methods in terms of number of iterations.



Figure 2 : Performance profile corresponding to the CPU time

On the other hand, according to Figure 2, it can be observed that MTT method exhibits a faster convergence time in comparison to HTTCGSC, MZZ, MTTHS, and HCGM. However, in the early stage, there is some competition between MTT and MTTHS. From analysis, we have that MTT method at 99%, MTTHS method at 94%, the MZZ method at 91%, the HTTCGSC at 70% and the HCGM method at 59% in solving all the test problems. This indicates that the MTT method achieves the best results in terms of the amount of CPU time. Therefore, from both Figure 1 and Figure 2, it can be concluded that MTT method outperformed other methods in terms of number of iterations and CPU time in solving all the test problems.

#### 5 CONCLUSION

In this study, a modification of hybrid three-term conjugate gradient method has been presented. Subsequently, the new algorithm namely MTT has been utilized to solve large-scaled unconstrained optimization problems. The search direction of the algorithm always satisfies sufficient descent property regardless of any line search. In addition, the step size was obtained via strong Wolfe-Powell line search. Convergence of the algorithm was also analyzed under certain assumptions. In order to further support the convergence results, a numerical experiment was conducted by focusing on tackling the problem of large-scaled unconstrained optimization with 138 test problems. Finally, the results showed that the MTT method demonstrates superiority compared methods in terms of efficiency and robustness.

### ACKNOWLEDGEMENT

The authors express their thanks to the editors and referees for their insightful comments and suggestions.

### REFERENCES

- M. R. Hestenes, "The conjugate-gradient method for solving," *Numerical analysis*, no. 6, p. 83, 1956.
- [2] J. Wang, W. Wu, and J. M. Zurada, "Deterministic convergence of conjugate gradient method for feedforward neural networks," *Neurocomputing*, vol. 74, no. 14-15, pp. 2368–2376, 2011.
- [3] R. Fletcher and C. M. Reeves, "Function minimization by conjugate gradients," *The computer journal*, vol. 7, no. 2, pp. 149–154, 1964.
- B. T. Polyak, "The conjugate gradient method in extremal problems," USSR Computational Mathematics and Mathematical Physics, vol. 9, no. 4, pp. 94–112, 1969.
- [5] M. R. Hestenes, E. Stiefel *et al.*, "Methods of conjugate gradients for solving linear systems," Journal of research of the National Bureau of Standards, vol. 49, no. 6, pp. 409–436, 1952.
- [6] Y. Liu and C. Storey, "Efficient generalized conjugate gradient algorithms, part 1: theory," *Journal of optimization theory and applications*, vol. 69, pp. 129–137, 1991.
- [7] Y.-H. Dai and Y. Yuan, "A nonlinear conjugate gradient method with a strong global convergence property," *SIAM Journal on optimization*, vol. 10, no. 1, pp. 177–182, 1999.
- [8] R. Fletcher, *Practical methods of optimization*. John Wiley & Sons, 2000.
- [9] Q. Tian, X. Wang, L. Pang, M. Zhang, and F. Meng, "A new hybrid three-term conjugate gradient algorithm for large-scale unconstrained problems," *Mathematics*, vol. 9, no. 12, p. 1353, 2021.
- [10] L. Zhang, W. Zhou, and D. Li, "Some descent three-term conjugate gradient methods and their global convergence," *Optimisation Methods and Software*, vol. 22, no. 4, pp. 697–711, 2007.
- [11] H. Wasi and M. A. Shiker, "A new hybrid cgm for unconstrained optimization problems," in *Journal of Physics: Conference Series*, vol. 1664, no. 1. IOP Publishing, 2020, p. 012077.
- [12] S. Babaie-Kafaki, "On optimality of the parameters of self-scaling memoryless quasi-newton updating formulae," *Journal of Optimization Theory and Applications*, vol. 167, pp. 91–101, 2015.

- [13] Y. H. Dai and L. Z. Liao, "New conjugacy conditions and related nonlinear conjugate gradient methods," *Applied Mathematics and optimization*, vol. 43, pp. 87–101, 2001.
- [14] L. Zhang, W. Zhou, and D.-H. Li, "A descent modified polak-ribière-polyak conjugate gradient method and its global convergence," *IMA Journal of Numerical Analysis*, vol. 26, no. 4, pp. 629–640, 2006.
- [15] E. D. Dolan and J. J. Moré, "Benchmarking optimization software with performance profiles," *Mathematical programming*, vol. 91, pp. 201–213, 2002.

# APPENDIX

| <b>1</b> abic $0$ . $1$ abic $0$ $1$ $1$ obtains $1$ uncount |
|--------------------------------------------------------------|
|--------------------------------------------------------------|

| No | Functions                    | Dimension | No  | Functions                     | Dimension |
|----|------------------------------|-----------|-----|-------------------------------|-----------|
| 1  | Extended White & Holst       | 50000     | 23  | Extended Himmelblau           | 50000     |
| 2  | Extended White & Holst       | 100000    | 24  | Extended Himmelblau           | 100000    |
| 3  | Extended White & Holst       | 1000000   | 25  | FLETCHCR                      | 100       |
| 4  | Extended Rosenbrock          | 50000     | 26  | FLETCHCR                      | 5000      |
| 5  | Extended Rosenbrock          | 100000    | 27  | FLETCHCR                      | 50000     |
| 6  | Extended Rosenbrock          | 1000000   | 28  | NONSCOMP                      | 2         |
| 7  | Extended Freudenstein & Roth | 1000      | 29  | NONSCOMP                      | 4         |
| 8  | Extended Freudenstein & Roth | 50000     | 30  | Extended DENSCHNB             | 1000      |
| 9  | Extended Freudenstein & Roth | 100000    | 31  | Extended DENSCHNB             | 50000     |
| 10 | Extended Beale               | 1000      | 32  | Extended DENSCHNB             | 100000    |
| 11 | Extended Beale               | 50000     | 33  | Extended Penalty Function U52 | 5         |
| 12 | Extended Beale               | 100000    | 34  | Extended Penalty Function U52 | 10        |
| 13 | Raydan 1                     | 10        | 35  | Extended Penalty Function U52 | 50        |
| 14 | Raydan 1                     | 50        | 36  | Hager                         | 5         |
| 15 | Raydan 1                     | 100       | 37  | Hager                         | 10        |
| 16 | Extended Tridiagonal 1       | 10        | 38  | Hager                         | 50        |
| 17 | Extended Tridiagonal 1       | 50        | 39  | Cube                          | 2         |
| 18 | Extended Tridiagonal 1       | 100       | 40  | Extended Maratos              | 10        |
| 19 | Diagonal 4                   | 1000      | 41  | Extended Maratos              | 50        |
| 20 | Diagonal 4                   | 5000      | 42  | Extended Maratos              | 100       |
| 21 | Diagonal 4                   | 50000     | 43  | Six Hump Camel                | 2         |
| 22 | Extended Himmelblau          | 1000      | 44  | Six Hump Camel                | 2         |
| 45 | Three Hump Camel             | 2         | 92  | Sphere                        | 100000    |
| 46 | Booth                        | 2         | 93  | Sum Squares                   | 1000      |
| 47 | Booth                        | 2         | 94  | Sum Squares                   | 10000     |
| 48 | Trecanni                     | 2         | 95  | Sum Squares                   | 50000     |
| 49 | Trecanni                     | 2         | 96  | DENSCHNA                      | 1000      |
| 50 | Zettl                        | 2         | 97  | DENSCHNA                      | 10000     |
| 51 | Zettl                        | 2         | 98  | DENSCHNA                      | 100000    |
| 52 | Shallow                      | 1000      | 99  | DENSCHNB                      | 100       |
| 53 | Shallow                      | 50000     | 100 | DENSCHNB                      | 5000      |
| 54 | Shallow                      | 100000    | 101 | DENSCHNB                      | 50000     |
| 55 | Generalized Quartic          | 100       | 102 | DENSCHNC                      | 100       |
| 56 | Generalized Quartic          | 5000      | 103 | DENSCHNC                      | 5000      |
| 57 | Generalized Quartic          | 10000     | 104 | DENSCHNC                      | 50000     |
| 58 | Quadratic QF2                | 10        | 105 | DENSCHNF                      | 100       |
| 59 | Quadratic QF2                | 100       | 106 | DENSCHNF                      | 5000      |
| 60 | Quadratic QF2                | 1000      | 107 | DENSCHNF                      | 50000     |
| 61 | Leon                         | 2         | 108 | Extended Block-Diagonal BD1   | 100       |
| 62 | Leon                         | 2         | 109 | Extended Block-Diagonal BD1   | 5000      |
| 63 | Generalized Tridiagonal 1    | 5         | 110 | Extended Block-Diagonal BD1   | 50000     |
| 64 | Generalized Tridiagonal 1    | 10        | 111 | HIMMELBG                      | 10        |
| 65 | Generalized Tridiagonal 1    | 100       | 112 | HIMMELBG                      | 50        |
| 66 | Generalized Tridiagonal 2    | 10        | 113 | HIMMELBG                      | 100       |
| 67 | Generalized Tridiagonal 2    | 50        | 114 | HIMMELBH                      | 10        |
| 68 | Generalized Tridiagonal 2    | 500       | 115 | HIMMELBH                      | 50        |
| 69 | POWER                        | 10        | 116 | HIMMELBH                      | 100       |
| 70 | POWER                        | 50        | 117 | Extended Hiebert              | 1000      |
| 71 | POWER                        | 500       | 118 | Extended Hiebert              | 10000     |
| 72 | Quadratic QF1                | 100       | 119 | Extended Hiebert              | 100000    |

|    | Table 5: L                     | ist of Problem | а гипс | cions (Continuea)              |         |
|----|--------------------------------|----------------|--------|--------------------------------|---------|
| 73 | Quadratic QF1                  | 1000           | 120    | Linear Perturbed               | 100     |
| 74 | Quadratic QF1                  | 10000          | 121    | Linear Perturbed               | 5000    |
| 75 | Extended Quadratic Penalty QP2 | 5              | 122    | Linear Perturbed               | 50000   |
| 76 | Extended Quadratic Penalty QP2 | 50             | 123    | QUARTICM                       | 1000    |
| 77 | Extended Quadratic Penalty QP2 | 500            | 124    | QUARTICM                       | 50000   |
| 78 | Extended Quadratic Penalty QP1 | 5              | 125    | Zirilli or Aluffi-Pentini's    | 2       |
| 79 | Extended Quadratic Penalty QP1 | 10             | 126    | Zirilli or Aluffi-Pentini's    | 2       |
| 80 | Extended Quadratic Penalty QP1 | 100            | 127    | Extended Quadratic Penalty QP3 | 5       |
| 81 | Quartic                        | 4              | 128    | Extended Quadratic Penalty QP3 | 10      |
| 82 | Quartic                        | 4              | 129    | Extended Quadratic Penalty QP3 | 50      |
| 83 | Matyas                         | 2              | 130    | DIAG-AUP1                      | 10000   |
| 84 | Matyas                         | 2              | 131    | Strait                         | 1000    |
| 85 | Colville                       | 4              | 132    | Strait                         | 100000  |
| 86 | Colville                       | 4              | 133    | Strait                         | 1000000 |
| 87 | Dixon and Price                | 1000           | 134    | Perturbed Quadratic            | 2       |
| 88 | Dixon and Price                | 10000          | 135    | Perturbed Quadratic            | 2       |
| 89 | Dixon and Price                | 100000         | 136    | Perturbed Quadratic            | 2       |
| 90 | Sphere                         | 1000           | 137    | Diagonal 2                     | 2       |
| 91 | Sphere                         | 10000          | 138    | Diagonal 2                     | 10      |

 Table 3: List of Problem Functions (Continued)