
Applied Mathematics and Computational Intelligence
Volume 14, No. 1, 2025 [37 – 56]

A Scalar Modification of Three-term PRP-DL Conjugate Gradient
Method for Solving Large-scaled Unconstrained Optimization

Problems

Muhammad Aqiil Iqmal Ishak1, Nurin Athirah Azmi2*, Siti Mahani Marjugi3

1,2*,3Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia, 43400
Serdang, Selangor, Malaysia

Received: 23 August 2024
Revised: 1 September 2024
Accepted: 18 October 2024

ABSTRACT

Unconstrained optimization problems arise in numerous fields. This study presents the
introduction of a hybrid Polak-Ribi‘ere-Polyak(PRP)-Dai-Liao(DL) conjugate gradient(CG)
method with a modified scalar for the purpose of solving large-scaled unconstrained optimiza-
tion problems. The proposed method involves the modification of the scalar in the PRP-DL
conjugate gradient method in order to improve the performance of the algorithm, specifically
when addressing large-scale problems. The convergence analysis of the proposed method
is established and proved under the strong Wolfe-Powell line search. Numerical results on
various test functions show that the proposed method is more efficient and robust than several
existing CG methods. Overall, the proposed method is a new promising CG method for
solving unconstrained optimization problems.

Keywords: global convergence, large-scale unconstrained problems, line search, modified
hybrid conjugate gradient method, test functions.

1 INTRODUCTION

Unconstrained optimization problem covers a diverse range of problem types that arise in various
science and engineering areas in order to find the minimum value of certain function.

In general, the problem of unconstrained optimization can be formulated as

min
x∈Rn

f(x),

where f : Rn → R is continuously differentiable smooth and bounded.

Various approaches, including the conjugate gradient method can be utilized to address the previously
mentioned problems. The CG method is widely recognized as an iterative technique that is highly
regarded for its computational efficiency and ability to handle a wide range of problem conditions.
This method was developed by Eduard Stiefel and Magnus [1]. Due to its efficient use of memory
and ability to converge quickly, the CG method has found applications in many fields of research
[2].



Aqiil et al/A Scalar Modification Of Three-Term PRP-DL CG Method

CG method involves refining an initial approximation with each iteration, resulting in the formation
of a sequence denoted as xk of the form

xk+1 = xk + αkdk, k = 0, 1, 2, . . . (1)

where xk is the kth iterative point and dk is the search direction and αk > 0 is the step size. Step
size is determined via a one-dimensional search known as line search. Developed as an extension
of the well-known Wolfe-Powell line search, the Strong Wolfe-Powell variant introduces additional
conditions to ensure a more robust and reliable convergence towards the optimal solution. It is
presented in the form of

f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk, (2)

|g(xk + αkdk)
Tdk| ≥ σ|gTk dk|, (3)

where scalar gk is the derivative of f(x) at the point of xk, g
T
k is the transpose of gk and δ is a very

small positive value, 0 < δ < σ < 1.

A major criterion for a line search algorithm in the convergence analysis is that the search direction
dk has to satisfy the sufficient descent property, which is defined in the form:

gTk dk ≤ −c||gk||2, (4)

where c > 0 is a constant.

The search direction, dk is determined by:

dk =

{
−gk, if k = 0,

−gk + ßkdk−1, if k ≥ 1.
(5)

where ßk is known as the CG coefficient.

There are several formulas available for ßk, such as the Fletcher-Reeves (FR) by [3], Polak-Ribière-
Polyak (PRP) by [4], Hestenes-Stiefel (HS) by [5], Liu-Storey by [6] (LS), Dai-Yuan (DY) by [7],
and Conjugate Descent (CD) by [8] as stated below:

ßHS
k =

gTk yk−1

dTk−1yk−1
, ßPRP

k =
gTk yk−1

gTk−1gk−1
, ßLSk =

gTk yk−1

−dTk−1gk−1

ßDY
k =

gTk gk

dTk−1yk−1
, ßFRk =

gTk gk

gTk−1gk−1
, ßCD

k =
gTk gk

−dTk−1gk−1

where yk−1 = gk − gk−1.

Hybrid conjugate gradient method is a method that combines several standard CG methods in order
to exploit the attractive features of each of them. It is often said that the hybrid CG method is more
efficient and more robust than the standard CG methods. Born out of the need to address both the
computational efficiency and memory constraints posed by large-scale optimization challenges, this

38



Applied Mathematics and Computational Intelligence
Volume 14, No. 1, 2025 [37 – 56]

hybrid method provides a balanced approach that seeks to accelerate convergence and minimize
memory requirements.

Three-term CG method is an extension of the CG method that introduces a novel recursion
formula involving three terms. The three-term recursion formula in the method introduces a
new level of sophistication to the optimization process, allowing for enhanced convergence speed
and efficiency compared to two-term methods. While the three-term method may require more
complex calculations in each iteration compared to the standard CG method, its potential for
faster convergence and improved performance on certain types of optimization problems makes it a
valuable addition to the toolkit of optimization practitioners.

According to [9], numerical performance of algorithm of new hybrid three-term CG method with
modified secant condition(HTTCGSC) was presented and compared with other methods such as
modified three-term Hestenes–Stiefel (MTTHS) by [10]. It is shown that HTTCGSC outperform by
solving the test problems with the least iteration number, least number of computing functions and
gradients and least CPU time consumed. [11] studied a hybrid CG method(HCGM) that combines
PRP method with FR method. HCGM is said to has the sufficient descent property under the
suggestion of a suitable line search and appropriate conditions. MZZ is the method suggest by
[12] in which it guarantees the sufficient descent condition. Subsequently, the new modified hybrid
three-term(MTT) CG method proposed in this study will also be compared with MTTHS, MZZ,
HTTCGSC and HCGM in the unconstrained optimization problem.

This study aims to address these challenges by proposing a new modified hybrid PRP-DL conjugate
gradient optimization algorithm tailored specifically for unconstrained optimization problems.
The three-term conjugate gradient method is chosen as the foundation due to its efficiency and
widespread use in optimization tasks. Following the inspiration provided by [9], some modifications
to the scalar of the presented method have been made by adopting an idea from the research
conducted by [11]. The modification involves incorporating novel strategies and inquiries to enhance
the convergence speed, stability, and ability of the algorithm.

This paper is organised as follows. In section 2, the underlying idea of modification of the algorithm
will be presented. In section 3, sufficient descent property and global convergence property with
the strong Wolfe-Powell line search will be established. For section 4, a numerical result of the
proposed method will be discussed. Finally, the conclusions will be highlighted in section 5.

2 MODIFICATIONS

The primary sources of our motivation are the works of [9] and [11], wherein

ßNk =
gTk (yk−1 − tsk−1)

max{yTk−1sk−1, ||gk−1||2}
, (6)

δNk =
gTk sk−1

max{yTk−1sk−1, ||gk−1||2}
. (7)

39



Aqiil et al/A Scalar Modification Of Three-Term PRP-DL CG Method

The parameter t is defined as t = max{t̄,
||yk||2gTk−1sk

zk
} Some modification on (6) and (7) have

been made. The parameter sTk−1gk−1 has been inserted in both numerator and denominator of (6)
and (7) while referring on the study of [11]. The new CG coefficient is defined as below,

ßMTT
k =

gTk (s
T
k−1yk−1gk−1 − t||sk−1||2gk−1)

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}
, (8)

δMTT
k =

||sk−1||2gTk gk−1

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}
. (9)

According to [13], t̄ = 0.1 is an appropriate choice. Therefore, t = max{0.1,
||yk||2gTk−1sk

zk
} is

assigned.

Algorithm 1: Modified three-term(MTT) PRP-DL conjugate gradient method

Step 1: Let k = 0. Choose a starting point x0 ∈ Rn. Obtain g(x0) and assign d0 = −g0.
Step 2: If ||gk|| ≤ ε, ε = 10−6 , then stop, otherwise proceed to the next step.
Step 3: Determine the step size αk along the direction dk by using the Strong Wolfe-Powell line
search stated in (2) and (3).
Step 4: Let xk+1 = xk + αkdk to compute the new iterative point.
Step 5: Calculate the search direction dk by using:

dMTT
k =

{
−gk, if k = 0,

−gk + ßMTT
k sk−1 − δMTT

k yk−1, if k ≥ 1,

where sk−1 = αk−1dk−1 and yk−1 = gk − gk−1.

Step 6: Set k = k + 1 and repeat Step 1.

3 CONVERGENCE ANALYSIS

In the upcoming discussion, clarification will be established that Algorithm 1 possesses a sufficient
descent property, regardless of the line search technique employed.

Lemma 1. Algorithm 1 generated the sequence {dMTT
k } independent on any line search, and it

always holds that:

gTk d
MTT
k ≤ −||gk||2,∀k ≥ 0. (10)

Proof. When k = 0, then d0 = −g0, and it holds that gT0 = −||g0||2. For k ≥ 1, the subsequent

40



Applied Mathematics and Computational Intelligence
Volume 14, No. 1, 2025 [37 – 56]

inequality obtained according to the definition of dMTT
k :

gTk d
MTT
k = −||gk||2 + ßMTT

k gTk sk−1 − δMTT
k dTk yk−1

= −||gk||2 +
gTk (s

T
k−1yk−1gk−1 − t||sk−1||2gk−1)

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}
gTk sk−1

−
||sk−1||2gTk gk−1

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}
gTk yk−1

= −||gk||2 +
gTk ||sk−1||2yk−1gk−1g

T
k

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}

−
t||sk−1||2gk−1g

T
k sk−1

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}

−
||sk−1||2gTk gk−1g

T
k yk−1

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}

= −||gk||2 −
t||sk−1||2gk−1g

T
k sk−1

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}
≤ −||gk||2,

where the last inequality holds when t ≥ 0. Then, equation (10) holds. This completes the proof.

Lemma (1) indicates that, regardless of the line search method, the new direction satisfies the
sufficient descent property. On top of that, a conjugate condition plays an essential role to numerical
performance. For MTT, by the design of the direction dMTT

k ,

(dMTT
k )T yk−1 = −gTk yk−1 +

gTk (s
T
k−1yk−1gk−1 − t||sk−1||2gk−1)

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}
yTk−1sk−1

−
||sk−1||2gTk gk−1

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}
||yk−1||2

= −gTk yk−1 +
||sk−1||2yk−1gk−1

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}
gTk y

T
k−1

−
yTk−1(t||sk−1||2gk−1)

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}
gTk sk−1

− ||yk−1||2(sk−1gk−1)

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}
gTk sk−1

≤ −
tyTk−1||sk−1||2gk−1 + ||yk−1||2sk−1gk−1

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}
gTk sk−1.

(11)

From (11), it holds that the new direction dMTT
k satisfies DL conjugate condition, in an extent form

in which (dMTT
k )T yk−1 ≤ −t1g

T
k sk−1 where

41



Aqiil et al/A Scalar Modification Of Three-Term PRP-DL CG Method

t1 = − tyTk−1||sk−1||2gk−1+||yk−1||2sk−1gk−1

max{||sk−1||2gTk−1yk−1,||gk−1||2gTk−1sk−1}
. In fact, if we adopt the line search technique which

results in ||sk−1||2gTk−1yk−1 ≥ 0, then it holds that t1 = −− tyTk−1||sk−1||2gk−1+||yk−1||2sk−1gk−1

max{||sk−1||2gTk−1yk−1,||gk−1||2gTk−1sk−1}
> 0.

In this part, the convergence characteristics of the ßMTT
k will be examined and investigated. Assume

that for all values of k, gk ̸= 0. If gk is equal to zero, it indicates the presence of a stationary point.
The convergence of nonlinear conjugate gradient algorithms is frequently demonstrated based on
the subsequent assumptions.

Assumption 1. The level set T := {x ∈ Rn : f(x) ≤ f(x0)} is bounded where x0 is the initial
point, then it means there exist a constant X > 0 in such a way that:

||x|| ≤ X, ∀x ∈ T. (12)

Assumption 2. In some neighborhood N of T , the gradient of function f(x) and g(x) known as
Lipschitz continuous, which means there exists a constant L > 0 such that:

||g(x)− g(y)|| ≤ L||x− y||, ∀x, y ∈ N. (13)

It should be noted that, according to Assumption 1 and Assumption 2, there is a positive constant
G that satisfies the following condition:

||g(x)|| ≤ G, ∀x ∈ T. (14)

In the following analysis, the sequence dMTT
k produced by Algorithm 1 is bounded will be demon-

strated.

Lemma 2. Consider the condition 0 < t ≤ T , and assume that both Assumption 1 and Assumption
2 are satisfied. For any line search technique, consider the sequence {dMTT

k } generated by Algorithm
1. If the objective function f exhibits uniform convexity on the set T , it can be concluded that
||dMTT

k || is bounded.

Proof. Given that the function f exhibits uniform convexity on the set N , it follows that for any x,
y ∈ N , the following inequality holds:

(∇f(x)−∇f(y))T (x− y) ≥ ũ||x− y||2,

where ũ > 0 is the uniform convexity parameter. In particular, when assigning x = xk and y = xk−1,
the following equation is true:

||sk−1||2gTk−1yk−1 ≥ ũ||sk−1||2 > 0.

In the subsequent analysis, the boundedness of the parameters ßMTT
k and δMTT

k will be proved.

42



Applied Mathematics and Computational Intelligence
Volume 14, No. 1, 2025 [37 – 56]

According to their respective definitions, observe that:

|ßMTT
k | =

∣∣∣∣∣ gTk (s
T
k−1yk−1gk−1 − t||sk−1||2gk−1)

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}

∣∣∣∣∣
≤

||gk||(||sTk−1||||yk−1||||gk−1||+ t||sk−1||2||gk−1||)
|max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}|

≤
||gk||(||sTk−1||||yk−1||||gk−1||+ t||sk−1||2||gk−1||)

||sk−1||2gTk−1yk−1

≤ (L+ T )||sk−1||
ũ||sk−1||2

||gk||

=
(L+ T )

ũ

||gk||
||sk−1||

.

|δMTT
k | =

∣∣∣∣∣ ||sk−1||2gTk gk−1

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}

∣∣∣∣∣
≤ ||sk−1||2||gk||||gk−1||

|max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}|

≤ ||sk−1||2||gk||||gk−1||
||sk−1||2gTk−1yk−1

≤ ||sk−1||2||gk||||gk−1||
ũ||sk−1||2

=
1

ũ
||gk||||gk−1||.

Hence, according to the definition of dMTT
k :

||dMTT
k || =

∣∣∣∣−gk + ßMTT
k sk−1 + δMTT

k yk−1

∣∣∣∣
≤ ||gk||+ |ßMTT

k |||sk−1||+ |δMTT
k |||yk−1||

≤ ||gk||+
(L+ T )

ũ

||gk||
||sk−1||

||sk−1||+
1

ũ
||gk||||gk−1||||yk−1||

≤ ||gk||+
(L+ T )

ũ
||gk||+

L

ũ
||gk||

=

(
1 +

2L+ T

ũ
+

L

ũ

)
||gk||

≤
(
1 +

2L+ T

ũ
+

L

ũ

)
G.

where the last inequality is satisfied by (14). Then, this completes the proof.

The subsequent Lemma presented serves as a crucial role in the global convergence theorem of the
proposed method.

43



Aqiil et al/A Scalar Modification Of Three-Term PRP-DL CG Method

Lemma 3. Suppose that Assumption 1 and Assumption 2 are satisfied. Consider iterative method
represented by equation 1, where dk fulfils the sufficient descent condition and αk is established using
the strong Wolfe-Powell line search stated in (2) and (3). According to [9], if the aforementioned
relationship holds:∑
k≥0

1

||dk||2
= +∞, (15)

then, the method exhibits global convergence as such:

lim
k→+∞

inf||gk|| = 0. (16)

A proof that Algorithm 1 is globally converge for uniformly convex objective functions will be
presented in the next discussion.

Theorem 3.1. Suppose that Assumption 1 and Assumption 2 are satisfied wherein αk is established
using the strong Wolfe-Powell line search stated in (2) and (3). If the objective function f exhibits
uniform convexity on the set N , it can be concluded that Algorithm 1 achieves global convergence in
a way that:

lim
k→+∞

||gk|| = 0. (17)

Proof. According to Lemma 1, it can be concluded that the direction dMTT
k exhibits the sufficient

descent property with a constant value of c = 1. According to the inequality stated in equation (2),
it can be observed that the sequence {f(xk)}k≥0 is monotonically decreasing, and {xk}k≥0 belongs
to the set of natural numbers, N . The validity of equation (15) can be established by utilizing the
boundedness property of dMTT

k as stated in Lemma 2. Subsequently, equation (16) satisfies. As f is
uniformly convex, (17) holds. The proof is now complete.

4 RESULTS AND DISCUSSIONS

This section focuses on the numerical performance of Algorithm 1 and its comparison with the
HTTCGSC by [9], MZZ by [12], MTTHS by [14] and HCGM by [11]. The parameters for each of
the aforementioned methods are taken into account and being used in this study.

The tests have been conducted on a Personal Computer DELL (Intel Core i5-6440HQ CPU @
2.60GHz, with 8.00 GB RAM, Windows 10). All the problems listed in Appendix (Table 3) have
been resolved using MATLAB R2023a. The parameters used are δ = 0.0001 and σ = 0.009.

The numerical results are evaluated by comparing the number of iterations(NOI) and computa-
tional(CPU) time. The testing terminated if either the total number of iterations exceeds 10,000 or
CPU times took longer than 120 seconds.

138 test problems with various initial points and dimensions are considered in this study. The
numerical results of Algorithm 1 along with other compared existing methods are shown in Table 1
and Table 2. The numerical performances are depicted in Figure 1 and Figure 2, correspondingly,
utilizing the performance profile method developed by [15].

44



Applied Mathematics and Computational Intelligence
Volume 14, No. 1, 2025 [37 – 56]

Table 1 : Numerical results for MTT with HTTCGSC and MZZ in terms of NOI and CPU Time

No Functions
MTT HTTCGSC MZZ
NOI CPU NOI CPU NOI CPU

1 Extended White Holst 9 1.4627 - - 20 2.9973
2 Extended White Holst 9 2.2906 - - 16 3.7468
3 Extended White Holst 10 46.1012 - - 13 49.6204
4 Extended Rosenbrock 14 0.6426 - - 21 0.7261
5 Extended Rosenbrock 14 1.352 - - 21 1.553
6 Extended Rosenbrock 14 23.5483 - - 20 22.0262
7 Extended Freudenstein Roth 10 0.0507 - - 17 0.0356
8 Extended Freudenstein Roth - - - - - -
9 Extended Freudenstein Roth 10 2.3928 - - - -
10 Extended Beale 10 0.0445 995 1.7941 13 0.0451
11 Extended Beale 10 1.2099 - - 14 1.3205
12 Extended Beale 10 2.6315 - - 15 2.8063
13 Raydan 1 24 0.0068 18 0.0058 20 0.0064
14 Raydan 1 48 0.0053 56 0.0062 58 0.0071
15 Raydan 1 68 0.0211 295 0.0475 68 0.0172
16 Extended Tridiagonal 1 11 0.0093 23 0.0078 7 0.0085
17 Extended Tridiagonal 1 11 0.0031 21 0.0045 7 0.0055
18 Extended Tridiagonal 1 11 0.0053 24 0.0074 9 0.0046
19 Diagonal 4 2 0.0074 465 0.3049 3 0.0085
20 Diagonal 4 2 0.0374 479 1.2495 3 0.0263
21 Diagonal 4 2 0.0603 192 6.2568 3 0.088
22 Extended Himmelblau 7 0.0171 28 0.0338 11 0.0204
23 Extended Himmelblau 7 0.2593 29 0.7804 12 0.4062
24 Extended Himmelblau 7 0.5279 30 1.687 11 0.7477
25 FLETCHCR 33 0.016 119 0.0286 44 0.0181
26 FLETCHCR 40 0.1885 154 0.4831 38 0.1436
27 FLETCHCR 40 1.4865 147 5.4633 37 1.2617
28 NONSCOMP 11 0.0211 676 0.0251 20 0.0126
29 NONSCOMP 271 0.017 - - 231 0.0144
30 Extended DENSCHNB 5 0.0135 9 0.0196 7 0.0144
31 Extended DENSCHNB 5 0.1668 10 0.2764 7 0.1976
32 Extended DENSCHNB 5 0.335 10 0.5641 7 0.402
33 Extended Penalty Function U52 10 0.0102 73 0.0102 11 0.0083
34 Extended Penalty Function U52 11 0.0007021 40 0.0086 15 0.000817
35 Extended Penalty Function U52 17 0.0032 382 0.0311 10 0.0047
36 Hager 9 0.0055 11 0.0052 9 0.0054
37 Hager 12 0.0005922 11 0.0011 13 0.000548
38 Hager 19 0.0033 31 0.0036 20 0.0041
39 Cube 25 0.0151 - - 12 0.2249
40 Extended Maratos 14 0.0084 5753 0.188 25 0.0091
41 Extended Maratos 14 0.0033 - - 25 0.006

continued on next page

45



Aqiil et al/A Scalar Modification Of Three-Term PRP-DL CG Method

Table 1: Numerical results for MTT with HTTCGSC and MZZ in terms of NOI and CPU Time (Continued)

42 Extended Maratos 14 0.0044 3916 0.6855 21 0.0051
43 Six Hump Camel 5 0.0247 10 0.0054 8 0.0058
44 Six Hump Camel 8 0.011 10 0.0016 8 0.0011
45 Three Hump Camel 27 0.0155 - - - -
46 Booth 2 0.0051 33 0.0062 3 0.0053
47 Booth 2 0.0001685 10 0.0003998 3 0.000214
48 Trecanni 1 0.0039 1 0.0036 1 0.0043
49 Trecanni 4 0.0011 9 0.0012 10 0.0011
50 Zettl 1 0.0046 2 0.0047 2 0.0057
51 Zettl 11 0.0011 108 0.0037 19 0.000687
52 Shallow 3 0.0113 18 0.0236 3 0.013
53 Shallow 4 0.1468 61 1.6884 3 0.0976
54 Shallow 4 0.2769 68 3.6071 3 0.1973
55 Generalized Quartic 9 0.0147 5 0.0082 - -
56 Generalized Quartic 8 0.0844 9 0.0315 - -
57 Generalized Quartic 9 0.2161 9 0.0635 18 0.1552
58 Quadratic QF2 26 0.0084 77 0.0093 28 0.0073
59 Quadratic QF2 102 0.0185 685 0.0862 102 0.0175
60 Quadratic QF2 342 0.2856 7382 9.028 305 0.2179
61 Leon 17 0.0055 - - 39 0.0172
62 Leon 14 0.0008994 - - 68 0.0044
63 Generalized Tridiagonal 1 20 0.0107 47 0.0103 22 0.0104
64 Generalized Tridiagonal 1 29 0.0023 59 0.0048 33 0.0026
65 Generalized Tridiagonal 1 36 0.0172 68 0.0208 34 0.0148
66 Generalized Tridiagonal 2 28 0.0101 65 0.0104 - -
67 Generalized Tridiagonal 2 44 0.005 79 0.0063 - -
68 Generalized Tridiagonal 2 46 0.0381 - - - -
69 POWER 10 0.0052 785 0.0275 33 0.0062
70 POWER 66 0.0071 - - 177 0.0153
71 POWER 773 0.3253 - - 2249 0.8647
72 Quadratic QF1 56 0.0146 683 0.0872 63 0.0159
73 Quadratic QF1 187 0.1162 7056 9.3302 206 0.1651
74 Quadratic QF1 606 3.0397 - - 665 4.2917
75 Extended Quadratic Penalty QP2 15 0.0012 - - 19 0.0104
76 Extended Quadratic Penalty QP2 24 0.0183 - - 37 0.0135
77 Extended Quadratic Penalty QP2 41 0.0832 - - 53 0.0958
78 Extended Quadratic Penalty QP1 7 0.0094 60 0.0019 10 0.0096
79 Extended Quadratic Penalty QP1 7 0.0525 69 0.0115 10 0.05792
80 Extended Quadratic Penalty QP1 7 0.0026 - - 11 0.0058
81 Quartic 544 0.0297 6496 0.1877 240 0.0166
82 Quartic 30 0.0015 3884 0.1083 72 0.0025
83 Matyas 1 0.0049 1 0.0062 1 0.0053
84 Matyas 1 0.000186 1 0.0001359 1 0.0001404
85 Colville 14 0.0088 4804 0.0974 35 0.0092

continued on next page

46



Applied Mathematics and Computational Intelligence
Volume 14, No. 1, 2025 [37 – 56]

Table 1: Numerical results for MTT with HTTCGSC and MZZ in terms of NOI and CPU Time (Continued)

86 Colville 84 0.0026 8881 0.1864 74 0.0023
87 Dixon and Price 79 0.0644 - - 90 0.0739
88 Dixon and Price 79 0.4333 - - 90 0.4724
89 Dixon and Price 79 4.6986 - - 90 4.5173
90 Sphere 1 0.0063 1 0.0068 1 0.0057
91 Sphere 1 0.0098 1 0.01 1 0.009
92 Sphere 1 0.067 1 0.0616 1 0.0625
93 Sum Squares 178 0.1577 6267 6.0348 178 0.1248
94 Sum Squares 578 2.8561 - - 578 3.6725
95 Sum Squares 1310 30.7119 - - 1310 47.4673
96 DENSCHNA 6 0.0205 30 0.053 8 0.0153
97 DENSCHNA 6 0.0918 34 0.443 8 0.1328
98 DENSCHNA 6 0.8686 38 6.6764 8 1.1302
99 DENSCHNB 8 0.0094 14 0.011 14 0.0106
100 DENSCHNB 8 0.0326 16 0.054 13 0.0483
101 DENSCHNB 8 0.2879 17 0.5244 12 0.3894
102 DENSCHNC 7 0.0131 125 0.0408 10 0.0132
103 DENSCHNC 7 0.0883 129 1.0174 11 0.1238
104 DENSCHNC 7 0.8096 134 14.8962 13 1.3674
105 DENSCHNF 11 0.0177 - - - -
106 DENSCHNF 12 0.0762 - - - -
107 DENSCHNF 13 0.7105 - - - -
108 Extended Block-Diagonal BD1 6 0.0113 28 0.0139 8 0.0107
109 Extended Block-Diagonal BD1 7 0.0345 31 0.1044 8 0.0342
110 Extended Block-Diagonal BD1 7 0.2876 33 1.0896 8 0.2723
111 HIMMELBG 1 0.0109 2 0.0117 1 0.0095
112 HIMMELBG 1 0.0024 3 0.0019 1 0.0046
113 HIMMELBG 1 0.0031 3 0.0026 1 0.0012
114 HIMMELBH 4 0.0079 14 0.0067 4 0.0068
115 HIMMELBH 4 0.001 15 0.002 4 0.0028
116 HIMMELBH 4 0.0011 16 0.003 4 0.0012
117 Extended Hiebert 22 0.0437 - - 43 0.0608
118 Extended Hiebert 22 0.2521 - - 37 0.3296
119 Extended Hiebert 22 2.2975 - - 46 5.0033
120 Linear Perturbed 54 0.0151 620 0.0805 54 0.0144
121 Linear Perturbed 406 1.0354 - - 406 0.9988
122 Linear Perturbed 1310 45.8803 - - 1310 48.7352
123 QUARTICM 42 0.2271 30 0.1585 35 0.1897
124 QUARTICM 109 51.2399 63 22.4039 87 26.093
125 Zirilli or Aluffi-Pentini’s 4 0.0065 5 0.0112 4 0.0058
126 Zirilli or Aluffi-Pentini’s 4 0.0002242 5 0.0002545 4 0.0001465
127 Extended Quadratic Penalty QP3 10 0.0115 15 0.0109 16 0.0101
128 Extended Quadratic Penalty QP3 10 0.0018 - - 16 0.0016
129 Extended Quadratic Penalty QP3 15 0.0084 - - - -

continued on next page

47



Aqiil et al/A Scalar Modification Of Three-Term PRP-DL CG Method

Table 1: Numerical results for MTT with HTTCGSC and MZZ in terms of NOI and CPU Time (Continued)

130 DIAG-AUP1 4 0.1897 15 0.124 26 0.1993
131 Strait 17 0.0282 790 0.5186 55 0.056
132 Strait 16 1.1067 809 59.9595 38 3.0691
133 Strait 24 16.2049 - - 50 47.1011
134 Perturbed Quadratic 2 0.0093 10 0.0097 3 0.0077
135 Perturbed Quadratic 2 0.0001905 11 0.0023 4 0.0001688
136 Perturbed Quadratic 2 0.0001502 12 0.0013 4 0.0001942
137 Diagonal 2 9 0.0113 7 0.0105 7 0.0111
138 Diagonal 2 97 0.0063 18 0.0018 19 0.0195

Table 2 : Numerical results for MTT with MTTHS and HCGM in terms of NOI and CPU Time

No Functions
MTT MTTHS HCGM
NOI CPU NOI CPU NOI CPU

1 Extended White Holst 9 1.4627 18 2.1081 - -
2 Extended White Holst 9 2.2906 13 3.9432 - -
3 Extended White Holst 10 46.1012 17 32.0173 - -
4 Extended Rosenbrock 14 0.6426 22 0.7138 5429 221.1279
5 Extended Rosenbrock 14 1.352 19 1.3355 - -
6 Extended Rosenbrock 14 23.5483 24 28.3459 - -
7 Extended Freudenstein Roth 10 0.0507 - - - -
8 Extended Freudenstein Roth - - 34 1.7817 - -
9 Extended Freudenstein Roth 10 2.3928 83 8.9313 - -
10 Extended Beale 10 0.0445 12 0.0453 1089 2.1014
11 Extended Beale 10 1.2099 14 1.2874 - -
12 Extended Beale 10 2.6315 16 3.9427 - -
13 Raydan 1 24 0.0068 18 0.0066 55 0.0067
14 Raydan 1 48 0.0053 59 0.0057 283 0.0225
15 Raydan 1 68 0.0211 68 0.017 363 0.0481
16 Extended Tridiagonal 1 11 0.0093 8 0.0083 2133 0.0999
17 Extended Tridiagonal 1 11 0.0031 10 0.0032 - -
18 Extended Tridiagonal 1 11 0.0053 14 0.0061 - -
19 Diagonal 4 2 0.0074 3 0.0087 111 0.0809
20 Diagonal 4 2 0.0374 4 0.2801 257 0.659
21 Diagonal 4 2 0.0603 5 0.154 340 12.9754
22 Extended Himmelblau 7 0.0171 7 0.0159 30 0.0389
23 Extended Himmelblau 7 0.2593 8 0.2615 39 1.62
24 Extended Himmelblau 7 0.5279 8 0.5204 - -
25 FLETCHCR 33 0.016 43 0.0175 - -
26 FLETCHCR 40 0.1885 49 0.194 - -
27 FLETCHCR 40 1.4865 36 1.3561 - -
28 NONSCOMP 11 0.0211 13 0.0204 1974 0.0507

continued on next page

48



Applied Mathematics and Computational Intelligence
Volume 14, No. 1, 2025 [37 – 56]

Table 2: Numerical results for MTT with MTTHS and HCGM in terms of NOI and CPU Time (Continued)

29 NONSCOMP 271 0.017 135 0.0198 - -
30 Extended DENSCHNB 5 0.0135 6 0.0131 17 0.027
31 Extended DENSCHNB 5 0.1668 6 0.1726 - -
32 Extended DENSCHNB 5 0.335 6 0.349 12 0.9354
33 Extended Penalty Function U52 10 0.0102 6 0.0084 79 0.01
34 Extended Penalty Function U52 11 0.0007021 13 0.0006407 109 0.0048
35 Extended Penalty Function U52 17 0.0032 10 0.0018 381 0.03
36 Hager 9 0.0055 9 0.0071 10 0.0051
37 Hager 12 0.0005922 13 0.0005144 20 0.0008025
38 Hager 19 0.0033 20 0.003 49 0.0049
39 Cube 25 0.0151 30 0.0226 - -
40 Extended Maratos 14 0.0084 26 0.0079 209 0.0138
41 Extended Maratos 14 0.0033 16 0.0023 - -
42 Extended Maratos 14 0.0044 20 0.0046 - -
43 Six Hump Camel 5 0.0247 6 0.0058 10 0.0048
44 Six Hump Camel 8 0.011 7 0.0021 25 0.0036
45 Three Hump Camel 27 0.0155 6 0.0077 - -
46 Booth 2 0.0051 3 0.005 21 0.0055
47 Booth 2 0.0001685 3 0.0001341 69 0.0013
48 Trecanni 1 0.0039 1 0.0039 1 0.0036
49 Trecanni 4 0.0011 7 0.0012 28 0.0015
50 Zettl 1 0.0046 2 0.0048 2 0.0045
51 Zettl 11 0.0011 17 0.0005669 176 0.0058
52 Shallow 3 0.0113 3 0.0037 11 0.0194
53 Shallow 4 0.1468 3 0.0983 9 0.2905
54 Shallow 4 0.2769 3 0.2086 7 0.4699
55 Generalized Quartic 9 0.0147 5 0.0089 5 0.0013
56 Generalized Quartic 8 0.0844 5 0.0197 6 0.0244
57 Generalized Quartic 9 0.2161 5 0.0409 7 0.052
58 Quadratic QF2 26 0.0084 28 0.0088 83 0.0089
59 Quadratic QF2 102 0.0185 87 0.015 651 0.0796
60 Quadratic QF2 342 0.2856 327 0.2348 6928 7.1401
61 Leon 17 0.0055 53 0.0121 - -
62 Leon 14 0.0008994 59 0.0033 - -
63 Generalized Tridiagonal 1 20 0.0107 21 0.0093 50 0.0026
64 Generalized Tridiagonal 1 29 0.0023 36 0.0026 70 0.0044
65 Generalized Tridiagonal 1 36 0.0172 - - 75 0.0253
66 Generalized Tridiagonal 2 28 0.0101 28 0.009 127 0.0039
67 Generalized Tridiagonal 2 44 0.005 46 0.0048 211 0.018
68 Generalized Tridiagonal 2 46 0.0381 48 0.0231 - -
69 POWER 10 0.0052 46 0.007 500 0.014
70 POWER 66 0.0071 266 0.0214 - -
71 POWER 773 0.3253 3133 1.3455 - -
72 Quadratic QF1 56 0.0146 63 0.0156 510 0.0699

continued on next page

49



Aqiil et al/A Scalar Modification Of Three-Term PRP-DL CG Method

Table 2: Numerical results for MTT with MTTHS and HCGM in terms of NOI and CPU Time (Continued)

73 Quadratic QF1 187 0.1162 211 0.1643 7049 8.5846
74 Quadratic QF1 606 3.0397 744 4.732 - -
75 Extended Quadratic Penalty QP2 15 0.0012 20 0.0103 - -
76 Extended Quadratic Penalty QP2 24 0.0183 30 0.0076 - -
77 Extended Quadratic Penalty QP2 41 0.0832 97 0.1428 - -
78 Extended Quadratic Penalty QP1 7 0.0094 9 0.0094 53 0.0096
79 Extended Quadratic Penalty QP1 7 0.000525 9 0.0004641 64 0.0025
80 Extended Quadratic Penalty QP1 7 0.0026 12 0.0033 - -
81 Quartic 544 0.0297 87 0.0115 6351 0.1725
82 Quartic 30 0.0015 122 0.0045 3084 0.0811
83 Matyas 1 0.0049 1 0.0047 2 0.0045
84 Matyas 1 0.000186 1 0.0001429 2 0.0001414
85 Colville 14 0.0088 34 0.0096 1045 0.0308
86 Colville 84 0.0026 48 0.0014 - -
87 Dixon and Price 79 0.0644 64 0.0552 - -
88 Dixon and Price 79 0.4333 64 0.3669 - -
89 Dixon and Price 79 4.6986 64 3.6279 - -
90 Sphere 1 0.0063 1 0.0058 1 0.0055
91 Sphere 1 0.0098 1 0.0088 1 0.0093
92 Sphere 1 0.067 1 0.059 1 0.0602
93 Sum Squares 178 0.1577 179 0.1357 5588 5.7609
94 Sum Squares 578 2.8561 588 3.6287 - -
95 Sum Squares 1310 30.7119 1363 49.4167 - -
96 DENSCHNA 6 0.0205 7 0.0234 53 0.0874
97 DENSCHNA 6 0.0918 7 0.1119 54 0.7111
98 DENSCHNA 6 0.8686 8 1.1948 22 3.8829
99 DENSCHNB 8 0.0094 7 0.0099 18 0.0123
100 DENSCHNB 8 0.0326 9 0.0544 - -
101 DENSCHNB 8 0.2879 9 0.3183 - -
102 DENSCHNC 7 0.0131 8 0.0142 119 0.0421
103 DENSCHNC 7 0.0883 8 0.093 115 0.953
104 DENSCHNC 7 0.8096 10 0.9925 138 18.1472
105 DENSCHNF 11 0.0177 - - - -
106 DENSCHNF 12 0.0762 - - - -
107 DENSCHNF 13 0.7105 - - - -
108 Extended Block-Diagonal BD1 6 0.0113 8 0.0115 23 0.0138
109 Extended Block-Diagonal BD1 7 0.0345 8 0.0374 31 0.1184
110 Extended Block-Diagonal BD1 7 0.2876 9 0.287 13 0.6905
111 HIMMELBG 1 0.0109 3 0.0119 7 0.0121
112 HIMMELBG 1 0.0024 3 0.0021 7 0.0033
113 HIMMELBG 1 0.0031 3 0.0036 7 0.0045
114 HIMMELBH 4 0.0079 4 0.0074 15 0.0072
115 HIMMELBH 4 0.001 4 0.0006591 19 0.0029
116 HIMMELBH 4 0.0011 4 0.0013 22 0.0043

continued on next page

50



Applied Mathematics and Computational Intelligence
Volume 14, No. 1, 2025 [37 – 56]

Table 2: Numerical results for MTT with MTTHS and HCGM in terms of NOI and CPU Time (Continued)

117 Extended Hiebert 22 0.0437 36 0.0472 - -
118 Extended Hiebert 22 0.2521 58 0.4567 - -
119 Extended Hiebert 22 2.2975 112 8.044 - -
120 Linear Perturbed 54 0.0151 54 0.0145 629 0.0772
121 Linear Perturbed 406 1.0354 410 1.0398 - -
122 Linear Perturbed 1310 45.8803 1363 49.7695 - -
123 QUARTICM 42 0.2271 13 0.086 - -
124 QUARTICM 109 51.2399 18 10.5822 - -
125 Zirilli or Aluffi-Pentini’s 4 0.0065 5 0.0066 9 0.0073
126 Zirilli or Aluffi-Pentini’s 4 0.0002242 4 0.000123 5 0.000211
127 Extended Quadratic Penalty QP3 10 0.0115 14 0.0098 - -
128 Extended Quadratic Penalty QP3 10 0.0018 - - - -
129 Extended Quadratic Penalty QP3 15 0.0084 - - - -
130 DIAG-AUP1 4 0.1897 14 0.1192 16 0.1582
131 Strait 17 0.0282 36 0.0423 449 0.3066
132 Strait 16 1.1067 34 2.1641 - -
133 Strait 24 16.2049 50 47.4095 - -
134 Perturbed Quadratic 2 0.0093 3 0.0001826 14 0.0078
135 Perturbed Quadratic 2 0.0001905 4 0.0001576 9 0.0002933
136 Perturbed Quadratic 2 0.0001502 4 0.0001928 17 0.0006843
137 Diagonal 2 9 0.0113 7 0.0123 16 0.0104
138 Diagonal 2 97 0.0063 24 0.0052 61 0.0045

Figure 1 and Figure 2 showed the performance profiles based on the number of iterations and CPU
time, respectively. The analysis of Figure 2 was conducted by considering the CPU time, measured
in seconds. The analysis was performed in order to estimate the time required to generate search
direction with a specific objective of executing a line search and convergence test.

Figure 1 : Performance profile corresponding to the Number of Iterations

51



Aqiil et al/A Scalar Modification Of Three-Term PRP-DL CG Method

Figure 1 showed that the proposed method, MTT outperformed the HTTCGSC, MZZ, MTTHS,
and HCGM in terms of number of iterations, as it exhibits less number of iterations. According
to the data presented in Figure 1, the MTT method achieves a success rate of 99% in solving the
test problems with the least iteration number. Meanwhile, it can be inferred that the MTTHS
method at 94%, the MZZ method at 93%, the HTTCGSC method at 70%,, and the HCGM method
at 60% in solving the test problems. As shown in Figure 1, it can be clearly seen that there is
no competition between MTT with other methods. Furthermore, it is evident that the proposed
method, MTT is the only method that approaches 1.0 the fastest. This indicates that MTT method
performs the best and more robust than all other methods in terms of number of iterations.

Figure 2 : Performance profile corresponding to the CPU time

On the other hand, according to Figure 2, it can be observed that MTT method exhibits a faster
convergence time in comparison to HTTCGSC, MZZ, MTTHS, and HCGM. However, in the early
stage, there is some competition between MTT and MTTHS. From analysis, we have that MTT
method at 99%, MTTHS method at 94%, the MZZ method at 91%, the HTTCGSC at 70% and
the HCGM method at 59% in solving all the test problems. This indicates that the MTT method
achieves the best results in terms of the amount of CPU time. Therefore, from both Figure 1 and
Figure 2, it can be concluded that MTT method outperformed other methods in terms of number
of iterations and CPU time in solving all the test problems.

5 CONCLUSION

In this study, a modification of hybrid three-term conjugate gradient method has been presented.
Subsequently, the new algorithm namely MTT has been utilized to solve large-scaled unconstrained
optimization problems. The search direction of the algorithm always satisfies sufficient descent
property regardless of any line search. In addition, the step size was obtained via strong Wolfe-Powell
line search. Convergence of the algorithm was also analyzed under certain assumptions. In order
to further support the convergence results, a numerical experiment was conducted by focusing on
tackling the problem of large-scaled unconstrained optimization with 138 test problems. Finally,

52



Applied Mathematics and Computational Intelligence
Volume 14, No. 1, 2025 [37 – 56]

the results showed that the MTT method demonstrates superiority compared methods in terms of
efficiency and robustness.

ACKNOWLEDGEMENT

The authors express their thanks to the editors and referees for their insightful comments and
suggestions.

REFERENCES

[1] M. R. Hestenes, “The conjugate-gradient method for solving,” Numerical analysis, no. 6,
p. 83, 1956.

[2] J. Wang, W. Wu, and J. M. Zurada, “Deterministic convergence of conjugate gradient
method for feedforward neural networks,” Neurocomputing, vol. 74, no. 14-15, pp. 2368–2376,
2011.

[3] R. Fletcher and C. M. Reeves, “Function minimization by conjugate gradients,” The computer
journal, vol. 7, no. 2, pp. 149–154, 1964.

[4] B. T. Polyak, “The conjugate gradient method in extremal problems,” USSR Computational
Mathematics and Mathematical Physics, vol. 9, no. 4, pp. 94–112, 1969.

[5] M. R. Hestenes, E. Stiefel et al., “Methods of conjugate gradients for solving linear systems,”
Journal of research of the National Bureau of Standards, vol. 49, no. 6, pp. 409–436, 1952.

[6] Y. Liu and C. Storey, “Efficient generalized conjugate gradient algorithms, part 1: theory,”
Journal of optimization theory and applications, vol. 69, pp. 129–137, 1991.

[7] Y.-H. Dai and Y. Yuan, “A nonlinear conjugate gradient method with a strong global
convergence property,” SIAM Journal on optimization, vol. 10, no. 1, pp. 177–182, 1999.

[8] R. Fletcher, Practical methods of optimization. John Wiley & Sons, 2000.

[9] Q. Tian, X. Wang, L. Pang, M. Zhang, and F. Meng, “A new hybrid three-term conjugate
gradient algorithm for large-scale unconstrained problems,” Mathematics, vol. 9, no. 12, p.
1353, 2021.

[10] L. Zhang, W. Zhou, and D. Li, “Some descent three-term conjugate gradient methods and
their global convergence,” Optimisation Methods and Software, vol. 22, no. 4, pp. 697–711,
2007.

[11] H. Wasi and M. A. Shiker, “A new hybrid cgm for unconstrained optimization problems,” in
Journal of Physics: Conference Series, vol. 1664, no. 1. IOP Publishing, 2020, p. 012077.

[12] S. Babaie-Kafaki, “On optimality of the parameters of self-scaling memoryless quasi-newton
updating formulae,” Journal of Optimization Theory and Applications, vol. 167, pp. 91–101,
2015.

53



Aqiil et al/A Scalar Modification Of Three-Term PRP-DL CG Method

[13] Y. H. Dai and L. Z. Liao, “New conjugacy conditions and related nonlinear conjugate gradient
methods,” Applied Mathematics and optimization, vol. 43, pp. 87–101, 2001.

[14] L. Zhang, W. Zhou, and D.-H. Li, “A descent modified polak–ribière–polyak conjugate
gradient method and its global convergence,” IMA Journal of Numerical Analysis, vol. 26,
no. 4, pp. 629–640, 2006.

[15] E. D. Dolan and J. J. Moré, “Benchmarking optimization software with performance profiles,”
Mathematical programming, vol. 91, pp. 201–213, 2002.

54



Applied Mathematics and Computational Intelligence
Volume 14, No. 1, 2025 [37 – 56]

APPENDIX

Table 3 : List of Problems Functions

No Functions Dimension No Functions Dimension

1 Extended White & Holst 50000 23 Extended Himmelblau 50000
2 Extended White & Holst 100000 24 Extended Himmelblau 100000
3 Extended White & Holst 1000000 25 FLETCHCR 100
4 Extended Rosenbrock 50000 26 FLETCHCR 5000
5 Extended Rosenbrock 100000 27 FLETCHCR 50000
6 Extended Rosenbrock 1000000 28 NONSCOMP 2
7 Extended Freudenstein & Roth 1000 29 NONSCOMP 4
8 Extended Freudenstein & Roth 50000 30 Extended DENSCHNB 1000
9 Extended Freudenstein & Roth 100000 31 Extended DENSCHNB 50000
10 Extended Beale 1000 32 Extended DENSCHNB 100000
11 Extended Beale 50000 33 Extended Penalty Function U52 5
12 Extended Beale 100000 34 Extended Penalty Function U52 10
13 Raydan 1 10 35 Extended Penalty Function U52 50
14 Raydan 1 50 36 Hager 5
15 Raydan 1 100 37 Hager 10
16 Extended Tridiagonal 1 10 38 Hager 50
17 Extended Tridiagonal 1 50 39 Cube 2
18 Extended Tridiagonal 1 100 40 Extended Maratos 10
19 Diagonal 4 1000 41 Extended Maratos 50
20 Diagonal 4 5000 42 Extended Maratos 100
21 Diagonal 4 50000 43 Six Hump Camel 2
22 Extended Himmelblau 1000 44 Six Hump Camel 2
45 Three Hump Camel 2 92 Sphere 100000
46 Booth 2 93 Sum Squares 1000
47 Booth 2 94 Sum Squares 10000
48 Trecanni 2 95 Sum Squares 50000
49 Trecanni 2 96 DENSCHNA 1000
50 Zettl 2 97 DENSCHNA 10000
51 Zettl 2 98 DENSCHNA 100000
52 Shallow 1000 99 DENSCHNB 100
53 Shallow 50000 100 DENSCHNB 5000
54 Shallow 100000 101 DENSCHNB 50000
55 Generalized Quartic 100 102 DENSCHNC 100
56 Generalized Quartic 5000 103 DENSCHNC 5000
57 Generalized Quartic 10000 104 DENSCHNC 50000
58 Quadratic QF2 10 105 DENSCHNF 100
59 Quadratic QF2 100 106 DENSCHNF 5000
60 Quadratic QF2 1000 107 DENSCHNF 50000
61 Leon 2 108 Extended Block-Diagonal BD1 100
62 Leon 2 109 Extended Block-Diagonal BD1 5000
63 Generalized Tridiagonal 1 5 110 Extended Block-Diagonal BD1 50000
64 Generalized Tridiagonal 1 10 111 HIMMELBG 10
65 Generalized Tridiagonal 1 100 112 HIMMELBG 50
66 Generalized Tridiagonal 2 10 113 HIMMELBG 100
67 Generalized Tridiagonal 2 50 114 HIMMELBH 10
68 Generalized Tridiagonal 2 500 115 HIMMELBH 50
69 POWER 10 116 HIMMELBH 100
70 POWER 50 117 Extended Hiebert 1000
71 POWER 500 118 Extended Hiebert 10000
72 Quadratic QF1 100 119 Extended Hiebert 100000

continued on next page

55



Aqiil et al/A Scalar Modification Of Three-Term PRP-DL CG Method

Table 3: List of Problem Functions (Continued)
73 Quadratic QF1 1000 120 Linear Perturbed 100
74 Quadratic QF1 10000 121 Linear Perturbed 5000
75 Extended Quadratic Penalty QP2 5 122 Linear Perturbed 50000
76 Extended Quadratic Penalty QP2 50 123 QUARTICM 1000
77 Extended Quadratic Penalty QP2 500 124 QUARTICM 50000
78 Extended Quadratic Penalty QP1 5 125 Zirilli or Aluffi-Pentini’s 2
79 Extended Quadratic Penalty QP1 10 126 Zirilli or Aluffi-Pentini’s 2
80 Extended Quadratic Penalty QP1 100 127 Extended Quadratic Penalty QP3 5
81 Quartic 4 128 Extended Quadratic Penalty QP3 10
82 Quartic 4 129 Extended Quadratic Penalty QP3 50
83 Matyas 2 130 DIAG-AUP1 10000
84 Matyas 2 131 Strait 1000
85 Colville 4 132 Strait 100000
86 Colville 4 133 Strait 1000000
87 Dixon and Price 1000 134 Perturbed Quadratic 2
88 Dixon and Price 10000 135 Perturbed Quadratic 2
89 Dixon and Price 100000 136 Perturbed Quadratic 2
90 Sphere 1000 137 Diagonal 2 2
91 Sphere 10000 138 Diagonal 2 10

56


	Introduction
	Modifications
	Convergence Analysis
	 Results and Discussions
	Conclusion

