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ABSTRACT

This study compares the performance of various machine learning models and their modifica-
tions across four benchmark credit scoring datasets to address the absence of comprehensive
comparative analyses on multiple combinations of modifications in the credit scoring domain.
Models studied include Logistic Regression (LR), Linear Discriminant Analysis (LDA),
Support Vector Machine (SVM), Random Forest (RF), and Multilayer Perceptron (MLP).
Starting from these base models, a series of modifications encompassing feature scaling,
resampling, feature selection, and hyperparameter tuning are added phase by phase to the
previous models, where the optimal method from each modification is determined in each
phase based on the accuracy, F1 score, precision, recall, area under the Receiver Operating
Characteristic curve, fitting time and prediction time. Findings reveal LR’s suitability for
small datasets, while RF and MLP excel in larger ones. Standardization and Min-Max
Scaling are generally effective, with Max-Abs Scaling enhancing RF. Synthetic Minority
Oversampling Technique proves optimal for imbalanced datasets but no resampling is nec-
essary for small balanced datasets. Analysis of Variance and Mutual Information perform
similarly without tuning, while Grid Search slightly outperforms Random Search disregarding
runtimes. The study concludes by presenting optimal models and alternatives.

Keywords: classification, comparative analysis, credit scoring, machine learning, modifica-
tion techniques

1 INTRODUCTION

Credit scoring is a process used in the financial industry when evaluating the creditworthiness of an
individual seeking credit. This process is crucial for lenders during the assessment and prediction of
credit risk as it enables them to make informed decisions regarding loan approvals and minimize
their potential financial losses.

Traditional credit-scoring models used statistical techniques such as Logistic Regression (LR) and
Linear Discriminant Analysis (LDA) to determine a consumer’s creditworthiness and assign a
numerical score based on five major categories, including payment history, debt burden, length
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of credit history, types of credit used, and new credit requests. This vastly simplifies the process
of credit evaluation and risk assessment. However, lenders now face an information asymmetry
as a numerical representation of a consumer’s creditworthiness does not always provide the full
picture. Other than accuracy, credit scoring models also face the problem of credit invisibility when
classifying the creditworthiness of consumers with limited credit histories.

Therefore, credit scoring models such as FICO and VantageScore (a more recent competitor to FICO
since 2006), evolved to meet the needs of the credit industry. Now, in response to the abundance
of Big Data, these credit scoring models can harness the utility of machine learning and artificial
intelligence (AI) techniques to enhance the performance of their scoring models. Promising machine
learning models that have been developed over the years include Support Vector Machine (SVM),
Random Forest (RF), and Multilayer Perceptron (MLP) [1–5]. However, AI techniques, including
machine learning algorithms, do not always guarantee consistent results across different scenarios.

Due to the reliance on data-driven learning, existing credit-scoring models may not consistently
deliver optimal performance across different datasets and scenarios. Therefore, it would be valuable
to comprehensively analyze the impact of various modifications, such as resampling techniques,
feature scaling methods, feature selection approaches, and hyperparameter tuning strategies, on
the performance of credit scoring models. The effectiveness of the different modifications across
different datasets can provide insights into their ability to improve credit risk assessment, and
possibly lead to an optimal combination of modifications to enhance credit risk assessment.

Apart from that, there seems to be a research gap regarding comprehensive comparative analyses
of modifications on multiple credit scoring models across diverse datasets. While some studies have
explored specific modifications to credit scoring models [4, 6–8], there is a need for a comprehensive
evaluation that considers the impact of various modifications, such as resampling, feature scaling,
feature selection, and hyperparameter tuning techniques, on the performance of these models. Such
an evaluation would provide valuable insights into the effectiveness of different strategies for credit
risk assessment. By addressing this research gap, this study aims to contribute to the advancement
of methodologies in credit risk assessment by searching for optimal combinations of modifications
for different datasets.

This study also serves as an invitation for further exploration in the field of credit scoring models
holistically. Many studies have studied specific modifications and fixed other parts of the credit-
scoring algorithm which provides valuable insights under controlled conditions [9–11]. However,
the performance of credit scoring models may be affected by the interactions between different
methods used throughout the whole credit scoring process such as resampling, feature scaling,
feature selection, and hyperparameter tuning techniques.

2 RELATED WORKS

The existing literature on credit scoring has focused on the exploration of different models [12–
16] and their variations [6, 7, 17–20]. Many have also explored specific modifications to credit
scoring models, such as resampling techniques [21–23], feature selection approaches [4, 8, 24], and
hyperparameter tuning settings [25]. However, there is a lack of comprehensive comparative analyses
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that consider the effectiveness of these modifications across multiple credit-scoring models and
diverse datasets.

[1] studied the performance of several classification algorithms across eight credit scoring datasets.
It was found that SVM and MLP performed well in terms of accuracy (ACC) and area under the
Receiver Operating Characteristic curve (AUC), alongside the statistical models LR and LDA. [2]
aimed to update the research by [1] with new alternative classification algorithms. The benchmarking
study found that RF and MLP were very versatile classifiers, with RF being recommended as a
benchmark against new classification algorithms. These two studies, although only looking at the
base models, provided a solid foundation for researchers to understand the potential of certain
classifiers, especially SVM, RF, and MLP.

Recently, [3] compared the performance between different ensemble models, which are RF, AdaBoost,
XGBoost, LightGBM, and Stacking in terms of ACC, AUC, Kolmogorov-Smirnob statistic, Brier
score, and operating time. These models are also compared to baseline classifiers, which are Neural
Networks, Decision Trees, LR, Naive Bayes, and SVM. From the experiments, they discovered that
ensemble models generally perform better than baseline classifiers, with RF being the best in all five
performance criteria. This result is similar to the study conducted by [2]. However, this study only
used one data source, that is the Lending Club Loan Data in 2018 Q4, and one hyperparameter
tuning method which is grid search.

Another recent study by [4] compared the performance of five different machine learning models
(Bayesian, Naive Bayesian, SVM, C5.0 Decision Tree, and RF) and three feature selection techniques
(Chi-square, Gain rato, and Information gain), on the German Credit Data (GC) dataset. The
objective of the research was to identify the best feature selection and machine learning model.
The evaluation metrics used were ACC, F-value, False Positives (FP), False Negatives (FN), and
training time. In this study, RF paired with the Chi-square feature selection method was found to
be the best combination among the others. Again, this result was consistent with other studies
[2, 3, 5]. However, this study also used only one data source, that is the German Credit Data, and
only looked at the effects of feature selection and the selected models.

In 2021, [5] applied different machine learning and deep learning credit scoring models in a micro-
finance environment and found that tree-based algorithms and ensemble classifiers performed better
than others. RF had the best accuracy compared with other models such as decision tree, extra
tree, XGBoost, AdaBoost, K-Nearest Neighbors, and MLP.

While existing studies have investigated the impact of individual modifications in credit-scoring
models, there remains a research gap in conducting a comprehensive evaluation that encompasses a
combination of resampling, feature scaling, feature selection, and hyperparameter tuning techniques.
Hence, this study aims to address this gap by exploring and identifying optimal combinations of
these modifications for different datasets, taking into account various evaluation metrics.
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3 METHODOLOGY

Figure 1 outlines the general methodology that will be undertaken in this study. Four benchmark
credit scoring datasets, namely Australian Credit Approval (AC), German Credit Data (GC),
Lending Club Loan Data (LC) from 2007 to the third quarter of 2020 (2020Q3), and Give Me Some
Credit Competition Data (GMSC) in 2011, are involved in this study.

START

Explore and preprocess the four bench-
mark datasets (AC, GC, LC, GSMC)

Implement the base models (LR, LDA, SVM,
RF, MLP) on the four benchmark datasets

Implement selected feature scaling methods and iden-
tify the optimal method for each model in each dataset

Implement selected resampling methods and identify
the optimal method for each model in each dataset

Implement selected feature selection
methods for each model in each dataset

Implement selected hyperparameter tuning methods
for each model and feature selection and identify
the optimal combined method in each dataset

Identify the optimal model for each dataset

END

Figure 1 : Flowchart of Research Activities

In the first phase, the datasets are explored using Python to identify the features, number of
samples, class distributions, and missing values. Table 1 shows the number of samples, features, and
class distributions of the datasets. The datasets and their metadata information can be obtained
from their relevant websites [26–29].

Based on the nature of the features and missing values, the dataset may be preprocessed through
feature elimination, binning, encoding, or imputation. Features that are deemed unimportant for
the analysis, such as identifiers and descriptions, are excluded from further consideration. This step
aims to reduce noise and the number of irrelevant features. Categorical features with a large number
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Table 1 : Overview of datasets including number of samples, features, and class distributions

Dataset Samples Features Class Distribution

AC 690 14 383 non-defaulters, 307 defaulters
GC 1000 20 700 non-defaulters, 300 defaulters
LC 1,770,000 72 1,420,000 non-defaulters, 350,000 defaulters

GMSC 150,000 11 140,000 non-defaulters, 10,000 defaulters

of categories may be binned or grouped accordingly to reduce the number of distinct categories.
This can simplify the analysis and prevent issues caused by high cardinality. Appropriate encoding
techniques, such as one-hot encoding, label encoding, or ordinal encoding are applied to convert
categorical features into numerical representations, depending on the nature of the categorical
features. Instances or features with a high percentage of missing values (more than 90%) are
removed from the dataset, as they may introduce bias. The remaining missing values are imputed
with mean or median values for numerical features and mode for categorical features.

After a clean dataset is produced, the aforementioned base models are implemented on each of the
four benchmark datasets. An 80/20 train-test split is first applied to the dataset, where 80% of
the dataset is defined as the training set and 20% of the dataset as the testing set, all of which is
done randomly. Then, the classifier is fitted with the training set at which the fitting time is also
recorded. After that, the trained classifier are used to make class predictions based on the features
from the testing set, at which the prediction is recorded.

After obtaining the prediction set, seven evaluation metrics, namely Accuracy (ACC), F1 Score
(F1), Precision (P), Recall (R), Area Under the ROC Curve (AUC), fitting time, and prediction
time are calculated based on the prediction set and the classes from the testing set. Here’s why
each metric is important:

• Accuracy (ACC): This measures the overall correctness of the model’s predictions, indicating
the proportion of total correct predictions (both defaulters and non-defaulters). However, in
imbalanced datasets, accuracy can be misleading because the model might be biased towards
the majority class.

• F1 Score (F1): This metric is the harmonic mean of precision and recall, providing a single
measure that balances the two. It is especially useful when the costs of false positives and
false negatives are different, which is often the case in credit scoring.

• Precision (P): This indicates the proportion of true positive predictions among all positive
predictions. High precision means that when the model predicts a borrower as risky, it is
often correct, reducing the number of good borrowers incorrectly classified as risky.

• Recall (R): This measures the model’s ability to identify all actual risky borrowers. High
recall ensures that most risky borrowers are correctly identified, minimizing the number of
risky borrowers that are missed.

• Area Under the ROC Curve (AUC): This metric provides an overall performance measure
by illustrating the trade-off between true positive rate and false positive rate across different
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thresholds. A higher AUC indicates better model performance in distinguishing between
defaulters and non-defaulters.

• Fitting time: This measures how long it takes to train the model. It is important to
understand the computational efficiency and feasibility of the model, especially with large
datasets.

• Prediction time: This measures how long it takes for the model to make predictions on new
data. It is crucial for assessing the model’s practicality in real-time credit scoring applications.

The results are then tabulated as shown in the next section.

In the next phase, four feature scaling methods, namely Min-Max Scaling, Standardization, Max-Abs
Scaling, and Robust Scaling are separately implemented on each of the base models for each dataset.
After the train-test split, feature scaling is applied to the features of the training set and the testing
test. The models proceed normally and the results are tabulated. Comparing the evaluation metrics
between each base model and their respective modified models after feature scaling methods are
applied, the optimal feature scaling method, which may include the case where it is optimal when
no feature scaling is applied, is identified and recorded for each model in each dataset. The recorded
method is chosen as the method applied for all further modifications in subsequent phases.

After feature scaling methods are chosen, two resampling methods, namely Random Undersampling
(RUS) and Synthetic Minority Oversampling Technique (SMOTE) are separately implemented on
each of the five chosen modified models from each dataset. Resampling is applied right before the
train-test split is done. The model then proceeds similarly to the feature scaling phase, and the
optimal resampling method for each model in each dataset is identified, recorded, and then chosen
for subsequent phases.

After resampling methods are chosen, two feature selection methods, namely Analysis of Variance
(ANOVA) and Mutual Information (MI) are again separately implemented on each of the five
modified models from each dataset. Feature selection is applied right after the train-test split
before feature scaling is done. First, each feature selection method is applied to the training set to
obtain the relevant score assigned to each feature. The scores are then remapped using Min-Max
Scaling, scaling them to a range of [0, 1]. Since score values are always non-negative, score signs
are preserved. Features that scored above 10% of the highest score are selected. The training set
and the testing set would be transformed to only include the selected features. The model then
proceeds normally with feature scaling and so on until the calculation of evaluation metrics. During
the study, it was observed that both feature selection methods without hyperparameter tuning
provided similar results. Hence, the study moves onto the hyperparameter tuning phase without
choosing an optimal feature selection method.

After the implementation of feature selection, two hyperparameter tuning methods, namely Grid
Search (GS) and Random Search (RS) are further implemented separately on top of each feature
selection method on each of the five modified models from each dataset. Hyperparameter tuning
is implemented during which the classifiers are fitted with the training set, incorporating a 5-fold
cross-validation approach. Hence, the whole model proceeds normally as the feature selection phase
except during the fitting time. During fitting, the classifier is iteratively fitted with the training
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data using different hyperparameters from a defined hyperparameter space. Table 2 shows a list of
the hyperparameters and their values used to form the hyperparameter space.

Table 2 : Hyperparameters and their values used to form the hyperparameter space

Model Hyperparameter Values

LR
C [0.01, 0.1, 1, 10, 100]

penalty [’none’, ’l1’, ’l2’, ’elasticnet’]
solver [’newton-cg’, ’lbfgs’, ’liblinear’, ’sag’, ’saga’]

LDA
solver [’svd’, ’lsqr’, ’eigen’]

shrinkage [None, ’auto’]

SVM
C [0.1, 1, 10, 100, 1000]

gamma [1, 0.1, 0.01, 0.001, 0.0001]

RF

n estimators [10, 50, 100, 200]
max depth [None, 3, 5, 7]

min samples split [2, 5, 10]
min samples leaf [1, 2, 4]
max features [None, ’sqrt’, ’log2’]

criterion [’gini’, ’entropy’, ’log loss’]

MLP

hidden layer sizes [(50,), (100,), (150,)]
activation [’identity’, ’logistic’, ’tanh’, ’relu’]
solver [’adam’, ’sgd’, ’lbfgs’]

learning rate [’constant’, ’invscaling’, ’adaptive’]

Throughout each iteration of the 5-fold cross-validation, the accuracy score of the classifier is
recorded. Upon completion of all iterations, the set of hyperparameter values yielding the highest
average accuracy score across the folds is selected and applied to the model for final fitting. This
whole process is included in the fitting time because the process depends on the type of classifier
used. Then, the model continues as usual with prediction until the evaluation metrics are calculated.
Both results from the feature selection and hyperparameter tuning phase are tabulated.

Lastly, based on all tabulated results, the optimal combination of modifications for each model
in each dataset is chosen. By comparing between the models, the overall optimal model for each
dataset can be identified. In the next section, all the tabulations of results mentioned above will be
presented and discussed, alongside the optimal modification chosen for each phase for each model,
the optimal combination of modifications for each model, and the optimal model overall.

4 RESULTS AND DISCUSSION

This section presents the tabulation of results obtained from this study, which aimed to evaluate
and compare the performance of the base and modified models across four benchmark credit-scoring
datasets. Subsequently based on the tabulation of data, some interesting findings and limitations
that can be observed are discussed. Lastly, the optimal combination of modifications for each
model in each dataset and the overall optimal model for each dataset is presented along with a few
suggested alternatives.

As mentioned in previous sections, the models would involve LR, LDA, SVM, RF, and MLP along
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with various modifications in feature scaling, resampling, feature selection, and hyperparameter
tuning techniques. Each model’s performance is evaluated based on key metrics including ACC, P,
R, F1, and AUC. Credit scoring datasets involved include AC, GC, LC, and GMSC datasets.

It should be noted that in all subsequent tables within this section, values are highlighted with
bold font when they are the highest among others within the same metric category. The values
in the tables are indicative of the model’s performance metrics, and higher values are desirable
across ACC, F1, P, R, and AUC. For example, a model with an ACC of 90% would be better
than a model with an ACC of 85%. Similarly, this is true for F1, P, R, and AUC. As described in
the previous section, these metrics are derived from the analysis of the testing set, which is 20%
of the whole dataset. Besides, it is also noteworthy that the emphasis in model selection will be
placed on ACC and AUC, while the examination of additional metrics is still undertaken to provide
supplementary insights. Recognizing that the best-performing model may not universally excel
across all metrics, this evaluation aims to guide the selection of models based on accuracy and
discrimination capabilities.

4.1 Base Models

This subsection analyzes the performance of five base credit scoring models using five key metrics
across four benchmark credit scoring datasets. The models evaluated include Logistic Regression
(LR), Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Random Forest (RF),
and Multi-Layer Perceptron (MLP).

Table 3 presents a detailed comparison of these models, showing their performance in terms of
accuracy (ACC), F1 score (F1), precision (P), recall (R), and the area under the ROC curve (AUC)
across the datasets.

Based on the analysis, LDA consistently performed well across most metrics, while SVM had the
best precision on the AC dataset. Conversely, MLP performed the worst across all metrics on the
AC dataset.

On the GC dataset, both LDA and RF exhibited strong performance. LDA achieved the highest
accuracy and AUC, showcasing its ability to handle imbalanced data effectively. RF excelled in
recall, highlighting its strength in capturing positive instances within an imbalanced dataset. This
indicates that both LDA and RF are capable of managing the challenges posed by imbalanced
datasets, each excelling in different aspects.

The consistency in results from the AC and GC datasets can be attributed to the size and balance
of these datasets. The AC dataset (690 instances) is almost balanced (383 negative vs. 307 positive
instances), while the GC dataset (1000 instances) is imbalanced (700 negative vs. 300 positive
instances). This imbalance in the GC dataset contributes to the lower AUC scores observed but
also emphasizes the strength of RF in recall and LDA’s overall balanced performance.

For the LC dataset, RF outperformed other models across most metrics, while SVM had the
highest precision. Both SVM and LR performed poorly overall, particularly in F1 and recall, due
to the significant imbalance in the dataset (1,422,314 negative vs. 347,632 positive instances). This
suggests that LDA, MLP, and especially RF are more resilient to imbalanced data when sufficient
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Table 3 : Comparison of Base Models on Various Datasets

Dataset Model ACC (%) F1 (%) P (%) R (%) AUC (%)

AC

LR 82.6087 79.6610 87.0370 73.4375 81.9890
LDA 92.0290 91.7293 88.4058 95.3125 92.2508
SVM 89.1304 87.8049 91.5254 84.3750 88.8091
RF 86.9565 85.2459 89.6552 81.2500 86.5709
MLP 72.4638 68.8525 72.4138 65.6250 72.0017

GC

LR 72.0000 81.5789 76.0736 87.9433 60.9208
LDA 74.5000 82.9431 78.4810 87.9433 65.1581
SVM 73.0000 82.2368 76.6871 88.6525 62.1229
RF 74.0000 83.4395 75.7225 92.9078 60.8607
MLP 50.5000 54.3779 77.6316 41.8440 56.5152

LC

LR 80.3986 0.4676 51.2579 0.2349 50.0902
LDA 89.9486 74.0412 74.9837 73.1220 83.5868
SVM 82.7295 24.4544 85.8122 14.2590 56.8421
RF 90.1853 75.0830 74.7373 75.4319 84.6073
MLP 89.6313 73.2743 74.0584 72.5067 83.1568

GMSC

LR 93.2800 3.9085 48.2353 2.0368 50.9398
LDA 93.6000 16.7224 52.7704 9.9354 54.6479
SVM 92.7233 3.2787 15.1639 1.8381 50.5492
RF 93.4100 26.8049 52.6163 17.9831 58.4091
MLP 92.7167 38.0493 44.3197 33.3333 65.1606

data is available (1,769,946 instances).

On the GMSC dataset, LDA achieved the best accuracy and precision, while MLP excelled in
F1, recall, and AUC. Despite this, all models showed high accuracy but performed poorly in
F1, precision, recall, and AUC, reflecting the high imbalance in the dataset (139,974 negative vs.
10,026 positive instances). This indicates that while LDA, RF, and MLP show some resilience to
imbalanced data, their performance still suffers when the dataset is highly imbalanced or not large
enough (150,000 instances).

The performance of these models is influenced by the characteristics of the datasets. The AC
dataset, with its balance between positive and negative instances, allowed LDA to excel. Conversely,
the GC dataset’s imbalance highlighted the strength of ensemble methods like RF. The large LC
dataset underscored RF’s ability to handle high variability in large volumes of data, while the
high imbalance of the GMSC dataset revealed the challenges even robust models face under such
conditions.

In summary, LDA and RF generally provided the best performance across different metrics and
datasets. The specific strengths and weaknesses of each model were influenced by dataset character-
istics such as size and balance. MLP, despite its challenges, demonstrated significant potential on
the GMSC dataset, suggesting it may be particularly effective in certain scenarios.
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4.2 Adding Feature Scaling

This subsection examines the performance of various feature scaling methods, including Min-Max
Scaling, Standardization, Max-Abs Scaling, and Robust Scaling, applied to five base models across
four credit scoring datasets. The analysis focuses on five key metrics: Accuracy (ACC), F1 Score
(F1), Precision (P), Recall (R), and Area Under the Curve (AUC). Tables 4 - 7 display the
comparative results for each model under different scaling methods on each dataset.

Table 4 : Comparison of Models on AC Dataset by Feature Scaling Methods

Model Scaling ACC (%) F1 (%) P (%) R (%) AUC (%)

LR

Min-Max 91.3043 90.7692 89.3939 92.1875 91.3640
Standard 92.7536 92.1875 92.1875 92.1875 92.7154
Max-Abs 91.3043 90.7692 89.3939 92.1875 91.3640
Robust 91.3043 90.4762 91.9355 89.0625 91.1529

LDA

Min-Max 92.0290 91.7293 88.4058 95.3125 92.2508
Standard 92.0290 91.7293 88.4058 95.3125 92.2508
Max-Abs 92.0290 91.7293 88.4058 95.3125 92.2508
Robust 92.0290 91.7293 88.4058 95.3125 92.2508

SVM

Min-Max 89.8551 89.7059 84.7222 95.3125 90.2238
Standard 89.8551 89.7059 84.7222 95.3125 90.2238
Max-Abs 89.8551 89.7059 84.7222 95.3125 90.2238
Robust 89.8551 89.7059 84.7222 95.3125 90.2238

RF

Min-Max 87.6812 86.1789 89.8305 82.8125 87.3522
Standard 86.9565 85.2459 89.6552 81.2500 86.5709
Max-Abs 89.1304 87.8049 91.5254 84.3750 88.8091
Robust 88.4058 86.8852 91.3793 82.8125 88.0279

MLP

Min-Max 92.0290 91.3386 92.0635 90.6250 91.9341
Standard 92.0290 91.2000 93.4426 89.0625 91.8285
Max-Abs 89.8551 88.8889 90.3226 87.5000 89.6959
Robust 91.3043 90.3226 93.3333 87.5000 91.0473

In Table 4, which covers the AC dataset, it is evident that Standardization consistently outperformed
other scaling methods for LR across all metrics. Max-Abs Scaling yielded the best results for the RF
on this dataset. For MLP, Min-Max Scaling achieved the highest scores in most metrics, except for
precision, where Standardization was superior. LDA showed no variation in performance regardless
of the scaling method, indicating its robustness to different feature scaling techniques. SVM also
displayed consistent performance across all scaling methods but showed noticeable improvement
compared to not using scaling.

Moving to the GC dataset, as shown in Table 5, Min-Max Scaling emerged as the best performer
for the LR model across all metrics. The RF model continued to perform optimally with Max-Abs
Scaling, similar to its performance on the AC dataset. The SVM model, when scaled with Min-
Max and Max-Abs methods, achieved the best results for most metrics, except for AUC, where
Standardization was superior. The MLP model performed best with Max-Abs Scaling in terms of
accuracy, F1 score, and recall, while Min-Max Scaling was best for precision and AUC. LDA once
again remained unaffected by the choice of scaling method, similar to the observations in the AC
dataset.
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Table 5 : Comparison of Models on GC Dataset by Feature Scaling Methods

Model Scaling ACC (%) F1 (%) P (%) R (%) AUC (%)

LR

Min-Max 77.0000 84.9673 78.7879 92.1986 66.4383
Standard 75.0000 83.3333 78.6164 88.6525 65.5127
Max-Abs 76.5000 84.5902 78.6585 91.4894 66.0837
Robust 75.5000 83.8284 78.3951 90.0709 65.3744

LDA

Min-Max 74.5000 82.9431 78.4810 87.9433 65.1581
Standard 74.5000 82.9431 78.4810 87.9433 65.1581
Max-Abs 74.5000 82.9431 78.4810 87.9433 65.1581
Robust 74.5000 82.9431 78.4810 87.9433 65.1581

SVM

Min-Max 76.0000 84.2105 78.5276 90.7801 65.7291
Standard 75.5000 83.7209 78.7500 89.3617 65.8673
Max-Abs 76.0000 84.2105 78.5276 90.7801 65.7291
Robust 75.0000 83.5526 77.9141 90.0709 64.5270

RF

Min-Max 75.0000 83.6601 77.5758 90.7801 64.0341
Standard 75.0000 84.0764 76.3006 93.6170 62.0627
Max-Abs 76.0000 84.6154 77.1930 93.6170 63.7577
Robust 74.5000 83.3876 77.1084 90.7801 63.1867

MLP

Min-Max 75.0000 82.9932 79.7386 86.5248 66.9912
Standard 73.0000 81.2500 79.5918 82.9787 66.0656
Max-Abs 75.5000 83.6120 79.1139 88.6525 66.3601
Robust 72.5000 80.9689 79.0541 82.9787 65.2182

Table 6 : Comparison of Models on LC Dataset by Feature Scaling Methods

Model Scaling ACC (%) F1 (%) P (%) R (%) AUC (%)

LR

Min-Max 89.9282 73.3358 76.2314 70.6521 82.6403
Standard 89.9463 73.3749 76.2992 70.6665 82.6570
Max-Abs 89.9285 73.3291 76.2473 70.6261 82.6307
Robust 86.1680 59.3693 69.9853 51.5498 73.0795

LDA

Min-Max 89.9486 74.0412 74.9837 73.1220 83.5868
Standard 89.9486 74.0412 74.9837 73.1220 83.5868
Max-Abs 89.9486 74.0412 74.9837 73.1220 83.5868
Robust 89.9486 74.0412 74.9837 73.1220 83.5868

SVM

Min-Max 89.9373 73.4890 75.9928 71.1449 82.8322
Standard 89.9718 73.6711 75.9009 71.5686 83.0139
Max-Abs 89.9370 73.4884 75.9916 71.1449 82.8321
Robust 88.8322 70.2945 73.4440 67.4040 80.7306

RF

Min-Max 90.2099 75.1220 74.8459 75.4002 84.6106
Standard 90.1726 75.0502 74.7062 75.3974 84.5864
Max-Abs 90.1867 75.0693 74.7752 75.3657 84.5832
Robust 90.1966 75.0921 74.8048 75.3815 84.5953

MLP

Min-Max 90.4091 75.7553 75.0878 76.4349 85.1257
Standard 90.3983 75.7431 75.0304 76.4695 85.1321
Max-Abs 90.3071 75.6089 74.6096 76.6352 85.1380
Robust 90.2353 74.5995 76.1130 73.1450 83.7738
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Table 7 : Comparison of Models on GMSC Dataset by Feature Scaling Methods

Model Scaling ACC (%) F1 (%) P (%) R (%) AUC (%)

LR

Min-Max 93.2933 2.8958 50.8475 1.4903 50.6933
Standard 93.4267 8.8725 63.5762 4.7690 52.2862
Max-Abs 93.2933 2.8958 50.8475 1.4903 50.6933
Robust 93.2733 2.8874 46.1538 1.4903 50.6826

LDA

Min-Max 93.3600 16.7224 52.7704 9.9354 54.6479
Standard 93.3600 16.7224 52.7704 9.9354 54.6479
Max-Abs 93.3600 16.7224 52.7704 9.9354 54.6479
Robust 93.3600 16.7224 52.7704 9.9354 54.6479

SVM

Min-Max 93.2900 3.0814 50.0000 1.5897 50.7377
Standard 93.3033 0.9857 62.5000 0.4968 50.2377
Max-Abs 93.2900 3.0814 50.0000 1.5897 50.7377
Robust 85.3500 8.0352 6.9414 9.5380 50.1704

RF

Min-Max 93.4167 27.0949 52.7299 18.2315 58.5280
Standard 93.4100 26.9671 52.5937 18.1321 58.4783
Max-Abs 93.4900 28.1192 54.2614 18.9767 58.9131
Robust 93.4467 27.4003 53.3813 18.4302 58.6363

MLP

Min-Max 93.6633 25.5386 60.3704 16.1947 57.7150
Standard 93.5467 26.4996 56.1997 17.3373 58.1827
Max-Abs 93.6200 25.0587 59.1497 15.8967 57.5535
Robust 93.5967 19.9250 61.9171 11.8728 55.6738

Table 6 presents the results for the LC dataset. Here, LR again showed the best performance with
Standardization, consistent with its performance on the AC dataset. However, the RF model now
performed best with Min-Max Scaling across all metrics, differing from its optimal scaling method
in the other datasets. The SVM model showed the highest overall performance with Standardization
but had the best precision with Min-Max Scaling. For the MLP model, the results were mixed:
Min-Max Scaling was best for accuracy and F1 score, Robust Scaling for precision, and Max-Abs
Scaling for recall and AUC. Although Standardization did not top any single metric for MLP, it
remained a strong overall performer alongside Min-Max Scaling.

Lastly, the GMSC dataset, presented in Table 7, reveals that Standardization was the most effective
scaling method for the LR model across most metrics. For the LDA model, all scaling methods
yielded identical results, consistent with its performance on other datasets. The SVM model
performed best with Min-Max Scaling for most metrics, except for AUC, where Max-Abs Scaling
was superior. The RF model showed the best performance with Max-Abs Scaling, similar to its
performance on the AC and GC datasets. For MLP, Min-Max Scaling and Standardization were
both strong performers, with the former excelling in precision and the latter in recall.

In summary, the analysis indicates that the optimal feature scaling method varies depending on
the model and dataset. Standardization and Max-Abs Scaling often emerged as top performers
across different models and datasets, while LDA remained largely insensitive to the choice of scaling
method. This variability underscores the importance of carefully selecting and testing feature
scaling methods to achieve the best model performance for specific applications. Table 8 shows
the feature scaling methods that are determined to be the best and are chosen to be carried on to
subsequent subsections.
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Table 8 : Chosen Feature Scaling Methods for Each Model in Each Dataset

Model AC GC LC GMSC

LR Standard Min-Max Standard Standard
LDA None None None None
SVM Min-Max Max-Abs Standard Standard
RF Max-Abs Max-Abs Min-Max Max-Abs
MLP Min-Max Max-Abs Min-Max Standard

4.3 Adding Resampling

This subsection presents the analysis of the performance of resampling methods, including Random
Undersampling (RUS) and Synthetic Minority Oversampling Technique (SMOTE), applied to the
five models scaled based on methods as shown in Table 8. Their performances will be compared
based on the aforementioned five metrics across the four datasets. Tables 9 - 12 present the
comparison of these models between resampling methods with each table depicting the results on
each dataset.

Table 9 : Comparison of Models on AC Dataset by Resampling Methods

Model Sampling ACC (%) F1 (%) P (%) R (%) AUC (%)

LR
RUS 82.1138 82.2581 78.4615 86.4407 82.2828

SMOTE 85.7143 85.7143 82.5000 89.1892 85.8446

LDA
RUS 83.7398 84.1270 79.1045 89.8305 83.9778

SMOTE 84.4156 84.8101 79.7619 90.5405 84.6453

SVM
RUS 83.7398 84.3750 78.2609 91.5254 84.0440

SMOTE 85.0649 85.5346 80.0000 91.8919 85.3209

RF
RUS 83.7398 82.7586 84.2105 81.3559 83.6467

SMOTE 89.6104 89.3333 88.1579 90.5405 89.6453

MLP
RUS 87.8049 87.3950 86.6667 88.1356 87.8178

SMOTE 86.3636 86.6242 81.9277 91.8919 86.5709

Table 10 : Comparison of Models on GC Dataset by Resampling Methods

Model Sampling ACC (%) F1 (%) P (%) R (%) AUC (%)

LR
RUS 69.1667 68.9076 69.4915 68.3333 69.1667

SMOTE 85.7143 85.9155 82.9932 89.0511 85.7843

LDA
RUS 67.5000 67.2269 67.7966 66.6667 67.5000

SMOTE 85.0000 85.3147 81.8792 89.0511 85.0850

SVM
RUS 67.5000 66.6667 68.4211 65.0000 67.5000

SMOTE 84.6429 85.0174 81.3333 89.0511 84.7353

RF
RUS 66.6667 65.5172 67.8571 63.3333 66.6667

SMOTE 85.0000 85.1064 82.7586 87.5912 85.0544

MLP
RUS 67.5000 67.7686 67.2131 68.3333 67.5000

SMOTE 81.7857 82.1053 79.0541 85.4015 81.8616

For this subsection, there is a clear pattern that can be observed throughout all datasets with minor
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Table 11 : Comparison of Models on LC Dataset by Resampling Methods

Model Sampling ACC (%) F1 (%) P (%) R (%) AUC (%)

LR
RUS 88.5547 88.5930 88.5783 88.6076 88.5546

SMOTE 91.6842 91.7276 91.4209 92.0364 91.6835

LDA
RUS 88.5562 88.6783 88.0164 89.3502 88.5536

SMOTE 91.7708 91.8718 90.9252 92.8382 91.7688

SVM
RUS 88.4303 88.4893 88.3187 88.6606 88.4296

SMOTE 91.7393 91.7949 91.3511 92.2431 91.7384

RF
RUS 88.6655 88.9310 87.1601 90.7754 88.6587

SMOTE 93.6122 93.7320 92.1725 95.3452 93.6089

MLP
RUS 88.8848 89.1722 87.1883 91.2485 88.8773

SMOTE 92.9546 92.9063 93.7265 92.1003 92.9562

Table 12 : Comparison of Models on GMSC Dataset by Resampling Methods

Model Sampling ACC (%) F1 (%) P (%) R (%) AUC (%)

LR
RUS 72.8746 69.5920 77.2333 63.3266 72.6902

SMOTE 65.7707 65.3279 65.9760 64.6924 65.7674

LDA
RUS 63.5752 63.5206 62.3835 64.6999 63.5969

SMOTE 65.0616 64.7735 65.1088 64.4416 65.0597

SVM
RUS 63.6500 63.2004 62.7255 63.6826 63.6506

SMOTE 65.1652 64.8310 65.2546 64.4129 65.1629

RF
RUS 78.1102 77.3244 78.5414 76.1445 78.0722

SMOTE 92.1111 92.0827 92.1306 92.0348 92.1109

MLP
RUS 88.9129 88.7570 90.3187 87.2484 88.9182

SMOTE 93.1167 93.0492 93.7908 92.3192 93.1152

exceptions, hence the results will be discussed together here. Based on Table 9 - 12, it can be
observed that SMOTE works best in most cases when the data is imbalanced (GC, LC, and GMSC
datasets), especially on the GC and LC datasets where it scored the highest across all metrics. The
only exception is where LR worked better with RUS on the GMSC dataset.

For the case where data is small and balanced, even though SMOTE mostly worked better than
RUS, observe from Table 4 that LR, LDA, SVM, and MLP all performed better without any
resampling done on the AC dataset. RF still performed better after SMOTE was applied. Also,
notice that the effect of SMOTE is highly effective for RF and MLP on the GMSC dataset based
on Table 12.

The overall results based on Tables 9 - 12 show that SMOTE sampling is suitable for most cases
especially when the dataset is imbalanced, while no resampling is required when the dataset is small
and balanced. Table 13 shows the resampling methods that are determined to be the best and are
chosen to be carried on to subsequent subsections.
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Table 13 : Chosen Resampling Methods for Each Model in Each Dataset

Model AC GC LC GMSC

LR None SMOTE SMOTE RUS
LDA None SMOTE SMOTE SMOTE
SVM None SMOTE SMOTE SMOTE
RF SMOTE SMOTE SMOTE SMOTE
MLP None SMOTE SMOTE SMOTE

4.4 Adding Feature Selection and Hyperparameter Tuning

This subsection provides an analysis of the performance of feature selection and hyperparameter
tuning methods applied to five models that have been scaled and resampled using the methods
outlined in Table 8 and Table 13. The feature selection methods include the Analysis of Variance
(ANOVA) F-test and Mutual Information (MI), while the hyperparameter tuning methods are Grid
Search (GS) and Random Search (RS). Their performances are compared across five metrics for
four datasets, with the results summarized in Tables 14 - 17.

In the AC dataset, Table 14 reveals that SVM was insensitive to any combinations of feature
selection or hyperparameter tuning, as indicated by unchanged metric values before and after these
methods were applied (see Table 4). A similar pattern was observed for LDA, with consistently
lower scores across all metrics for both ANOVA and MI without hyperparameter tuning. Most
models showed indifference to the type of feature selection method when hyperparameter tuning
was not involved, except for MLP, which performed better with MI, as seen by its higher scores
across metrics in Table 14. Generally, MI performed better or equally well compared to ANOVA on
the AC dataset.

The best performance on the AC dataset was achieved by the MLP model with either ANOVA-RS
or MI-GS combinations. However, it is noteworthy that LR with Standardization performed equally
well without any resampling, feature selection, or hyperparameter tuning. These three models
emerged as the best overall for the AC dataset. When comparing their fitting and prediction times,
LR with Standardization was the fastest, making it the best model for the AC dataset.

For the GC dataset, Table 15 shows that ANOVA and MI performed equally well across all metrics,
regardless of the hyperparameter tuning method used. GS outperformed other methods for LR
across all five metrics. For LDA and SVM, both ANOVA and MI performed better without
hyperparameter tuning, possibly due to overfitting. RF performed better with GS than with RS
for both ANOVA and MI. For MLP, ANOVA showed overfitting issues with both search methods,
although GS still performed better. Interestingly, Random Search performed better than Grid
Search with MI, indicating that Random Search can sometimes provide similar or better results
due to its inherent variability.

LDA with ANOVA and MI without hyperparameter tuning performed the best on the GC dataset,
but the overall best model was LR with Min-Max Scaling and SMOTE, demonstrating that LR is
effective for small datasets, while SMOTE helps with imbalanced datasets.

Table 16 presents the performance comparison on the LC dataset, noting that data on GS for
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Table 14 : Comparison of Models on AC Dataset by Feature Selection and Hyperparameter Tuning Methods

Model Selection Search ACC (%) F1 (%) P (%) R (%) AUC (%)

LR

ANOVA
None 91.3043 90.6250 90.6250 90.6250 91.2584
Grid 90.5797 89.6000 91.8033 87.5000 90.3716

Random 87.6812 85.9504 91.2281 81.2500 87.2466

MI
None 91.3043 90.6250 90.6250 90.6250 91.2584
Grid 90.5797 89.6000 91.8033 87.5000 90.3716

Random 92.0290 91.4729 90.7692 92.1875 92.0397

LDA

ANOVA
None 90.5797 90.2256 86.9565 93.7500 90.7939
Grid 92.0290 91.7293 88.4058 95.3125 92.2508

Random 92.0290 91.7293 88.4058 95.3125 92.2508

MI
None 90.5797 90.2256 86.9565 93.7500 90.7939
Grid 92.0290 91.7293 88.4058 95.3125 92.2508

Random 92.0290 91.7293 88.4058 95.3125 92.2508

SVM

ANOVA
None 89.8551 89.7059 84.7222 95.3125 90.2238
Grid 89.8551 89.7059 84.7222 95.3125 90.2238

Random 89.8551 89.7059 84.7222 95.3125 90.2238

MI
None 89.8551 89.7059 84.7222 95.3125 90.2238
Grid 89.8551 89.7059 84.7222 95.3125 90.2238

Random 89.8551 89.7059 84.7222 95.3125 90.2238

RF

ANOVA
None 88.9610 88.7417 87.0130 90.5405 89.0203
Grid 87.0130 86.8421 84.6154 89.1892 87.0946

Random 85.7143 85.8974 81.7073 90.5405 85.8953

MI
None 88.9610 88.7417 87.0130 90.5405 89.0203
Grid 87.0130 86.8421 84.6154 89.1892 87.0946

Random 88.3117 88.1579 85.8974 90.5405 88.3953

MLP

ANOVA
None 88.4058 87.3016 88.7097 85.9375 88.2390
Grid 91.3043 90.4762 91.9355 89.0625 91.1529

Random 92.7536 92.1875 92.1875 92.1875 92.7154

MI
None 89.1304 88.0000 90.1639 85.9375 88.9147
Grid 92.7536 92.1875 92.1875 92.1875 92.7154

Random 92.0290 91.4729 90.7692 92.1875 92.0397

RF and MLP is absent due to computational limitations. Despite these limitations, ANOVA
and MI performed similarly without hyperparameter tuning. GS and RS performed equally well
for LR, LDA, and SVM. However, only LR showed improvement with hyperparameter tuning.
RF performed better with RS than without hyperparameter tuning, while MLP showed signs of
overfitting. RF with ANOVA and RS was the best-performing model overall, with RF with MI and
RS being a good alternative due to its shorter fitting time of 1.30 hours, which is approximately
one-third of its ANOVA counterpart of 3.68 hours.

On the GMSC dataset, Table 17 shows that ANOVA and MI yielded similar results for LR, except
for MI-RS. LDA showed consistent patterns as in the GC and LC datasets, while SVM began
to show inconsistencies with different feature selection and hyperparameter tuning combinations,
suggesting these methods have varying effects as the dataset size and imbalance increase. RF
outperformed other models significantly on the GMSC dataset, demonstrating its effectiveness for
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Table 15 : Comparison of Models on GC Dataset by Feature Selection and Hyperparameter Tuning Methods

Model Selection Search ACC (%) F1 (%) P (%) R (%) AUC (%)

LR

ANOVA
None 79.6429 78.6517 80.7692 76.6423 79.5799
Grid 80.7143 79.8507 81.6794 78.1022 80.6595

Random 80.3571 79.5539 81.0606 78.1022 80.3098

MI
None 79.6429 78.6517 80.7692 76.6423 79.5799
Grid 80.7143 79.8507 81.6794 78.1022 80.6595

Random 80.3571 79.5539 81.0606 78.1022 80.3098

LDA

ANOVA
None 85.3571 85.6140 82.4324 89.0511 85.4346
Grid 84.2857 84.7222 80.7947 89.0511 84.3857

Random 84.2857 84.7222 80.7947 89.0511 84.3857

MI
None 85.3571 85.6140 82.4324 89.0511 85.4346
Grid 84.2857 84.7222 80.7947 89.0511 84.3857

Random 84.2857 84.7222 80.7947 89.0511 84.3857

SVM

ANOVA
None 82.5000 82.0513 82.3529 81.7518 82.4843
Grid 78.9286 77.7358 80.4688 75.1825 78.8500

Random 78.9286 77.7358 80.4688 75.1825 78.8500

MI
None 82.5000 82.0513 82.3529 81.7518 82.4843
Grid 78.9286 77.7358 80.4688 75.1825 78.8500

Random 78.9286 77.7358 80.4688 75.1825 78.8500

RF

ANOVA
None 78.9286 78.0669 79.5455 76.6423 78.8806
Grid 78.9286 78.0669 79.5455 76.6423 78.8806

Random 76.0714 75.6364 75.3623 75.9124 76.0681

MI
None 78.2143 77.6557 77.9412 77.3723 78.1966
Grid 80.7143 80.1471 80.7407 79.5620 80.6901

Random 79.2857 78.6765 79.2593 78.1022 79.2609

MLP

ANOVA
None 79.6429 78.8104 80.3030 77.3723 79.5952
Grid 78.2143 76.9811 79.6875 74.4526 78.1354

Random 75.7143 74.4361 76.7442 72.2628 75.6419

MI
None 78.2143 77.3234 78.7879 75.9124 78.1660
Grid 77.5000 76.4045 78.4615 74.4526 77.4361

Random 78.5714 77.7778 78.9474 76.6423 78.5310

large and highly imbalanced datasets, while MLP also performed well regardless of the combinations
used.

Overall, ANOVA and MI performed similarly well for all models across datasets, especially for
LR and LDA. GS generally outperformed RS, but RS reduced fitting time significantly for large
datasets and provided competitive results due to its variability. Hence, the optimal hyperparameter
tuning method depends on the specific goals and the classifiers or datasets used in the analysis.

Lastly, based on the overall results from Tables 3 - 17 and conclusions made for each dataset,
Tables 18 and 19 present the optimal models for each dataset and their suggested close-performing
alternatives.
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Table 16 : Comparison of Models on LC Dataset by Feature Selection and Hyperparameter
Tuning Methodsa,b

Model Selection Search ACC (%) F1 (%) P (%) R (%) AUC (%)

LR

ANOVA
None 90.2961 90.3938 89.6581 91.1417 90.2945
Grid 90.3362 90.4312 89.7158 91.1582 90.3346

Random 90.3365 90.4314 89.7175 91.1568 90.3350

MI
None 90.2961 90.3938 89.6581 91.1417 90.2945
Grid 90.3362 90.4312 89.7158 91.1582 90.3346

Random 90.3362 90.4311 89.7172 91.1564 90.3346

LDA

ANOVA
None 90.4826 90.6777 89.0171 92.4014 90.4790
Grid 90.4559 90.6529 88.9798 92.3901 90.4522

Random 90.4559 90.6529 88.9798 92.3901 90.4522

MI
None 90.4826 90.6777 89.0171 92.4014 90.4790
Grid 90.4559 90.6529 88.9798 92.3901 90.4522

Random 90.4559 90.6529 88.9798 92.3901 90.4522

SVM

ANOVA
None 90.3437 90.4558 89.5828 91.3459 90.3418
Grid 90.3081 90.4173 89.5739 91.2768 90.3062

Random 90.2903 90.3905 89.6325 91.1613 90.2887

MI
None 90.3427 90.4548 89.5813 91.3456 90.3408
Grid 90.3128 90.4225 89.5746 91.2866 90.3110

Random 90.3017 90.4117 89.5625 91.2771 90.2999

RF

ANOVA
None 93.6292 93.4900 95.3910 91.6634 93.6255
Grid - - - - -

Random 93.7038 93.7536 93.1893 94.3249 93.7026

MI
None 93.6102 93.4725 95.3449 91.6722 93.6066
Grid - - - - -

Random 93.6289 93.6803 93.1023 94.2656 93.6277

MLP

ANOVA
None 92.9147 92.8288 93.7878 91.8891 92.9128
Grid - - - - -

Random 92.2055 92.0215 94.4329 89.7301 92.2102

MI
None 92.8947 92.8270 93.5407 92.1241 92.8932
Grid - - - - -

Random 91.9541 92.1132 90.4912 93.7943 91.9507

a“-” indicates unavailable data. Data is unavailable due to insufficient computational resources.
b Results are based on 2-fold cross-validation.

5 CONCLUSION

As empirical research was done for each model on four benchmark credit scoring datasets (Australian,
German, Lending Club, and Give Me Some Credit 2011 Competition Datasets) and less optimal
methods were eliminated from each of the four modification phases, it was found that LR was
sufficient for small datasets while RF and MLP were better for larger datasets. As for the
modifications, Min-Max Scaling worked well in general, Max-Abs Scaling mostly paired well with
RF, Standardization paired well with LR, and Robust Scaling did not perform well with any model.
SMOTE was preferred for imbalanced datasets while no sampling is required when datasets are small
and balanced. Feature selection and hyperparameter tuning did not always improve the performance
of models due to overfitting. ANOVA and MI performed similarly without hyperparameter tuning,
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Table 17 : Comparison of Models on GMSC Dataset by Feature Selection and Hyperparameter Tuning
Methods

Model Selection Search ACC (%) F1 (%) P (%) R (%) AUC (%)

LR

ANOVA
None 69.9825 68.4155 70.6392 66.3276 69.9120
Grid 72.7250 70.0602 75.8294 65.1068 72.5779

Random 72.7250 70.0602 75.8294 65.1068 72.5779

MI
None 69.9825 68.4155 70.6392 66.3276 69.9120
Grid 72.7250 70.0602 75.8294 65.1068 72.5779

Random 72.7001 70.0738 75.7236 65.2085 72.5554

LDA

ANOVA
None 61.5967 62.5479 60.8582 64.3341 61.6051
Grid 61.4074 62.2989 60.7142 63.9686 61.4152

Random 61.4074 62.2989 60.7142 63.9686 61.4152

MI
None 61.5967 62.5479 60.8582 64.3341 61.6051
Grid 61.4074 62.2989 60.7142 63.9686 61.4152

Random 61.4074 62.2989 60.7142 63.9686 61.4152

SVM

ANOVA
None 62.1629 62.9743 61.4713 64.5527 62.1702
Grid 63.4006 51.7176 75.5178 39.3242 63.3269

Random 66.7191 64.4633 68.9077 60.5575 66.7002

MI
None 62.1682 62.9634 61.4862 64.5132 62.1754
Grid 66.4601 69.7771 63.3378 77.6739 66.4944

Random 63.0809 58.7907 66.2637 52.8324 63.0495

RF

ANOVA
None 90.6287 90.4595 91.8303 89.1290 90.6241
Grid 91.7575 91.7664 91.3865 92.1495 91.7587

Random 90.2250 90.0013 91.8145 88.2583 90.2190

MI
None 90.6555 90.4720 91.9898 89.0035 90.6504
Grid 91.7485 91.7559 91.3938 92.1208 91.7497

Random 90.7966 90.6229 92.0722 89.2185 90.7917

MLP

ANOVA
None 83.3631 83.2816 83.4328 83.1309 83.3624
Grid 83.7900 83.6345 84.1809 83.0951 83.7878

Random 83.3810 83.3813 83.1244 83.6397 83.3818

MI
None 83.6953 83.6119 83.7818 83.4426 83.6945
Grid 83.6078 83.1038 85.4606 80.8736 83.5994

Random 83.4078 82.9115 85.1899 80.7517 83.3996

while GS performed slightly better than RS disregarding runtime. Lastly, this study also presented
an optimal model and a few suggested alternative models for each dataset.
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