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ABSTRACT 

The effect of variable axial force on a loaded beam subjected to both constant and variable loads 
are considered herein. The beam is assumed to be uniform, thin, and has a simple support at both 
ends. The constant load moves with constant velocity and uniform acceleration. The Galerkin’s 
method and the integral transformation method are employed in solving the fourth order partial 
differential equation describing the motion of the beam – load system. On solving, results show 
that, increase in the values of axial force 𝑁 gives a significant reduction in the deflection profile 
of the vibrating beam. Results also show that the addition of the axial force 𝑁, foundation 
modulus 𝐾, and consideration of a damping effect in the governing equation increases the 
critical velocity of the dynamical system, thus, the risk of resonance is reduced. 

Keywords: Axial Force; Beam; Concentrated loads, Foundation modulus, Galerkin’s method. 

1 INTRODUCTION 

Solid bodies vibrate when loads move on them, this phenomenon has led to the study of elastic 
bodies’ reaction under the influence of moving loads. This article considers a beam whose mass is 
smaller than the mass of the moving loads. In a problem of a beam under moving loads, making the 
position of the loads changes continuously, this effect of the load on the beam is thus of great 
importance. Extensive work has been done on this class of dynamical problem when the structural 
members have uniform cross – sections.  

Euler Bernoulli beam theory shows a simplification of the linear theory of elasticity. The theory 
proposes a procedure for calculating the load – carrying and deflection characteristics of beams. It 
was first enunciated in 1750, but was not applied on a large scale until the development of the Eiffel 
Tower and the Ferris wheel in the late 19th century, following these successful demonstrations, it 
has become a cornerstone of engineering and an enabler of the second industrial revolution [8]. 

An extension to known analytical tools have been developed, these include; plate theory and finite 
element analysis. However, the simplicity of beam theory makes it an important tool in the sciences 
especially structural and mechanical engineering.  
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Several researchers have done extensively in the area of beam theory, see [1, 3, 6, 7, 8, 10, 11, 16, 17, 
18, 19, 22, 23], and among the few studies about the response of elastic structures to moving 
distributed loads known in the literature is the work of [3], who studied the dynamic response of 
plates on pastermark foundation under distributed moving load. 

An extensive treatment on the vibrations of beams reacting to the influence of moving loads 
containing a large number of similar cases have been studied in [17]. A dynamic Green function 
approach was used by [17] to obtain the response of a finite length of a simply supported Euler – 
Bernoulli beam affected by a moving load. They proposed a matrix expression for the deflection of 
the beam. In the case where the moving mass causes a dynamic behaviour on simply supported Euler-
Bernoulli beam was studied in [8]. 

In the aforementioned study, several authors have neglected the damping term in the governing 
differential equation of motion. This study therefore investigates the transverse displacement 
response of axially presented thin beams when the load is constant and when it (load) varies. 

In solving differential equations, several approaches have evolved, some of which include analytical 
approach; see [2, 4], numerical approximation; see [5, 12 – 15] and machine learning techniques; see 
[9, 20, 21], just to mention a few. Here in, we obtain the solution to the governing equation by using 
the Galerkin’s method to reduce the order of the differential equation and then employ the integral 
transform method to obtain its solution. 

2 THE GOVERNING EQUATION 

The Newton’s second law of motion is used to derive the equation of motion of a thin beam vibrating 
transversely under the effect of a moving load. The beam in consideration rests on an elastic 
foundation with foundation modulus K, and vibration is caused by a moving load 𝑃(𝑥, 𝑡). This beam 
is subjected to an axial force N and it is parallel to the x – axis. This is illustrated in Fig. 1. 

 

Figure 1 : A Beam resting on an elastic foundation. 

The partial differential equation (PDE) describing the vibration of the Bernoulli – Euler beam due to 
the action of a moving load when the beam has constant flexural – rigidity 𝐸𝐼 and it rests on a elastic 
foundation 𝐾 with variable axial force 𝑁 is given by: 
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𝐸𝐼
𝜕4

𝜕𝑥4
𝑤(𝑥, 𝑡) − 𝑁(4𝑥 − 3𝑥2 + 𝑥3)

𝜕2

𝜕𝑥2
𝑤(𝑥, 𝑡) + 𝜀0

𝜕

𝜕𝑡
𝑤(𝑥, 𝑡) +  𝜇

𝜕2

𝜕𝑡2
𝑤(𝑥, 𝑡) + 𝐾𝑤(𝑥, 𝑡)

= 𝑃(𝑥, 𝑡),                                                                                                                                          (1) 

where 𝑤(𝑥, 𝑡) is the lateral deflection of the beam measured from its equilibrium position, EI  is the 
flexural rigidity of the beam, E  is the young modulus of elasticity, I  is the moment of inertia, K  is the 
foundation constant, g  is the acceleration due to gravity, 𝑥 is the spatial coordinate, μ  is the mass per 
unit length of the beam, N  is the axial force, t  is the time coordinate, 𝑃(𝑥, 𝑡) is the variable load. 

Equation (1) represents the transverse motion of the thin beam being influenced by a moving load 
together with the assumptions below: 

i) The rotatory inertia is not considered. 

ii) The thin beam has a uniform cross – section  

iii) The mass of the beam is constant per unit length. 

iv) The beam’s axis experience extension and contraction. 

v) The beam has a simple support on both edges. 

Here, the beam model (1) taken to be simply supported has the boundary conditions: 

𝑤(𝑥, 𝑡) = 𝑤(𝐿, 𝑡) = 0, 

𝜕2

𝜕𝑥2
𝑤(0, 𝑡) =  

𝜕2

𝜕𝑥2
𝑤(𝐿, 𝑡) = 0, 

with initial conditions: 

𝑤(𝑥, 0) = 0 =
𝜕

𝜕𝑡
𝑤(𝑥, 0) = 0. 

3 LATERAL DEFLECTION OF THE VARIABLE AXIAL FORCE ON THE VIBRATION OF A THIN 
BEAM SUBJECTED TO CONSTANT LOAD 

Solving the governing equation (1) for the lateral deflection, the Galerkin’s method is used to reduce 
equation (1) to a second order partial differential equation (PDE). The second order PDE is then 
solved by Laplace transformation. 

Here, in the case of constant load 𝑃, the variable moving load 𝑃(𝑥, 𝑡) takes the form: 

𝑃(𝑥, 𝑡) = 𝑃 𝛿(𝑥 − 𝑐𝑡),                                                                                                                                                (2) 

where 𝑃 is a constant and 𝑐 is the constant velocity. The function 𝛿(𝑥) is defined as: 
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𝛿(𝑥) = {
0;      𝑥 ≠ 0
∞;     𝑥 = 0

 

And referred to as the Dirac – delta function, having following properties: 

∫ 𝛿(𝑥 − 𝑘)𝑓(𝑥)𝑑𝑥 =  {
𝑓(𝑘);            𝑎 < 𝑘 < 𝑏
0;                  𝑎 < 𝑏 < 𝑘
0;                  𝑘 < 𝑎 < 𝑏.

𝑏

𝑎

 

Assuming that the lateral deflection 𝑤(𝑥, 𝑡) has solution of the form, 

𝑤(𝑥, 𝑡) = ∑ 𝑌𝑚(𝑡)
sin 𝑗𝜋𝑥

𝐿

∞

𝑚=1

,                                                                                                                                    (3) 

substituting equation (2) and (3) into (1), we have, 

𝐸𝐼
𝜕4

𝜕𝑥4
∑ 𝑌𝑚(𝑡)

sin 𝑗𝜋𝑥

𝐿
− 𝑁(4𝑥 − 3𝑥2 + 𝑥3)

𝜕2

𝜕𝑥2
∑ 𝑌𝑚(𝑡)

sin 𝑗𝜋𝑥

𝐿
+ 𝜀0

𝜕

𝜕𝑡
∑ 𝑌𝑚(𝑡)

sin 𝑗𝜋𝑥

𝐿

𝑛

𝑚=1

𝑛

𝑚=1

𝑛

𝑚=1

+ 𝜇
𝜕2

𝜕𝑡2
∑ 𝑌𝑚(𝑡)

sin 𝑗𝜋𝑥

𝐿

𝑛

𝑚=1

+ 𝑘 ∑ 𝑌𝑚(𝑡)
sin 𝑗𝜋𝑥

𝐿

𝑛

𝑚=1

= 𝑃𝛿(𝑥 − 𝑐𝑡).                                      (4) 

Obtaining the first, second, third and fourth derivative of (3) gives 

𝜕

𝜕𝑥
𝑤(𝑥, 𝑡) = ∑ 𝑌𝑚(𝑡)

∞

𝑚=1

𝑗𝜋

𝐿
cos

𝑗𝜋𝑥

𝐿
,

𝜕2

𝜕𝑥2
𝑤(𝑥, 𝑡) = − ∑ 𝑌𝑚(𝑡)

∞

𝑚=1

 (
𝑗𝜋

𝐿
)

2

sin
𝑗𝜋𝑥

𝐿
,

𝜕3

𝜕𝑥3
𝑤(𝑥, 𝑡) = − ∑ 𝑌𝑚(𝑡)

∞

𝑚=1

 (
𝑗𝜋

𝐿
)

3

cos
𝑗𝜋𝑥

𝐿
,

𝜕4

𝜕𝑥4
𝑤(𝑥, 𝑡) = ∑ 𝑌𝑚(𝑡)

∞

𝑚=1

(
𝑗𝜋

𝐿
)

4

sin
𝑗𝜋𝑥

𝐿
,

                                                                                                          (5) 

and substituting (5) into (1) gives 

𝐸𝐼𝑌𝑚(𝑡) (
𝑗𝜋

𝐿
)

4 sin 𝑗𝜋𝑥

𝐿
+ 𝑁(4𝑥 − 3𝑥2 + 𝑥3)𝑌𝑚(𝑡) (

𝑗𝜋

𝐿
)

2 sin 𝑗𝜋𝑥

𝐿
+ 𝜀0

𝜕

𝜕𝑡
𝑌𝑚(𝑡)

sin 𝑗𝜋𝑥

𝐿

+ 𝜇
𝜕2

𝜕𝑡2
𝑌𝑚(𝑡)

sin 𝑗𝜋𝑥

𝐿
+ 𝑘𝑌𝑚(𝑡)

sin 𝑗𝜋𝑥

𝐿
= 𝑃𝛿(𝑥 − 𝑐𝑡).                                                       (6) 

Galerkin’s method requires that the right hand size of equation (6) be orthogonal to the function 
sin 𝑗𝜋𝑥

𝐿
, we therefore multiply the equation (6) by 

sin 𝑚𝜋𝑥

𝐿
 and integrate from 0 𝑡𝑜 𝐿, yielding 
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𝐸𝐼𝑌𝑚(𝑡) (
𝑗𝜋

𝐿
)

4

∫
sin 𝑗𝜋𝑥

𝐿

sin 𝑚𝜋𝑥

𝐿
𝑑𝑥

𝐿

0

 + 𝑁𝑌𝑚(𝑡) (
𝑗𝜋

𝐿
)

2

∫(4𝑥 − 3𝑥2 + 𝑥3)
sin 𝑗𝜋𝑥

𝐿

sin 𝑚𝜋𝑥

𝐿

𝐿

0

 𝑑𝑥

+ 𝜀0

𝜕

𝜕𝑡
𝑌𝑚(𝑡) ∫

sin 𝑗𝜋𝑥

𝐿

sin 𝑚𝜋𝑥

𝐿

𝐿

0

𝑑𝑥 + 𝜇
𝜕2

𝜕𝑡2
𝑌𝑚(𝑡) ∫

sin 𝑗𝜋𝑥

𝐿

sin 𝑚𝜋𝑥

𝐿

𝐿

0

𝑑𝑥

+ 𝑘𝑌𝑚(𝑡) ∫
sin 𝑗𝜋𝑥

𝐿

sin 𝑚𝜋𝑥

𝐿
𝑑𝑥

𝐿

0

 

= 𝑃 ∫ 𝛿(𝑥 − 𝑐𝑡)
sin 𝑚𝜋𝑥

𝐿

𝐿

0

𝑑𝑥.                                                                                                      (7) 

Equation (7) resolves to; 

[𝐸𝐼𝑌𝑚(𝑡) (
𝑚𝜋

𝐿
)

4

+ 𝜀0

𝜕

𝜕𝑡
𝑌𝑚(𝑡) + 𝜇

𝜕2

𝜕𝑡2
𝑌𝑚(𝑡) (

𝑗𝜋

𝐿
)

2

+ 𝑘𝑌𝑚(𝑡)] 𝐼1 + 𝑁𝑌𝑚(𝑡) (
𝑗𝜋

𝐿
)

2

𝐼2

= 𝑃𝐼3,                                                                                                                                                 (8) 

where 

𝐼1 = ∫
sin 𝑗𝜋𝑥

𝐿

sin 𝑚𝜋𝑥

𝐿
𝑑𝑥

𝐿

0

,

𝐼2 = ∫(4𝑥 − 3𝑥2 + 𝑥3)
sin 𝑗𝜋𝑥

𝐿

sin 𝑚𝜋𝑥

𝐿

𝐿

0

𝑑𝑥

 𝐼3 = ∫ 𝛿(𝑥 − 𝑐𝑡)
sin 𝑚𝜋𝑥

𝐿

𝐿

0

𝑑𝑥.

 

Evaluating 𝐼1, 𝐼2, and  𝐼3 (by integration by parts), when 𝑗 = 𝑚 = 1 yields 

𝐼1 =
𝐿

2
,                                                                                                                                                                             (9) 

𝐼2 = 𝐿2 −
𝐿3

2
+

𝐿4

8
+

3𝐿3

4𝜋2
−

3𝐿4

8𝜋2
,                                                                                                                           (10) 

𝐼3 = sin (
𝑐𝜋𝑡

𝐿
).                                                                                                                                                           (11) 

Substituting 𝐼1, 𝐼2, and  𝐼3 into equation (8) yields, 
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𝐸𝐼𝑌𝑚(𝑡) (
𝜋

𝐿
)

4 𝐿

2
 + 𝑁𝑌𝑚(𝑡) (

𝜋

𝐿
)

2

[𝐿2 −
𝐿3

2
+

𝐿4

8
+

3𝐿3

4𝜋2
−

3𝐿4

8𝜋2
] + 𝜀0

𝜕

𝜕𝑡
𝑌𝑚(𝑡)

𝐿

2
 + 𝜇

𝜕2

𝜕𝑡2
𝑌𝑚(𝑡)

𝐿

2

+ 𝑘𝑌𝑚(𝑡)
𝐿

2
 = 𝑃 sin (

𝑐𝜋𝑡

𝐿
) ,                                                                                                       (12) 

and simplifying to 

[𝐸𝐼
𝜋4

2𝐿4
 + 𝑁 (

𝜋2𝐿2

𝐿2
−

𝜋2𝐿3

2𝐿2
+

𝜋2𝐿4

8𝐿2
+

3𝜋2𝐿3

4𝐿2𝜋2
−

3𝜋2𝐿4

8𝐿2𝜋2) +
𝑘𝐿

2
] 𝑌𝑚(𝑡) +

𝜀0𝐿

2

𝜕

𝜕𝑡
𝑌𝑚(𝑡)  +

𝜇𝐿

2

𝜕2

𝜕𝑡2
𝑌𝑚(𝑡)  

= 𝑃 sin (
𝑐𝜋𝑡

𝐿
) .                                                                                                                               (13) 

Dividing equation (13) through by 
𝜇𝐿

2
 yields 

2

𝜇𝐿
[𝐸𝐼

𝜋4

2𝐿4
 +

𝑁𝜋2𝐿2

𝐿2
−

𝑁𝜋2𝐿3

2𝐿2
+

𝑁𝜋2𝐿4

8𝐿2
+

3𝑁𝜋2𝐿3

4𝐿2𝜋2
−

3𝑁𝜋2𝐿4

8𝐿2𝜋2
+

𝑘𝐿

2
] 𝑌𝑚(𝑡) +

𝜀0

𝜇

𝜕

𝜕𝑡
𝑌𝑚(𝑡)  +

𝜕2

𝜕𝑡2
𝑌𝑚(𝑡)  

= 𝑃 sin (
𝑐𝜋𝑡

𝐿
) ,                                                                                                                              (14) 

Choosing 

𝑃1 =
2𝑃

𝜇𝐿
, 

𝑚1 =
𝜀0

𝜇
,  

𝑚2 =
2

𝜇𝐿
[𝐸𝐼

𝜋4

2𝐿4
 +

𝑁𝜋2𝐿2

𝐿2
−

𝑁𝜋2𝐿3

2𝐿2
+

𝑁𝜋2𝐿4

8𝐿2
+

3𝑁𝜋2𝐿3

4𝐿2𝜋2
−

3𝑁𝜋2𝐿4

8𝐿2𝜋2
+

𝑘𝐿

2
], 

equation (14) then becomes 

𝑚2𝑌𝑚(𝑡) + 𝑚1

𝜕

𝜕𝑡
𝑌𝑚(𝑡)  +

𝜕2

𝜕𝑡2
𝑌𝑚(𝑡)  = 𝑃1 sin (

𝑐𝜋𝑡

𝐿
).                                                                                   (15) 

Taking the Laplace transform of equation (15) with 𝑡 = 0 and considering the boundary condition, 
we have; 

ℒ(𝑌𝑚
′′(𝑡)) = 𝑠2ℒ[𝑌𝑚(𝑡)] − 𝑠𝑌𝑚(𝑡) − 𝑌𝑚

′ (𝑡), 

ℒ(𝑌𝑚
′ (𝑡)) = 𝑠ℒ[𝑌𝑚(𝑡)] − 𝑌𝑚(𝑡), 

and 𝑌𝑚(0) = 𝑌𝑚
′ (0). 

Therefore equation (15) becomes 

𝑚2ℒ[𝑌𝑚(𝑡)] + 𝑚1𝑠ℒ[𝑌𝑚(𝑡)] + 𝑠2ℒ[𝑌𝑚(𝑡)]  = 𝑃1 ℒ[sin (
𝑐𝜋𝑡

𝐿
)] ,                                                                  (16) 



Applied Mathematics and Computational Intelligence 
Volume 11, No. 1, Dec 2022 [217 – 230] 

223 

which can be written as 

ℒ[𝑌𝑚(𝑡)]  = 𝑃1 ℒ[sin (
𝑐𝜋𝑡

𝐿
)] ×

1

[𝑚2 + 𝑚1𝑠 + 𝑠2]
.                                                                                            (17) 

Let the roots of 𝑚2 + 𝑚1𝑠 + 𝑠2 be 𝑠1 and 𝑠2 where 

𝑠1 =
−𝑚1 + √𝑚1

2 − 4𝑚2

2
,       𝑠2 =

−𝑚1 − √𝑚1
2 − 4𝑚2

2
. 

Then equation (15) becomes 

ℒ[𝑌𝑚(𝑡)]  = 𝑃1 ℒ[sin (
𝑐𝜋𝑡

𝐿
)] ×

1

(𝑠 − 𝑠1)(𝑠 − 𝑠2)
.         

Let 

   𝐹(𝑠) = 𝑃1 ℒ[sin (
𝑐𝜋𝑡

𝐿
)], 

𝐺(𝑠) =
1

(𝑠 − 𝑠1)(𝑠 − 𝑠2)
, 

then 

𝑓(𝑡) = ℒ−1[𝐹(𝑠)] = 𝑃1ℒ−1 ℒ[sin (
𝑐𝜋𝑡

𝐿
)] = 𝑃1 [sin (

𝑐𝜋𝑡

𝐿
)] ,         

𝑔(𝑡) = ℒ−1[𝐺(𝑠)] = ℒ−1 [
1

(𝑠 − 𝑠1)(𝑠 − 𝑠2)
 ] =

[𝑒𝑠1(𝑡) − 𝑒𝑠2(𝑡)]

𝑠1 − 𝑠2
. 

Thus, 

𝑓(𝑡) = 𝑃1 [sin (
𝑐𝜋𝑡

𝐿
)] ,        𝑔(𝑡) =

[𝑒𝑠1(𝑡) − 𝑒𝑠2(𝑡)]

𝑠1 − 𝑠2
. 

Using the convolution theorem; 

𝑓 ∗ 𝑔 = ∫ 𝑓(𝑢)𝑔(𝑡 − 𝑢)𝑑𝑢                   

𝑡

0

                                                                                                                 (18) 

where, 𝑌𝑚(𝑡) = 𝑓 ∗ 𝑔 

        𝑓 ∗ 𝑔 = ∫
[𝑒𝑠1(𝑡−𝑢) − 𝑒𝑠2(𝑡−𝑢)]

𝑠1 − 𝑠2

𝑡

0

𝑃1 [sin (
𝑐𝜋𝑢

𝐿
)]𝑑𝑢 
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              =
𝑃1

𝑠1 − 𝑠2
[𝑒𝑠1(𝑡) ∫ 𝑒−𝑠1𝑢 [sin (

𝑐𝜋𝑢

𝐿
)]𝑑𝑢 −

𝑡

0

𝑒𝑠2(𝑡) ∫ 𝑒−𝑠2𝑢 [sin (
𝑐𝜋𝑢

𝐿
)]𝑑𝑢

𝑡

0

]                                  (19) 

Denote ∅ =
𝑐𝜋

𝐿
, then (19) becomes 

       𝑓 ∗ 𝑔 =
𝑃1

𝑠1 − 𝑠2
[𝑒𝑠1(𝑡) ∫ 𝑒−𝑠1𝑢 sin ∅𝑢𝑑𝑢 −

𝑡

0

𝑒𝑠2(𝑡) ∫ 𝑒−𝑠2𝑢 sin ∅𝑑𝑢

𝑡

0

] 

=
𝑃1

𝑠1 − 𝑠2
[𝑒𝑠1(𝑡)𝐼𝑎𝑒𝑠2(𝑡)𝐼𝑏]                                                                                                                    (20) 

where, 

 𝐼𝑎 = ∫ 𝑒−𝑠1𝑢 sin ∅𝑢𝑑𝑢 ,

𝑡

0

 

𝐼𝑏 = ∫ 𝑒−𝑠2𝑢 sin ∅𝑑𝑢 .

𝑡

0

 

Evaluating 𝐼𝑎 and 𝐼𝑏 by integration by part gives 

𝐼𝑎 = [
−∅𝑒−𝑠1𝑡cos ∅𝑡 + ∅ − 𝑠1 𝑒−𝑠1𝑡sin ∅𝑡

∅2 + 𝑠1
2 ],                                                                                                      (21) 

and 

 𝐼𝑏 = [
−∅𝑒−𝑠2𝑡cos ∅𝑡 + ∅ − 𝑠2 𝑒−𝑠2𝑡sin ∅𝑡

∅2 + 𝑠2
2 ].                                                                                                     (22) 

substituting (21) and (22) into (20) yields 

𝑌𝑚(𝑡) =
𝑃𝐺∅

∅2 + 𝑠1
2 (cos ∅𝑡 + 𝑒𝑠1𝑡 −

𝑠1 sin ∅𝑡

∅
) −

𝑃𝐺∅

∅2 + 𝑠2
2 (cos ∅𝑡 + 𝑒𝑠2𝑡 −

𝑠2 sin ∅𝑡

∅
)                         (23) 

Substituting equation (23) into equation (3)gives the solution 

𝑤(𝑥, 𝑡) = ∑ {
𝑃𝐺∅

∅2 + 𝑠1
2 (cos ∅𝑡 + 𝑒𝑠1𝑡 −  

𝑠1 sin ∅𝑡

∅
)

𝑛

𝑚=1

−
𝑃𝐺∅

∅2 + 𝑠1
2 (cos ∅𝑡 + 𝑒𝑠2𝑡 −  

𝑠2 sin ∅𝑡

∅
)}

sin 𝑗𝜋𝑥

𝐿
                                                                 (24) 
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where,          

𝑃𝐺 =
𝑃1

𝑠1 − 𝑠2
,   𝑃1 =

2𝑃

𝜇𝐿
,     ∅ =

𝜋𝑐

𝐿
, 

and 𝑠1, 𝑠2 are the roots of the quadratic expression 𝑚2 + 𝑚1𝑠 + 𝑠2, which are given as 

𝑠1 =
−𝑚1 + √𝑚1

2 − 4𝑚2

2
,   𝑠2 =

−𝑚1 − √𝑚1
2 − 4𝑚2

2
 

4 LATERAL DEFLECTION OF THE VARIABLE AXIAL FORCE ON THE VIBRATION OF A THIN 
BEAM SUBJECTED TO VARIABLE LOAD 

The PDE describing the vibration of the Bernoulli – Euler beam being influenced by the action of a 
variable moving load 

𝑃(𝑥, 𝑡) = 𝑃𝑒𝑡𝛿(𝑥 − 𝑐𝑡),             

with the beam having a constant flexural – rigidity 𝐸𝐼 and the beam resting on a simply support elastic 
foundation 𝐾 with variable axial force N is defined by, 

𝐸𝐼
𝜕4

𝜕𝑥4
𝑤(𝑥, 𝑡) − 𝑁(4𝑥 − 3𝑥2 + 𝑥3)

𝜕2

𝜕𝑥2
𝑤(𝑥, 𝑡) + 𝜀0

𝜕

𝜕𝑡
𝑤(𝑥, 𝑡) +  𝜇

𝜕2

𝜕𝑡2
𝑤(𝑥, 𝑡) + 𝐾𝑤(𝑥, 𝑡)

= 𝑃𝑒𝑡𝛿(𝑥 − 𝑐𝑡).                                                                                                                           (25) 

We assume that 

𝑤(𝑥, 𝑡) = ∑ 𝑌𝑚(𝑡)
sin 𝑗𝜋𝑥

𝐿
     

∞

𝑚=1

                                                                                                                             (26) 

Then equation (25) becomes 

𝐸𝐼𝑌𝑚(𝑡) (
𝑗𝜋

𝐿
)

4 sin 𝑗𝜋𝑥

𝐿
+ 𝑁(4𝑥 − 3𝑥2 + 𝑥3)𝑌𝑚(𝑡) (

𝑗𝜋

𝐿
)

2 sin 𝑗𝜋𝑥

𝐿
+ 𝜀0

𝜕

𝜕𝑡
𝑌𝑚(𝑡)

sin 𝑗𝜋𝑥

𝐿

+ 𝜇
𝜕2

𝜕𝑡2
𝑌𝑚(𝑡)

sin 𝑗𝜋𝑥

𝐿
+ 𝑘𝑌𝑚(𝑡)

sin 𝑗𝜋𝑥

𝐿
= 𝑃𝑒𝑡𝛿(𝑥 − 𝑐𝑡).                                                                                                                           (27) 

Following the approach discussed in section 3, the Galerkin’s method is used to reduce (27) into a 
second order PDE 

𝑚2𝑌𝑚(𝑡) + 𝑚1

𝜕

𝜕𝑡
𝑌𝑚(𝑡)  +

𝜕2

𝜕𝑡2
𝑌𝑚(𝑡)  = 𝑃1𝑒𝑡 ∫   

sin 𝑚𝜋𝑥

𝐿
𝛿(𝑥 − 𝑐𝑡)𝑑𝑥,                                                   (28)

𝐿

0
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where 𝑚1 , 𝑚2 and 𝑃1 is properly defined in the equation of the analysis of the constant load model. 
The right hand side of (28) implies 

𝑃1𝑒𝑡 ∫   
sin 𝑚𝜋𝑥

𝐿
𝛿(𝑥 − 𝑐𝑡)𝑑𝑥  =  

𝐿

0

𝑃1𝑒𝑡
sin 𝑚𝜋𝑐𝑡

𝐿
. 

Taking the Laplace of equation (27) in conjunction with the initial condition yields 

[𝑠2𝑌𝑚(𝑠) − 𝑠𝑌𝑚(0) − 𝑌′(0)] + 𝑚1[𝑠𝑌𝑚 − 𝑌𝑚(0)] + 𝑚2𝑌𝑚 = ℒ [𝑃1𝑒𝑡
sin 𝑚𝜋𝑐𝑡

𝐿
].                              (29) 

Applying the initial condition and rearranging, we have 

𝑌𝑚(𝑡) = 𝑃1ℒ [𝑒𝑡
sin 𝑚𝜋𝑐𝑡

𝐿
]

1

𝑚2 + 𝑚1 + 𝑠2
.                                                                                                        (30) 

Let the roots of 𝑚2 + 𝑚1 + 𝑠2 be 𝑠1 and 𝑠2, where 

𝑠1 =
−𝑚1 + √𝑚1

2 − 4𝑚2

2
,      𝑠2 =

−𝑚1 − √𝑚1
2 − 4𝑚2

2
. 

Thus, equation (30) can be expressed as 

𝑌𝑚(𝑡) = 𝑃1ℒ [𝑒𝑡
sin 𝑚𝜋𝑐

𝐿
] ×

1

(𝑠 − 𝑠1)(𝑠 − 𝑠2)
.                                                                                                 (31) 

Resolving by the inverse Laplace transform as discussed in section 3, yields 

𝑌𝑚(𝑡) =
𝑃𝑝𝑒𝑠1𝑡

𝜃2 + 𝑠3
2

[−𝜃𝑒𝑠3𝑡cos 𝜃𝑡 + 𝜃 + 𝑠3𝑒𝑠3𝑡sin 𝜃𝑡]

−
𝑃𝑝

𝜃2 + 𝑠4
2

[𝜃𝑒𝑠4𝑡cos 𝜃𝑡 + 𝜃 + 𝑠4𝑒𝑠4𝑡sin 𝜃𝑡]                                                                        (32) 

where 𝑃𝑝 =
𝑃1

(𝑠1−𝑠2)
,      𝑠3 = (1 − 𝑠1),  and  𝑠4 = (1 − 𝑠2). 

Substituting (32) into (26) yields the solution 

𝑤(𝑥, 𝑡) = ∑ {
𝑃𝑝𝑒𝑠1𝑡

𝜃2 + 𝑠3
2

[−𝜃𝑒𝑠3𝑡cos 𝜃𝑡 + 𝜃 + 𝑠3𝑒𝑠3𝑡sin 𝜃𝑡]

∞

𝑚=1

−
𝑃𝑝

𝜃2 + 𝑠4
2

[𝜃𝑒𝑠4𝑡cos 𝜃𝑡 + 𝜃 + 𝑠4𝑒𝑠4𝑡sin 𝜃𝑡]}
sin 𝑗𝜋𝑥

𝐿
                                                       (33) 
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5 NUMERICAL RESULTS AND DISCUSSION 

In order to illustrate the analytical result, the length of the thin beam 𝑙 = 12.192𝑚, other values used 
are velocity 𝑐 of concentrated loads 8.128𝑚/𝑠, Young modulus, 𝐸 = 2.10924 × 109, and moment of 
inertia 𝐼 = 2876 × 10−3. The values of the foundation modulus are chosen as 0𝑁/𝑚3and 
4 × 107𝑁/𝑚3 the values for axial force 𝑁 chosen as 0 𝑁/𝑚3 and 2 × 107𝑁/𝑚3, the transverse 
displacement of a supported beam under the influence of a concentrated moving loads are computed 
and plotted against time 𝑡. This has been done for constant and variable loads with the chosen values 
for foundation modulus, circular frequency and axial force. 

Fig. 2 displays how the axial force 𝑁 affects the transverse deflection of the beam resting on an elastic 
foundation reacting to the moving distributed loads for both constant and variable loads with a fixed 
value of foundation modulus. The figure 4.2 reveals that the responses of amplitude decrease as axial 
force 𝑁 increases. 

 

Figure 2:  Displacement responses of a simply supported beam resting on an elastic foundation and 
subjected to an action of constant moving loads for various axial force, N and fixed value of 
foundation modulus K = 200,000. 

Fig. 3 displaces the response of amplitude of a supported beam under moving loads for both constant 
and variable loads. It is observed that as the value of foundation modulus 𝐾, increases for a fixed 
value of axial force 𝑁, then the response amplitude decreases. 
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Figure 3: Displacement response of a simply supported beam resting on an elastic foundation and subjected 
to action of constant loads for various values of foundation modulus 𝐾 and fixed value of axial force 
𝑁 = 200,000. 

6 CONCLUSION 

As discussed herein, the effect of variable axial force on the vibration of a thin beam subjected to both 
constant and variable loads has so far been investigated. These were assumed to have travelled with 
same loads under constant velocity. 

We have so far looked into the fourth order partial differential equation governing the motion of the 
beam. The analytical solution of this PDE` is obtained by the use of a robust technique called the 
Galerkin’s method and integral transformation method (the Laplace transform) in conjunction with 
convolution theorem. 

This study has shown that as the magnitude of the axial force Increases, the deflection of the vibrating 
loaded beam decreases, and the higher the value of foundation modulus the lower the deflection 
profile of the beam for fixed value of axial force. 
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