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ABSTRACT 

Ordinary least squares (OLS) offers good parameter estimates in regression if all 
assumptions are met. However, if the assumptions are not adhered to due to the presence of 
combined multicollinearity and outliers, parameter estimates may be severely distorted. 
Hence, robust parameter estimates were injected into the ridge regression method to 
produce robust ridge regression models. Therefore, the aim of this study is to investigate the 
performance of selected robust ridge estimators which include S, M, MM and Least Trimmed 
Squares (LTS) estimators via a simulation study. Laplace and Cauchy error distributions 
were introduced as outliers in the simulated data of various sample sizes and levels of 
multicollinearity. The performance of the estimation methods is investigated using criteria 
bias and root mean square error (RMSE). The finding indicates that Ridge LTS is the best 
robust ridge estimator in handling data containing both multicollinearity and outliers due 
to its smallest value in the RMSE. Applications of the estimators to two benchmark real-life 
datasets provide similar results. 

Keywords: Multicollinearity, Outliers, Ridge regression, Laplace, Cauchy distribution  

1 INTRODUCTION 

Regression analysis is often used for parameter estimation. One problem usually occurs in 
estimating regression is multicollinearity, the condition when the independent or predictor 
variables are highly correlated to each other [1]. The impact of using regression with the 
occurrence of multicollinearity is it will cause the estimated parameter variance to be greater 
than the actual value resulting in low precision of estimation [2]. Since the problem of 
multicollinearity may affect the result in the estimation, ridge regression was introduced [3]. 
Apart from the multicollinearity issue, another problem that should be considered is the existence 
of outliers. Outliers are known as individual points that are distinct from other data in a dataset 
which are also called abnormalities or anomalies [4, 5]. To overcome this problem, some remedial 
measures such as a robust estimator approach could be considered. Ridge regression is used 
when multicollinearity exists while a robust estimator is suggested to be used in the occurrence 
of outliers. However, in the presence of both multicollinearity and outliers in the dataset, ridge 
regression and robust estimator cannot be used separately as ridge regression is unimmunized 
to the existence of outliers. This study combined two methods in handling the problem, later 
known as robust ridge regression. The robust ridge estimators that are recommended to be used 
include S-estimator, M-estimator, MM-estimator and Least Trimmed Squares (LTS). For that 
reason, this study will focus on discussing the performance of robust ridge estimators (S, M, MM, 
LTS) on data containing various level of multicollinearity and outliers. 
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1.1 Ridge Regression 

Ordinary least squares (OLS) is commonly used to estimate regression due to its optimal 
properties and ability to ease certain computation [6]. The OLS estimator could be defined as in 
(1). 

𝛽̂ = (𝑋′𝑋)−1𝑋′𝑌           (1) 

OLS method will only be efficient when all the regression assumptions are fulfilled. However, the 
existence of multicollinearity might affect the effectiveness of OLS. Hence, Ridge regression is 
suggested to be used if the dataset displays a multicollinearity problem. The concept of ridge 
regression method was introduced by Hoerl and Kennard [3] which suggests the introduction of 
biased into the regression model by adding a ridge parameter known as k [7]. Therefore, the ridge 
regression estimator can be defined as in (2) 

𝛽̂𝑅 = (𝑋′𝑋 + 𝑘𝐼)−1𝑋′𝑌           (2) 

where I is the ( p× p) identity matrix and k is the biasing constant. 

The effectiveness of the ridge regression method is proven in the study by Kibria and Banik [8] 
where the value of the mean square error of ordinary least squares is much higher than ridge 
regression. There are several studies that prove ridge regression outperformed ordinary least 
squares in handling multicollinearity [9-11]. To determine the value of the scalar ridge parameter, 
there are several formulae can be used. In this study, the k value is determined using the formula 
suggested by Hoerl and Kennard [3] or also known as 𝑘𝐻𝐾 . The formula is presented in (3) and 
(4). 

𝑘𝐻𝐾 =
𝑝𝑠𝐿𝑆

2

𝛽𝐿𝑆
′ 𝛽̂𝐿𝑆

            (3) 

where 

𝑠𝐿𝑆
2 =

(𝑌−𝑋𝛽̂𝐿𝑆)
′
(𝑌−𝑋𝛽̂𝐿𝑆)

𝑛−𝑝
           (4) 

In using ridge regression method, the ridge regression estimator is said to perform well when the 
k value is greater than 0 and in a positive value [12]. If the value of biasing constant, k is equal to 
0, it is said to have the same effectiveness as OLS. In mathematical terms, the properties of ridge 
regression can be described as when k> 0, the MSERIDGE< MSEOLS and when k = 0, MSEOLS = MSERIDGE. 

1.2 Robust Estimators 

Robust estimator is a method that could produce a reliable result if outliers exist in the dataset. 
This method functions by reducing and limiting the influence of outlying cases by applying weight 
to the observations [1]. The importance of applying this method is due to the existence of outliers 
that may affect the magnitude of the regression coefficient and the coefficient sign [12]. There are 
several robust estimators commonly used to rectify the outlier problem. In this study, four robust 
estimators which are S, M, MM, and LTS are investigated to know which estimator performs best. 

The S estimator was introduced by [13], also known as an alternative method of M-estimation. 
While M-estimation uses the median as the estimator of 𝜎, S-estimation defines the estimator,  𝜎 
as dispersion of residual. S-estimates are the solution that finds the smallest possible dispersion 
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of the residuals 𝑚𝑖𝑛 𝜎̂ (𝑒𝑖(𝛽 ̂), …,𝑒𝑛(𝛽 ̂)). Rather than minimizing the variance of the residuals, robust 
S-estimation minimizes a robust M-estimate of the residual scale as in (5) 

1

𝑛
∑𝑛
𝑖=1 𝜌 (

𝑒𝑖

𝑠
) = 𝐾           (5) 

where K is a constant and 𝜌 (
𝑒𝑖

𝑠
) is the residual function. Peter Rouseeuw [13] suggested the 

Tukey’s biweight function with the formula given in (6) 

𝜌(𝑥) = {
𝑥2

2
−

𝑥4

2𝑐2
+

𝑥6

6𝑐4
 𝑓𝑜𝑟 |𝑥| ≤ 𝑐 

𝑐2

6
 𝑓𝑜𝑟 |𝑥| > 𝑐        (6) 

by setting c=1.5467 and K=0.1995 which gives 50% breakdown point.  

One of the most popular robust estimators is the M estimator which is introduced by [14]. The M-
estimator technique is based on replacing the sum of squared errors in the least square method 
by another robust function to cope with the problem of outliers. Rather than minimizing the sum 
of squared errors, the M-estimate minimizes a function ρ of the errors. The objective function of 
the M-estimator is as shown in (7) 

min∑𝑛
𝑖=1 𝜌 (

𝑒𝑖

𝑠
) = ∑𝑛

𝑖=1 𝜌 (
𝑦𝑖−𝑋

′𝛽̂𝑖

𝑠
)        (7) 

where s is an estimate of scale often formed from a linear combination if the residuals and ρ is a 
function that assigns the contribution of the individual residual in the objective function. 
Differentiating the objective function with respect to the coefficients β, defining ψ =  𝜌′and setting 
the partial derivates to 0, the system of equations can be written as in (8) 

∑𝑛
𝑖=1 𝜓 (

𝑦𝑖−𝑥𝑖
′𝛽̂

𝑠
) 𝑥𝑖 = 0          (8) 

where s is a robust estimate of scale. 

The MM estimator is a special type of M estimator introduced by Yohai [15]. This estimator is a 
high breakdown and high-efficiency estimator described in three stages as follows [7] 

Stage 1:  Use S-estimate for high breakdown estimator 

● Find the initial estimate, 𝛽̃.  

● Then compute the residuals, 𝑟𝑖(𝛽) = 𝑦𝑖 − 𝑥𝑖
𝑇𝛽̃. 

Stage 2: Calculate the M estimate for the scale of error. 

By using the residuals in Stage 1 and the constant  𝑘 =
1

𝑛
∑𝑛
𝑖=1 𝜌 (

𝑟𝑖

𝑠
) where 𝜌 is the objective 

function an M estimate of scale with 50% breakdown point is computed. The s (𝑟𝑖(𝛽̃), … , 𝑟𝑛(𝛽̃)) 

is denoted as 𝑠𝑛. The objective function used in this stage is labeled 𝜌0. 

Stage 3: M estimate of the regression parameters using a descending ψ function that assigns a 
weight of 0.0 to abnormally large. 
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The MM estimator is now defined as an M estimator of 𝛽 using a redescending score function, 

𝜑1(𝑢) =
𝜕𝜌1(𝑢)

𝜕𝑢
 and the scale estimate 𝑠𝑛 obtained from Stage 2. So, the MM estimator 𝛽̃ defined 

as a solution to (9) 

∑𝑛
𝑖=1 𝑥𝑖𝑗𝜑1 (

𝑟𝑖(𝛽)

𝑠𝑛
) = 0      j=1,…,p         (9) 

The LTS estimator, introduced by Rousseeuw and Van Driessen [16] is an estimator that is very 
robust to a small percentage of outliers. This estimator minimizes the sum of trimmed squared 
residuals and is written in (10) as 

𝛽̂𝐿𝑇𝑆 = 𝑚𝑖𝑛∑ℎ
𝑖=1 𝑒𝑖

2(𝛽)                      (10) 

such that ℎ =
𝑛

2
+ (

𝑝+1

2
) with n and p being sample size and number of parameters respectively, 

and 𝑒(1)
2 ≤ 𝑒(2)

2 ≤ 𝑒(3)
2 ≤ ⋯ ≤ 𝑒(𝑛)

2 , the ordered squared residuals. LTS estimator may be very 

efficient based on the value of h and the outlier. The largest squared residuals are being excluded 
from the summation in this method. Therefore, it allows those outlier data points to be excluded 
completely. Contradictory, LTS estimator may not be efficient if the number of trimmed data 
points is more than the actual outlier as some good data will be excluded. Furthermore, if the 
exact numbers of outliers in the data set are trimmed, this method calculation is similar to OLS. 

1.3 Robust Ridge Estimators 

Since ridge regression can only be used in solving multicollinearity problems and is not immune 
to the existence of outliers, a new suggested method named robust ridge estimator was 
introduced. Robust ridge is the combination between ridge regression and robust estimator 
which can be used to solve two problems that usually occur in regression analysis which are 
multicollinearity and outliers [7]. This will dampen the effects of both problems in a classical 
linear regression model. To compute the robust ridge estimator, the formula is shown in (11) 

𝛽̂𝑅𝑜𝑏𝑢𝑠𝑡𝑅𝑖𝑑𝑔𝑒 = (𝑋′𝑋 + 𝑘𝑅𝐼)
−1𝑋′𝑌                     (11) 

where the 𝑘𝑅is the robust ridge parameter. The value is obtained from the robust regression 
methods explained before. In this study, the formula used to obtain the 𝑘𝑅 value is shown in (12) 

𝑘𝑅 =
𝑝𝑆𝑅𝑜𝑏𝑢𝑠𝑡

2

𝛽𝑅𝑜𝑏𝑢𝑠𝑡
′ 𝛽̂𝑅𝑜𝑏𝑢𝑠𝑡

                       (12) 

where p is the number of regressor and 𝑆𝑅𝑜𝑏𝑢𝑠𝑡
2 is the robust scale estimator. 

2 THE SIMULATION STUDY 

We make Monte Carlo simulation comparing Least Squares Estimators (OLS), Ridge S-estimator, 
Ridge M-estimator, Ridge MM-estimator, and Ridge Least Trimmed Squares (LTS). We use R 
language to create our program to set up Monte Carlo simulation and this program is available if 
requested. 
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2.1 The Simulation Design 

A Monte Carlo simulation study has been used to determine which robust ridge estimator 
performed best in the condition where both multicollinearity and outliers exist in the dataset. For 
this study, simulated data are generated for moderate and high values of collinearity (ρ= 0.50, 
0.90, 0.95) with three different sample sizes (n= 25, 50, 100). The multivariate linear regression 
used for the simulation study is in (13) 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝜀𝑖                      (13) 

where 𝛽0 = 𝛽1 = 𝛽2 = 𝛽3 = 1.  

The explanatory variables were generated using (14): 

𝑥𝑖𝑗 = (1 − 𝜌2)𝑧𝑖𝑗 + 𝜌𝑧𝑖𝑗           𝑖 = 1,2, … , 𝑛        𝑗 = 1,2,3                  (14) 

where 𝑧𝑖𝑗  are the independent standard normal random numbers that are held fixed for a given 

sample size n. The final factor that needs to be added to the model is the outliers, generated from 
two heavy-tailed distributions, which are the Laplace distribution with mean zero and variance 
two, and the Cauchy distribution with median zero and scale parameter one.   

To access the performance of each robust ridge estimator, 1000 Monte Carlo trials were used by 
using bias and root mean square error (RMSE) with the formulas given in (15) and (16) 

Bias = 𝛽𝑖 − 𝛽𝑖    where       𝛽𝑖 =
∑𝑚𝑖=1 𝛽𝑖

𝑚
,   m=1000                   (15) 

and 

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑𝑛
𝑖=1 (𝛽̂𝑖 − 𝛽𝑖)

2
                      (16) 

3 RESULTS AND DISCUSSION 

The simulation study with 1000 trials were carried out for three sample sizes with a combination 
of various level of multicollinearity and outliers are computed.  The performance of the methods 

considered are investigated for  𝛽̂1 based on the values of bias and RMSE (see Table 1). The 
performances of the estimators when referring to the bias values are inconsistent, unable to 
indicate which estimator is best.  When referring to the RMSE value, it can be seen that Ridge LTS 
is the best estimator as compared to other estimators when both multicollinearity and outliers 
exist in the dataset since the value of RMSE is the lowest. Ridge LTS performs best as the sample 

size gets larger. The simulation results are similar for 𝛽̂2 and 𝛽̂3. 

Figure 1 provides the density plots for  𝛽̂1,  𝛽̂2 and  𝛽̂3 for 1000 Simulations for Laplace 
distribution and Cauchy Distribution for multicollinearity level of ρ=0.95 with sample size n=50. 
It shows that Ridge LTS estimator outperforms other estimators.  Similar results apply for other 
sample sizes and levels of multicollinearity. 
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Table 1 : Bias and RMSE (in parentheses) of 𝛽̂1with Laplace and Cauchy Error Distribution for sample size, 
n=25, 50 and 100 

                         Laplace                            Cauchy 

n Method ρ=0.50 ρ=0.90 ρ=0.95 ρ=0.50 ρ=0.90 ρ=0.95 

 OLS 0.0006 

(0.4105) 

0.0642 

(1.6637) 

0.0185 

(3.2114) 

3.9811 

(76.3161) 

15.7149 

(301.2479) 

10.3837 

(347.9403) 

 Ridge S 0.0898 

(0.3526) 

0.0391 

(0.8296) 

0.0428 

(1.5100) 

0.5308 

(0.7435) 

0.3195 

(1.1835) 

0.1970 

(1.7309) 

25 Ridge M 0.0775 

(0.3604) 

0.0258 

(0.8194) 

0.0449 

(1.4647) 

0.4825 

(0.7733) 

0.2526 

(1.3751) 

0.1996 

(2.0430) 

 Ridge 

MM 

0.0789 

(0.3589) 

0.0278 

(0.8033) 

0.0381 

(1.4202) 

0.5159 

(0.7371) 

0.2918 

(0.9876) 

0.1920 

(1.5087) 

 Ridge 

LTS 

0.0965 

(0.3493) 

0.0241 

(0.7738) 

0.0472 

(1.3622) 

0.5195 

(0.7294) 

0.3143 

(0.9629) 

0.1717 

(1.4167) 

 OLS 0.0087 

(0.2754) 

0.0815 

(1.1507) 

0.1099 

(2.1716) 

0.4014 

(13.9885) 

4.6226 

(321.6129) 

14.6776 

(482.7921) 

 Ridge S 0.0537 

(0.2564) 

0.0858 

(0.6269) 

0.0592 

(1.0931) 

0.5619 

(0.7336) 

0.4015 

(0.7978) 

0.2746 

(1.1347) 

50 Ridge M 0.0498 

(0.2587) 

0.0833 

(0.6463) 

0.0524 

(1.0387) 

0.5408 

(0.7441) 

0.3898 

(0.8396) 

0.2706 

(1.1593) 

 Ridge 

MM 

0.0504 

(0.2583) 

0.0839 

(0.6327) 

0.0572 

(1.0086) 

0.5568 

(0.7343) 

0.4100 

(0.7091) 

0.2711 

(0.8914) 

 Ridge 

LTS 

0.0553 

(0.2559) 

0.0916 

(0.6023) 

0.0661 

(0.9818) 

0.5577 

(0.7305) 

0.3744 

(0.6813) 

0.2934 

(0.8531) 

 OLS 0.0003 

(0.1875) 

0.0092 

(0.7772) 

0.0229 

(1.4185) 

0.6616 

(14.4042) 

0.4881 

(75.5959) 

6.6782 

(286.1028) 

 Ridge S 0.0223 

(0.1807) 

0.0296 

(0.5020) 

0.0319 

(0.7547) 

0.5443 

(0.7187) 

0.4484 

(0.6651) 

0.3211 

(0.7507) 

100 Ridge M 0.0213 

(0.1814) 

0.0264 

(0.5027) 

0.0273 

(0.6906) 

0.5372 

(0.7205) 

0.4353 

(0.6683) 

0.2771 

(0.7363) 

 Ridge 

MM 

0.0215 

(0.1812) 

0.0280 

(0.4978) 

0.0288 

(0.6785) 

0.5451 

(0.7176) 

0.4500 

(0.6446) 

0.2995 

(0.6857) 

 Ridge 

LTS 

0.0229 

(0.1805) 

0.0248 

(0.4842) 

0.0429 

(0.6642) 

0.5401 

(0.7152) 

0.4227 

(0.6320) 

0.2848 

(0.6650) 
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(a) 

 

(b) 

Figure 1 : Density Plots of  𝛽̂1,  𝛽̂2 and  𝛽̂3 for 1000 Simulations for (a) Laplace Distribution and (b) Cauchy 
Distribution for  ρ=0.95 with n=50 

 

3.1 Application of Real Data 

For further investigation, the performance of the estimators are applied to Longley data [17]. This 
dataset is chosen since the data properties exhibit the interest of study where both 
multicollinearity and outliers exist in the dataset. All computation was made using R software. 
Longley data consists of six variables known as Employment, Prices, Unemployed, Military, GNP, 
and Population Size. GNP is the Gross National Product, employment is the number of people 
employed, price is the GNP implicit price deflator, unemployed is the number of unemployed, 
military is the number of people in the armed forces and population size is the non-
institutionalized population of persons at age ≥14 years. Table 2 shows the result for the Longley 
dataset. Based on the result, the lowest standard error (SE) for all variables in Longley data were 
recorded by Ridge LTS. This proves that the result is parallel with the simulation study where 
Ridge LTS was found to be the best estimator in the presence of multicollinearity and outliers. 
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Table 2 : Estimated Parameter Coefficient and Standard Error (SE) of Longley Data for Different 
Estimators 

Estimate OLS Ridge S Ridge M Ridge 

MM 

Ridge 

LTS 

𝛽̂1 0.0151 -0.0040 -0.0060 -0.0049 -0.0068 

SE 0.0849 0.0841 0.0840 0.0840 0.0840 

𝛽̂2 -0.0358 -0.0059 -0.0027 -0.0045 -0.0015 

SE 0.0334 0.0276 0.0270 0.0274 0.0268 

𝛽̂3 -0.0202 -0.0157 -0.0153 -0.0155 -0.0151 

SE 0.0048 0.0040 0.0039 0.0039 0.0039 

𝛽̂4 -0.0103 -0.0090 -0.0089 -0.0090 -0.0089 

SE 0.0021 0.0020 0.0020 0.0020 0.0020 

𝛽̂5 -0.0511 -0.1529 -0.1636 -0.1575 -0.1678 

SE 0.2260 0.2167 0.2159 0.2164 0.2156 

𝛽̂6 1.8292 1.3300 1.2776 1.3075 1.2566 

SE 0.4554 0.3280 0.3146 0.3222 0.3092 

4 CONCLUSION 

Ordinary least squares (OLS) could not perform well in the condition where multicollinearity and 
outliers exist in the dataset. The suggested method to be used is robust ridge regression where 
various robust ridge estimators can be used to handle both multicollinearity and outlier 
problems. A simulation study to examine the performance of several robust ridge estimators 
proved that Ridge Least Trimmed Squares (LTS) was found to be the best estimator, followed by 
Ridge MM. Based on two real-life datasets, Longley and Portland Cement data, the results were 
found to be parallel with the simulation study where Ridge LTS estimator offers the most practical 
option over other estimators when both multicollinearity and outliers are present. 
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