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ABSTRACT

Image denoising poses a critical challenge due to the impact of noise on image quality and the
need to preserve essential details. This study introduces a hybrid Polak-Ribiére-Polyak (PRP)-
Dai-Liao (DL) conjugate gradient method with a modified scalar to improve the performance
of denoising algorithms on large-scale images. The proposed method involves modifying the
scalar in the PRP-DL conjugate gradient method, thereby enhancing algorithmic efficiency,
especially in handling large-scale problems. Convergence analysis under the standard Wolfe-
Powell line search is established, and numerical results demonstrate that the proposed method
is more efficient and robust than existing conjugate gradient methods. The application of the
method to image denoising with various noise levels and window sizes confirms its capability
to effectively remove noise while preserving image details. Overall, this modified conjugate
gradient method shows promise for practical applications in image denoising problem.

Keywords: modified hybrid conjugate gradient method, image denoising, large-scale
optimization, global convergence, line search, noise reduction.

1 INTRODUCTION

The conjugate gradient (CG) method is a well-established iterative algorithm, valued for its
computational efficiency and adaptability to various problem settings. Introduced by Eduard Stiefel
and Magnus [1], this method is celebrated for its memory efficiency and rapid convergence, making
it applicable across numerous research domains [2]. In the CG method, each iteration improves an
initial estimate, generating a sequence represented as xk:

xk+1 = xk + αkdk, k = 0, 1, 2, . . . (1)

where xk is the current iteration point, dk is the search direction, and αk > 0 is the step size,
determined by a line search. The standard Wolfe-Powell line search, which extends the standard
Wolfe-Powell method, includes additional conditions to ensure more reliable convergence:

f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk, (2)

g(xk + αkdk)
Tdk ≥ σgTk dk, (3)

where scalar gk is the derivative of f(x) at the point of xk, g
T
k is the transpose of gk and δ is a very

small positive value, 0 < δ < σ < 1.
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For the line search algorithm to ensure convergence, the search direction dk must satisfy the sufficient
descent condition:

gTk dk ≤ −c||gk||2, (4)

where c > 0 is a constant. The search direction, dk is determined by :

dk =

{
−gk, if k = 0,

−gk + βkdk−1, if k ≥ 1.
(5)

where βk is known as the CG coefficient.

There are several formulas available for βk, such as the Fletcher-Reeves (FR) by [3], Polak-Ribière-
Polyak (PRP) by [4], Hestenes-Stiefel (HS) by [5], Liu-Storey by [6] (LS), Dai-Yuan (DY) by [7],
and Conjugate Descent (CD) by [8] as stated below:

βHS
k =

gTk yk−1

dTk−1yk−1
, βPRP

k =
gTk yk−1

gTk−1gk−1
, βLS

k =
gTk yk−1

−dTk−1gk−1

βDY
k =

gTk gk

dTk−1yk−1
, βFR

k =
gTk gk

gTk−1gk−1
, βCD

k =
gTk gk

−dTk−1gk−1

where yk−1 = gk − gk−1.

The hybrid CG method integrates various classical CG approaches to leverage their respective
strengths. It is widely regarded as being more efficient and robust compared to classical CG methods.
Developed to address the dual challenges of computational efficiency and memory limitations in
large-scale optimization, this hybrid approach aims to accelerate convergence while minimizing
memory usage. The three-term CG method, an extension of the classical CG approach, introduces a
novel three-term recursion formula. This enhanced recursion introduces greater complexity but also
improves convergence speed and optimization efficiency compared to two-term methods. Although
the three-term method involves more intricate calculations per iteration, its potential for faster
convergence and superior performance on certain optimization problems makes it a valuable tool
for optimization practitioners. In the study by [9], the numerical performance of a new hybrid
three-term CG method incorporating a modified secant condition (HTTCGSC) was evaluated
and compared with the modified three-term Hestenes–Stiefel (MTTHS) method [10]. Results
demonstrated that HTTCGSC achieved superior performance, solving test problems with the lowest
iteration count, fewer function and gradient evaluations, and minimal CPU time. Additionally, [11]
examined a hybrid CG method (HCGM) combining the PRP and FR methods, which demonstrated
sufficient descent under appropriate line search conditions. The MZZ method proposed by [12] also
ensures the sufficient descent condition. The newly proposed modified hybrid three-term (MTT)
CG method in this study will be compared with MTTHS and MZZ in the context of unconstrained
optimization.

1.1 Image denoising problems

A two-phase approach was employed to eliminate salt and pepper noise from images which proposed
in the study by Chan et al. [13]. The first phase involved identifying noisy pixels using an adaptive
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median filter. Meanwhile, the suggested NM algorithm was utilized to solve the objective function
defined by equation (6) in the second phase, effectively removing noise points and restoring the
image by minimizing the following function:

min fα(ν) :=
∑

(m,n)∈N

(
λS1

m,n +
λ

2
S2
m,n + l1

)
, (6)

where

S1
m,n =

∑
(p,q)∈Vm,n\N

φα(νmn − ηpq), Sm,n
2 =

∑
(p,q)∈Vmn∩N

φα(νmn − νpq).

N = {(m,n) ∈ A : ηmn ̸= ηmn, ηmn = smin or Smax}

N denotes as the candidate set of noisy pixels in the phase one. (m,n) ∈ A = {1, 2, . . . , P} ×
{1, 2, . . . , Q} is the original image pixel set x of size P × Q. Meanwhile, the range value of x is
[smin, Smax], while ν = [νm,n](m,n)∈N is a column vector arrange in lexicographic order, in which
ηm,n is the observed pixel value at the coordinate (m,n). Furthermore, Vm,n denotes the set of
four neighbors at the pixel point (m,n) ∈ A, excluding (m,n), i.e., Vm,n = {(m,n − 1), (m,n +
1), (m− 1, n), (m+ 1, n)}. Moreover, l1 represents the data-fitting component, ϕα(a) =

√
a2 + a

where a > 0, serves as the edge-preserving function [14], while λ is an appropriate parameter.

Non-smooth optimization problems can be computationally expensive to solve. To address this, by
eliminating the l1 term in equation (6), the function is reformulated into a smooth UOP, making it
more computationally efficient (refer to [15] for further information).

min fα(ν) :=
∑

(m,n)∈N

(
S1
m,n +

1

2
S2
m,n

)
. (7)

The experimental findings by Cai et al. [15] indicate that the presence or absence of a fitting
term does not significantly impact the effectiveness of image restoration. Efficient removal of
salt-and-pepper noise requires denoising algorithms capable of distinguishing corrupted pixels from
uncorrupted ones while preserving the original features of the image. This study introduces a
modified hybrid Polak-Ribière-Polyak (PRP)-Dai-Liao (DL) conjugate gradient method, which
incorporates an enhanced scalar to improve denoising performance, especially for images affected
by salt-and-pepper noise. The method is designed to address this specific type of noise, ensuring
robust performance even for high noise levels.

This research introduces a new modified hybrid PRP-DL conjugate gradient algorithm specifically
designed for unconstrained optimization. The three-term CG method serves as the foundation
due to its efficacy and popularity in optimization. Inspired by [9], this study introduces scalar
modifications based on [11], incorporating new strategies to enhance convergence speed, stability,
and algorithmic performance.

The structure of this paper is as follows: Section 2 presents the underlying principles of the algorithm
modification. Section 3 discusses the sufficient descent and global convergence properties under the
standard Wolfe-Powell line search. Section 4 details the numerical results of the proposed method
in image denoising applications. Finally, Section 5 summarizes the conclusions.
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2 MODIFICATIONS

The primary sources of our motivation are the works of [9] and [11], wherein

βN
k =

gTk (yk−1 − tsk−1)

max{yTk−1sk−1, ||gk−1||2}
, (8)

δNk =
gTk sk−1

max{yTk−1sk−1, ||gk−1||2}
. (9)

The parameter t is defined as t = max{t̄,
||yk||2gTk−1sk

zk
} Some modification on (8) and (9) have been

made. The parameter sTk−1gk−1 has been inserted in both numerator and denominator of (8) and
(9) while referring on the study of [11]. The new CG coefficient is defined as below,

βMTT
k =

gTk (s
T
k−1yk−1gk−1 − t||sk−1||2gk−1)

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}
, (10)

δMTT
k =

||sk−1||2gTk gk−1

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}
. (11)

According to [16], t̄ = 0.1 is an appropriate choice. Therefore, t = max{0.1,
||yk||2gTk−1sk

zk
} is

assigned.

Algorithm 2.1: Modified three-term(MTT) PRP-DL conjugate gradient method

Step 1: Let k = 0. Choose a starting point x0 ∈ Rn. Obtain g(x0) and assign d0 = −g0.
Step 2: If ||gk|| ≤ ε, ε = 10−6 , then stop, otherwise proceed to the next step.
Step 3: Determine the step size αk along the direction dk by using the standard Wolfe-Powell line
search stated in (2) and (3).
Step 4: Let xk+1 = xk + αkdk to compute the new iterative point.
Step 5: Calculate the search direction dk by using:

dMTT
k =

{
−gk, if k = 0,

−gk + βMTT
k sk−1 − δMTT

k yk−1, if k ≥ 1,

where sk−1 = αk−1dk−1 and yk−1 = gk − gk−1.

Step 6: Set k = k + 1 and repeat Step 1.

Algorithm 2.2: Image Denoising Procedure

Step 1: Input the original images (e.g., Roro, Lung, and Hill).
Step 2: Adjust the noise ratio (e.g., 10%, 30%, and 50%) and maximum window size (e.g., 38, 41,
and 43).

98



Applied Mathematics and Computational Intelligence
Volume 14, No. 2, 2025 [95 – 118]

Step 3: Extract the image into a matrix format.
Step 4: Compute and record the results using the MTT method, evaluating CPU Time, PSNR,
RE, and SSIM.
Step 5: Repeat Steps 1 to 4 for the MTTHS and MZZ methods.
Step 6: Compare the results of the MTT method with those of the MTTHS and MZZ methods.

3 CONVERGENCE ANALYSIS

The following discussion will clarify that, regardless of the line search strategy used, Algorithm 2
consistently exhibits the sufficient descent property.

Lemma 1. Algorithm 2 generated the sequence {dMTT
k } independent on any line search, and it

always holds that:

gTk d
MTT
k ≤ −||gk||2,∀k ≥ 0. (12)

Proof. When k = 0, then d0 = −g0, and it holds that gT0 = −||g0||2. For k ≥ 1, the subsequent
inequality obtained according to the definition of dMTT

k :

gTk d
MTT
k = −||gk||2 + βMTT

k gTk sk−1 − δMTT
k dTk yk−1

= −||gk||2 +
gTk (s

T
k−1yk−1gk−1 − t||sk−1||2gk−1)

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}
gTk sk−1

−
||sk−1||2gTk gk−1

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}
gTk yk−1

= −||gk||2 +
gTk ||sk−1||2yk−1gk−1g

T
k

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}

−
t||sk−1||2gk−1g

T
k sk−1

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}

−
||sk−1||2gTk gk−1g

T
k yk−1

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}

= −||gk||2 −
t||sk−1||2gk−1g

T
k sk−1

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}
≤ −||gk||2,

The final inequality is valid for t ≥ 0. Consequently, (12) is satisfied, hence the proof completed.

Lemma (1) demonstrates that, independent of the line search method, the new direction maintains
the sufficient descent property. Additionally, a conjugate condition is crucial for achieving optimal
numerical performance. In the case of MTT, this is ensured by the design of the direction dMTT

k .
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(dMTT
k )T yk−1 = −gTk yk−1 +

gTk (s
T
k−1yk−1gk−1 − t||sk−1||2gk−1)

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}
yTk−1sk−1

−
||sk−1||2gTk gk−1

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}
||yk−1||2

= −gTk yk−1 +
||sk−1||2yk−1gk−1

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}
gTk y

T
k−1

−
yTk−1(t||sk−1||2gk−1)

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}
gTk sk−1

− ||yk−1||2(sk−1gk−1)

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}
gTk sk−1

≤ −
tyTk−1||sk−1||2gk−1 + ||yk−1||2sk−1gk−1

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}
gTk sk−1.

(13)

From (13), it holds that the new direction dMTT
k satisfies DL conjugate condition, in an extent form

in which (dMTT
k )T yk−1 ≤ −t1g

T
k sk−1 where

t1 = − tyTk−1||sk−1||2gk−1+||yk−1||2sk−1gk−1

max{||sk−1||2gTk−1yk−1,||gk−1||2gTk−1sk−1}
. In fact, if we adopt the line search technique which

results in ||sk−1||2gTk−1yk−1 ≥ 0, then it holds that t1 = − tyTk−1||sk−1||2gk−1+||yk−1||2sk−1gk−1

max{||sk−1||2gTk−1yk−1,||gk−1||2gTk−1sk−1}
> 0.

This section delves into the convergence properties of βMTT
k . It is assumed that gk ̸= 0 for all k; a

zero value for gk would indicate a stationary point. The convergence of nonlinear conjugate gradient
algorithms is typically proven under the following assumptions.

Assumption 1. The level set T := {x ∈ Rn : f(x) ≤ f(x0)} is bounded where x0 is the initial
point, then it means there exist a constant X > 0 in such a way that:

||x|| ≤ X, ∀x ∈ T. (14)

Assumption 2. In some neighborhood N of T, the gradient of function f(x) and g(x) known as
Lipschitz continuous, which means there exists a constant L > 0 such that:

||g(x)− g(y)|| ≤ L||x− y||, ∀x, y ∈ N. (15)

It should be noted that, according to Assumption 1 and Assumption 2, there is a positive constant
G that satisfies the following condition:

||g(x)|| ≤ G, ∀x ∈ T. (16)

In the following analysis, the sequence dMTT
k produced by Algorithm 2 is bounded will be demon-

strated.
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Lemma 2. Consider the condition 0 < t ≤ T , and assume that both Assumption 1 and Assumption
2 are satisfied. For any line search technique, consider the sequence {dMTT

k } generated by Algorithm
2. If the objective function f exhibits uniform convexity on the set T, it can be concluded that
||dMTT

k || is bounded.

Proof. Given that the function f exhibits uniform convexity on the set N, it follows that for any x,
y ∈ N, the following inequality holds:

(∇f(x)−∇f(y))T (x− y) ≥ ũ||x− y||2,

where ũ > 0 is the uniform convexity parameter. In particular, when assigning x = xk and y = xk−1,
the following equation is true:

||sk−1||2gTk−1yk−1 ≥ ũ||sk−1||2 > 0.

In the subsequent analysis, the boundedness of the parameters βMTT
k and δMTT

k will be proved.
According to their respective definitions, observe that:

|βMTT
k | =

∣∣∣∣∣ gTk (s
T
k−1yk−1gk−1 − t||sk−1||2gk−1)

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}

∣∣∣∣∣
≤

||gk||(||sTk−1||||yk−1||||gk−1||+ t||sk−1||2||gk−1||)
|max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}|

≤
||gk||(||sTk−1||||yk−1||||gk−1||+ t||sk−1||2||gk−1||)

||sk−1||2gTk−1yk−1

≤ (L+ T )||sk−1||
ũ||sk−1||2

||gk||

=
(L+ T )

ũ

||gk||
||sk−1||

.

|δMTT
k | =

∣∣∣∣∣ ||sk−1||2gTk gk−1

max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}

∣∣∣∣∣
≤ ||sk−1||2||gk||||gk−1||

|max{||sk−1||2gTk−1yk−1, ||gk−1||2gTk−1sk−1}|

≤ ||sk−1||2||gk||||gk−1||
||sk−1||2gTk−1yk−1

≤ ||sk−1||2||gk||||gk−1||
ũ||sk−1||2

=
1

ũ
||gk||||gk−1||.
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Hence, according to the definition of dMTT
k :

||dMTT
k || =

∣∣∣∣−gk + βMTT
k sk−1 + δMTT

k yk−1

∣∣∣∣
≤ ||gk||+ |βMTT

k |||sk−1||+ |δMTT
k |||yk−1||

≤ ||gk||+
(L+ T )

ũ

||gk||
||sk−1||

||sk−1||+
1

ũ
||gk||||gk−1||||yk−1||

≤ ||gk||+
(L+ T )

ũ
||gk||+

L

ũ
||gk||

=

(
1 +

2L+ T

ũ
+

L

ũ

)
||gk||

≤
(
1 +

2L+ T

ũ
+

L

ũ

)
G.

where the last inequality is satisfied by (16). Then, this completes the proof.

The subsequent Lemma presented serves as a crucial role in the global convergence theorem of the
proposed method.

Lemma 3. Suppose that Assumption 1 and Assumption 2 are satisfied. Consider iterative method
represented by equation 1, where dk fulfils the sufficient descent condition and αk is established using
the standard Wolfe-Powell line search stated in (2) and (3). According to [9], if the aforementioned
relationship holds:∑
k≥0

1

||dk||2
= +∞, (17)

then, the method exhibits global convergence as such:

lim
k→+∞

inf||gk|| = 0. (18)

A proof that Algorithm 2 is globally converge for uniformly convex objective functions will be
presented in the next discussion.

Theorem 3.1. Suppose that Assumption 1 and Assumption 2 are satisfied wherein αk is established
using the standard Wolfe-Powell line search stated in (2) and (3). If the objective function f exhibits
uniform convexity on the set N, it can be concluded that Algorithm 2 achieves global convergence in
a way that:

lim
k→+∞

||gk|| = 0.

Proof. According to Lemma 1, it follows that the direction dMTT
k satisfies the sufficient descent

property with a constant value of c = 1. From the inequality given in equation (2), it can be
observed that the sequence {f(xk)}k≥0 is monotonically decreasing, and {xk}k≥0 belongs to the set
of natural numbers, N.

The validity of equation (17) can be established by applying the boundedness property of dMTT
k as

stated in Lemma 2.
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4 RESULTS AND DISCUSSIONS

Impulse noise arises from defects in sensors or communication paths, often characterized by the
contamination of a certain number of pixels. Numerous image-related applications typically
necessitate effective noise suppression techniques to restore the original image with stable outcomes.
These problems are considered challenging in optimization due to their lack of smoothness. This
section will discuss the capability of the MTT method in addressing image denoising challenges.
Specifically, this section presents an evaluation of the MTT method’s performance in solving image
denoising problems, comparing it with two other methods, MTTHS and MZZ, based on CPU time,
Peak Signal-to-Noise Ratio (PSNR), Relative Error (RE), and Structural Similarity Index (SSIM).

For the present study, we utilize the images Roro, Hill, and Lung, which are grayscale images of
size 300 × 300. PSNR and SSIM are frequently used as objective measures of image quality to
quantitatively evaluate the performance of denoising, assuming that the original image is completely
available as a reference.

PSNR, which indicates the ratio of signal power to noise power, is defined as follows. A higher
PSNR suggests better denoising quality as it indicates the denoised image is closer to the original:

PSNR = 10 log10
2552

MSE
, (19)

where the MSE (Mean Squared Error) is calculated by:

MSE =
1

M ×N

M∑
m=1

N∑
n=1

[I1(m,n)− I2(m,n)]2 , (20)

in which M is the number of rows, N is the number of columns, I1(m,n) is the original image
matrix data, and I2(m,n) is the denoised image matrix data. MSE represents the cumulative
squared error between the original and the denoised image. A lower MSE value indicates improved
denoising performance.

Relative Error (RE) measures the percentage error between the original and the denoised image.
Lower RE values are desirable for better denoising performance. RE can be defined as:

RE = 100× MSE

2552/12
. (21)

In the experiment, the “salt-and-pepper noise ratio” was considered 10%, 30%, and 50%. In this
experiment, we consider Roro, Lung, and Hill as the test images with a resolution of 512×512 in
gray level with various max window size such as 38, 41, and 43. The max window size in image
denoising controls the balance between noise reduction and detail preservation. A larger window
size provides better noise reduction by averaging over a broader area but can blur fine details,
while a smaller window preserves details but may reduce noise less effectively. Optimal window size
selection depends on noise type, image detail level, and computational limits.

The Structural Similarity Index (SSIM) measures similarity between two images in terms of
luminance, contrast, and structural information. It refers to the ability of an image denoising
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(a) Roro (b) Lung (c) Hill

Figure 1 : Original Images

algorithm to preserve the image’s original features while reducing noise. Higher SSIM values indicate
higher similarity between the original and denoised images, which is preferable.

Table 1 : Image denoising outputs based on tCPU, PSNR, RE, and SSIM.

Image
Noise
Ratio

Max
Window

Size MTT MTTHS
tCPU PSNR RE SSIM tCPU PSNR RE SSIM

Roro 10% 38 4.542 37.896 0.373 0.988 4.570 37.734 0.375 0.988
41 4.627 37.767 0.377 0.988 4.629 37.683 0.378 0.987
43 4.701 37.661 0.375 0.987 4.726 37.650 0.388 0.987

Roro 30% 38 18.270 31.595 1.049 0.949 19.150 31.554 1.049 0.949
41 19.225 31.485 1.043 0.949 19.551 31.484 1.044 0.948
43 19.901 31.368 1.052 0.948 19.987 31.331 1.054 0.948

Roro 50% 38 41.000 27.792 1.640 0.880 42.017 27.783 1.641 0.879
41 42.494 27.854 1.628 0.880 42.883 27.724 1.628 0.878
43 43.141 27.800 1.616 0.880 43.452 27.702 1.626 0.878

Lung 10% 38 4.365 38.707 0.461 0.990 6.394 38.164 0.464 0.983
41 4.697 38.654 0.458 0.990 6.508 37.977 0.459 0.992
43 4.891 38.587 0.461 0.989 6.953 37.028 0.464 0.983

Lung 30% 38 17.714 33.432 1.191 0.967 25.816 33.002 1.199 0.965
41 17.721 33.442 1.190 0.967 24.061 33.552 1.195 0.965
43 20.721 33.302 1.191 0.955 23.368 32.606 1.196 0.945

Lung 50% 38 42.160 30.802 1.613 0.886 55.441 30.363 1.752 0.853
41 43.104 27.669 1.634 0.878 54.202 27.516 1.737 0.853
43 44.490 26.198 1.624 0.878 52.814 26.142 1.731 0.853

Hill 10% 38 4.035 35.764 0.442 0.990 4.555 34.957 0.642 0.983
41 4.991 36.108 0.602 0.991 5.174 35.359 0.642 0.983
43 6.015 35.994 0.609 0.989 6.715 35.264 0.642 0.984

Hill 30% 38 18.307 29.720 1.558 0.953 20.190 29.777 1.561 0.944
41 20.494 30.973 2.496 0.941 21.525 29.666 1.556 0.943
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43 24.812 26.720 1.558 0.943 27.416 25.644 1.670 0.942
Hill 50% 38 40.764 26.997 2.057 0.900 41.992 26.507 2.203 0.886

41 41.173 27.052 2.097 0.890 42.008 27.877 2.010 0.900
43 42.008 27.877 2.010 0.900 43.118 26.586 2.217 0.884

Table 1 and Table 2 show the image denoising outputs based on CPU Time, PSNR, RE, and SSIM
for MTT along with MTTHS and MZZ. Various noisy rates have been used in this study, which are
10%, 30%, and 50%. In addition, different maximum window sizes, which are 38, 41, and 43, have
been utilized in order to compare which will bring better results for denoising performance.

Table 2 : Image denoising outputs based on CPU Time, PSNR, RE, and SSIM.

Image
Noise
Ratio

Max
Window

Size MTT MZZ
tCPU PSNR RE SSIM tCPU PSNR RE SSIM

Roro 10% 38 4.542 37.896 0.373 0.988 4.689 37.840 0.379 0.986
41 4.627 37.767 0.377 0.988 4.715 37.685 0.380 0.986
43 4.701 37.661 0.375 0.987 4.794 37.636 0.375 0.987

Roro 30% 38 18.270 31.595 1.049 0.949 18.827 31.568 1.053 0.946
41 19.225 31.485 1.043 0.949 19.274 31.479 1.043 0.946
43 19.901 31.368 1.052 0.948 19.968 31.360 1.060 0.947

Roro 50% 38 41.000 27.792 1.640 0.880 47.748 27.777 1.622 0.875
41 42.494 27.854 1.628 0.880 47.534 27.690 1.628 0.874
43 43.141 27.800 1.616 0.880 43.842 27.755 1.632 0.876

Lung 10% 38 4.365 38.707 0.461 0.990 4.800 38.506 0.460 0.979
41 4.697 38.654 0.458 0.990 4.479 38.466 0.458 0.979
43 4.891 38.587 0.461 0.989 4.498 38.530 0.461 0.979

Lung 30% 38 17.714 33.432 1.191 0.967 18.120 33.153 1.194 0.945
41 17.721 33.442 1.190 0.967 18.607 32.127 1.198 0.945
43 20.721 33.302 1.191 0.955 21.331 32.636 1.200 0.944

Lung 50% 38 42.160 30.802 1.613 0.886 42.830 30.766 1.739 0.875
41 43.104 27.669 1.634 0.878 45.236 27.566 1.754 0.814
43 44.490 26.198 1.624 0.878 46.003 28.977 1.740 0.855

Hill 10% 38 4.035 35.764 0.442 0.990 4.739 35.242 0.644 0.978
41 4.991 36.108 0.602 0.991 5.623 35.278 0.649 0.979
43 6.015 35.994 0.609 0.989 6.832 35.533 0.644 0.979

Hill 30% 38 18.307 29.720 1.558 0.953 21.879 29.608 1.580 0.930
41 20.494 30.973 2.496 0.941 21.324 29.783 1.573 0.932
43 24.812 26.720 1.558 0.943 25.650 25.665 1.563 0.932

Hill 50% 38 40.764 26.997 2.057 0.900 45.892 26.547 2.212 0.872
41 41.173 27.052 2.097 0.890 42.402 26.530 2.210 0.871
43 42.008 27.877 2.010 0.900 41.701 26.647 2.204 0.873
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From both tables, it is noticeable that MTT has lower values when comparing CPU time, relative
error, and mean square error while it has higher values when comparing metrics that measure the
quality of denoised images: PSNR and SSIM in most cases. Moreover, it can be seen in the tables
that MTT performs very well in solving the image denoising problem for a maximum window size
of 38. Thus, it can be concluded that MTT is superior to the other two algorithms.

A problem has arisen while trying to solve the image denoising problem. This problem occurred
as the algorithm was unable to denoise the image. Fortunately, the problem has been solved by
setting the window size equal to 500 and step size equal to 800.

Figures 2 through 10 show the denoised images for MTT, MTTHS, and MZZ after being corrupted
by various noisy rates (10%, 30%, and 50%) and using different maximum window sizes (38, 41,
and 43).

Figure 11a illustrates the graph of PSNR values for MTT, MTTHS, and MZZ in image denoising
problems. The higher the PSNR values, the better the quality of the denoised image. From Figure
13, it can be seen that MTT performed very well at every stage compared to MTTHS and MZZ. At
a noisy rate of 10%, there is fierce competition among all the maximum window sizes. However, a
maximum window size of 38 is slightly better compared to the others. Meanwhile, at a noisy rate
of 30%, a maximum window size of 41 is more preferable. For a noisy rate of 50%, a maximum
window size of 38 is preferable. Thus, it can be concluded that MTT is superior to the other two
methods, as it performed well and showed promising results.

Figure 11b displays the results of MTT, MTTHS, and MZZ for SSIM values in solving image
denoising problems. Higher SSIM values indicate a higher similarity between the two images, which
is desirable. From Figure 14, it is observable that MTT showed good performance during every
stage. At every noisy rate, it can be seen that a maximum window size of 38 is more preferable.

Figure 12a shows the CPU time resulting from solving image denoising problems using MTT,
MTTHS, and MZZ. CPU time should be lower to indicate that the method required less time to
solve the image denoising problems. From Figure 15, it is evident that the MTT method took the
shortest CPU time among all methods across all noisy rates and maximum window sizes. For every
noisy rate, the maximum window size of 38 is suitable, as a smaller window size requires fewer
calculations compared to larger ones. This translates to faster processing times, especially for larger
images or real-time applications. Thus, MTT took the shortest CPU time in solving the image
denoising problems and showed promising results for a maximum window size of 38 across all noisy
rates.

The relative error results for MTT, MTTHS, and MZZ are displayed in Figure 12b. Lower relative
error indicates better denoising performance. From Figure 16, MTT performs better at most stages
but shows a higher spike at a 30% noisy rate for a maximum window size of 41. This is due to some
outliers in the data that disproportionately affect the relative error. These outliers could result
from regions of the image where the denoising algorithm performs poorly. At 10% and 30% noisy
rates, a maximum window size of 38 is more suitable. However, a maximum window size of 41 is
better suited for a 50% noisy rate. Despite this, MTT still performs better compared to the other
methods.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2 : Noisy Image with 10% Noisy Rate (a-c), Denoised Image with Maximum Window Size 38 by
MTT (d-f), MTTHS (g-i), and MZZ (j-l)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3 : Noisy Image with 10% Noisy Rate (a-c), Denoised Image with Maximum Window Size 41 by
MTT (d-f), MTTHS (g-i), and MZZ (j-l)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4 : Noisy Image with 10% Noisy Rate (a-c), Denoised Image with Maximum Window Size 43 by
MTT (d-f), MTTHS (g-i), and MZZ (j-l)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5 : Noisy Image with 30% Noisy Rate (a-c), Denoised Image with Maximum Window Size 38 by
MTT (d-f), MTTHS (g-i), and MZZ (j-l)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6 : Noisy Image with 30% Noisy Rate (a-c), Denoised Image with Maximum Window Size 41 by
MTT (d-f), MTTHS (g-i), and MZZ (j-l)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7 : Noisy Image with 30% Noisy Rate (a-c), Denoised Image with Maximum Window Size 43 by
MTT (d-f), MTTHS (g-i), and MZZ (j-l)

112



Applied Mathematics and Computational Intelligence
Volume 14, No. 2, 2025 [95 – 118]

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8 : Noisy Image with 50% Noisy Rate (a-c), Denoised Image with Maximum Window Size 38 by
MTT (d-f), MTTHS (g-i), and MZZ (j-l)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 9 : Noisy Image with 50% Noisy Rate (a-c), Denoised Image with Maximum Window Size 41 by
MTT (d-f), MTTHS (g-i), and MZZ (j-l)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 10 : Noisy Image with 50% Noisy Rate (a-c), Denoised Image with Maximum Window Size 43 by
MTT (d-f), MTTHS (g-i), and MZZ (j-l)

115



Aqiil et al/Modified Three-Term PRP-DL for Image Denoising Problem

(a) PSNR Values for MTT, MTTHS and MZZ (b) SSIM Values for MTT, MTTHS and MZZ

(a) CPU Time for MTT, MTTHS and MZZ (b) Relative Error for MTT, MTTHS and MZZ

Figure 13 : Overall Results for MTT, MTTHS and MZZ
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Figure 13 represents the overall results for MTT, MTTHS, and MZZ in solving image denoising
problems with respect to PSNR, SSIM, CPU Time, Relative Error, and Mean Square Error. From
Figure 13, it is apparent that, in terms of metrics that measure and evaluate how well an image
preserves the information and appearance of the original image (PSNR and SSIM), the MTT
method outmatches both the MTTHS and MZZ methods. The MTT method again outperforms
the other two methods by having the lowest values of CPU time and relative error. Thus, from
the overall results, it can be concluded that the MTT method provides the best results among all
three methods and is effective in solving image denoising problems across various noisy rates and
maximum window sizes.

5 CONCLUSION

In this study, a new modification of the hybrid three-term PRP-DL CG method, MTT, was
developed and applied to large-scale unconstrained optimization problems, specifically in the context
of image denoising. The MTT method, equipped with a modified search direction and enhanced
line search techniques, demonstrated significant improvements over existing methods like MTTHS
and MZZ. The experimental results showed that MTT consistently provided superior performance,
as indicated by higher PSNR and SSIM values, and reduced CPU time and relative error, across
varying noise levels and window sizes. Notably, MTT performed best with a window size of 38, which
balanced denoising effectiveness and computational efficiency. Overall, this study underscores the
robustness and adaptability of the MTT method in handling complex image denoising tasks. The
proposed algorithm shows promise for further applications in real-time and large-scale optimization
challenges, reinforcing its value as a reliable tool in the field of image processing.
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