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ABSTRACT 

In the financial industry, forecasting gold price return and its volatility are crucial. Even tiny 
improvements in prediction performance can add up to a significant sum of money. One strategy 
for anticipating gold price volatility is the GARCH family of models. The GARCH process provides 
a more realistic background for estimating financial instrument values and rates than other 
models. The aim of this research is to model the volatility and price of gold via GARCH(1,1), 
EGARCH(1,1) and TGARCH(1,1) models. The data was employed from 4th January 2016 until 
29th October 2021 retrieved from Yahoo Finance website. The data was converted into return 
price to make it stationary. The performance of the estimated models was compared by using 
information criterion. The best model is the one that has the lowest values of information 
criterion. TGARCH(1,1) is outperformed other proposed models where it has an ability to capture 
the bad and good news that exist in the data series. The best model is used to forecast the 
volatility and return of gold price. The return is expected to be constant with high risk for the 
next 5 days from the point origin in this study.  

Keywords: GARCH, gold price, price return, volatility, forecasting. 

1 INTRODUCTION 

Gold has become a precious asset, which has managed to attract many investors, and the demand has 
increased over time. Gold plays an important role as it can help stabilizing influence for investment 
portfolios [1]. Variety of factors could determine the price of gold, the common factors are people’s 
opinions of its value, global economic events, the amount of gold bought and sold, and other external 
influences such as new discoveries, significant acquisitions, and so on. Consequently, with the rising 
demand for gold in Malaysia and around the world, it is important to develop a model that could 
reflect the pattern of the gold market and forecast the movement of gold prices [2]. As a result, the 
modelling and forecasting of gold price volatility is essential.  

Volatility modelling and forecasting have played a great role, especially in financial markets, for many 
years. Forecasting uses historical data to predict the direction of future trends for an upcoming 
period, such as assigning a budget or plan. The financial markets also use volatility estimates as a 
basic risk indicator, and volatility appears in option pricing formulas derived from those models. 
Reliable volatility estimates and projections are critical for risk mitigation and portfolio management 
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[3]. Over the years, a variety of stylized statistics about the fluctuations of financial asset prices have 
arisen. 

Gold future market data was used in modelling the price and volatility in this study. Gold investment 
has attracted a lot of attention as the assumption is that gold can be treated as a store of value, and it 
is not affected by inflation. As the risk in the stock and bond markets increased, investors were 
particularly interested in increasing their positions in gold. This interest has prompted this research 
focused on gold investment. To capture the gold price and its volatility, Generalized Autoregressive 
Conditional Heteroscedasticity (GARCH) models were applied. Furthermore, there are several cases 
or extreme events that could result in large changes in gold prices and cause the asymmetry of price 
returns [4] . Hence, a performed volatility model must be able to forecast volatility, and these facts 
must be captured by a good volatility model. There are many volatility models that are used in 
forecasting the pattern of data. 

GARCH models were developed, specializing in financial time series. These models also have 
properties like heavy tails, volatility clustering, and independent serial correlation that are not likely 
happened in traditional linear time series models. In addition, financial instrument volatility is rarely 
constant and typically varies over time. Volatility clustering was captured by the GARCH model, 
which uses volatility as a drift process [5]. Volatility clustering occurs when large price movements 
on one day are followed by large movements on subsequent days, which leads to the formation of 
temporal clusters. 

There are many research on modelling the gold price that employ the same methods. However, this 
research used the daily data from 2016 to 2021 where the situation might be different due to many 
factors. Therefore, the objectives of this study are to model the volatility and the return of gold price, 
to access the performance of the models, and to forecast the gold price return and risk in the future 
for 5 consecutive days. 

2 LITERATURE REVIEW 

2.1 General Autoregressive Conditionally Heteroskedasticity (GARCH) Model 

GARCH is the most common method for forecasting high volatility data. The GARCH model is a model 
of conditional variance that changes over time. Bollerslev [6] stated that the GARCH model is an 
expansion of Engle’s ARCH model from 1982. GARCH is a methodology for explaining future 
deviations that considers prior variations [7]. Ping et al. [8]studied the gold price of Kijang Emas and 
found that the GARCH model is the most appropriate model with the lowest value of AIC.  

Jain and Biswal [9] also applied the GARCH model to estimate the time-varying correlation. Even 
though the value of AIC among the models is approximately the same, they chose GARCH because it 
is the simplest model among the other GARCH family models. GARCH is the highest order in the ARCH 
model and was selected to determine the dynamic of the conditional variance. According to [5], the 
simple linear GARCH model predicts with greater accuracy than other non-linear models such as 
APARCH, TARCH, and FIGARCH. Even though, GARCH is the simplest model among them, it still has 
its weaknesses. GARCH only good in forecasting a symmetric characteristic of volatility but not 
asymmetric. To deal with the volatility’s asymmetric properties, many extensions of asymmetric 
GARCH type models have been developed for example, TGARCH, EGARCH, APARCH, and many others. 
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2.2 Exponential General Auto Regressive Conditionally Heteroscedasticity (EGARCH) 
Model 

EGARCH is one of the members of the GARCH family. It was developed by [10] where the model has 
an ability to capture the effect of asymmetric variance. It has some unique properties that make it 
helpful in the context of asset pricing. The main structure for the mean and variance is almost similar 
to the typical GARCH model. This main different from the GARCH variance structure is the log of the 
variance. The EGARCH model is applicable for time series data that exhibit long-term memory and 
leverage effects on volatility during both periods. Research has revealed that higher volatility during 
the revolutionary period for all indices was affect the higher standard deviations for both daily 
returns and absolute returns. During the revolutionary period, the leverage effect was increasingly 
significantly. However, during the pre-revolution period, a long memory was more evident [11].  

A logarithmic function is used in the EGARCH model to tackle asymmetric effects [5]. This model also 
captures asymmetric reactions to shocks in the time-varying variance while ensuring that the 
variance is always positive. A negative shock in economic study and financial markets usually means 
bad news, resulting in a more uncertain future [7].  

EGARCH has the smallest error compared to APARCH and TGARCH, which makes it the most 
appropriate model compared to TGARCH and APARCH in modelling the data [12]. Besides, EGARCH 
model is written in a form of logarithmic, implying that parameters are not restricted, allowing them 
to have negative values and at the same time maintaining a non-negative conditional variance [13]. 
The EGARCH model can explain the common leverage effects observed in financial times. 

2.3 General Auto Regressive Conditionally Threshold Heteroskedasticity (TGARCH) Model 

TGARCH was first introduced by [14] where the conditional standard deviation was modified by 
employing a piecewise linear function of past values of the white noise.  TGARCH is a model that can 
better performed in most financial data than the GARCH model since it able to react differently on 
the volatility for different signs of the lagged residuals. 

Sabiruzzaman et al. [15] investigates the performance of GARCH versus TGARCH model in forecasting 
volume trading index and concludes that TGARCH model is perform better than GARCH model. This 
is mainly crucial when one is dealing with the situation of asymmetric information that captures the 
leverage effect of the volatile stock market.  

Lim and Sek [16] also found TGARCH model performed better during the crisis period in describing 
the stock market volatility in Malaysia. Similar research for example [17], [18] stated that TGARCH 
outperformed symmetric GARCH model for financial data series. Hence, TGARCH model is expected 
to fit well on gold price data due to its ability to detect effect of bad and good news. 

The findings of the previous study show that in different time frames, symmetric and asymmetric 
GARCH models perform differently. Previous research, however, has revealed that there is no consent 
on the optimum model for capturing volatility. Some research suggested that basic GARCH models 
provide superior outcomes, while others demonstrate that other GARCH models work better. These 
model’s performance varies depending on the market and time. Hence, this research attempt to 
forecast the gold price and volatility using GARCH, EGARCH and TGARCH models. 
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3 METHODOLOGY 

3.1 Source of Data 

In this study, the data was collected from January 2016 until October 2021 in daily form retrieved 
from Yahoo! Finance website. Essentially, the variable under this research is the gold prices suitable 
for the research objective, which is modelling and forecasting the gold price and its volatility.  In this 
research, the data was converted into price return due to non-stationary condition. Let 𝑌𝑡 be the gold 
price at the current time of t and 𝑌𝑡−1 is the gold price at one period behind. Hence, the price return, 
𝑅𝑡 can be defined as the difference of gold price between the current dan one period behind, 𝑌𝑡 −
𝑌𝑡−1. 

3.2 Generalized Autoregressive Conditional Heteroscedasticity (GARCH) Model 

The expected return is kept constant in a GARCH model since volatility or variance is determined by 
previous volatility or variance. The price return can be described as follows: 

𝑅𝑡  = 𝜇 + 𝜀𝑡 (1) 

where 𝜀𝑡 is the residuals and assumed to be normally distributed with zero mean and non-constant 
variance, 𝜎𝑡

2 ,  𝜀𝑡~ 𝑁(0, 𝜎𝑡
2).   

The conditional variance of GARCH(1,1) is given as, [6]: 

𝜎𝑡
2 = 𝜔 + (𝛼1𝜀𝑡−1

2 ) + (𝛽1𝜎𝑡𝑡−12 ) (2) 

 
where 𝛼1 + 𝛽1 < 1. The summation of 𝛼 + 𝛽  should be less than 1 but approaching to unity and 𝛽 >
𝛼 . 

3.3 Exponential Generalized Autoregressive Conditional Heteroskedastic (EGARCH) model 

The Exponential GARCH model, indicated as EGARCH (1,1), includes the asymmetric influence of 
positive and negative sudden changes on volatility, with the latter producing higher levels of 
volatility, although they have the same magnitude. The volatility of an EGARCH (1,1) can be stated as 
follows in general, [10]: 

ln(𝜎𝑡
2) = 𝜔 + 𝛼 [|𝜀

𝑡−1√𝜎𝑡−1
2
|] + 𝛽  ln(𝜎𝑡−1

2 ) + 𝛾
𝜀𝑡−1

√𝜎𝑡−1
2

 
(3) 

where 𝜎2 is the conditional variance since it is a one period ahead estimate for the variance calculate 
on any past information thought relevant.  

However, β is the persistence parameter, α and γ denote the size and leverage effect parameters, 
respectively. It is expected that the leverage effect is exponential and the forecasts of the conditional 
variance are certain to be non-negative. 
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3.4 Threshold Autoregressive Conditional Heteroscedasticity (TGARCH) Model 

The TGARCH model assumes that unexpected changes in the price returns or there is different effect 
on the volatility of the price return. A TGARCH (1,1) model can be expressed as follows, [14]: 

𝜎𝑡
2 = 𝜔 + 𝛼𝜀𝑡−1

2 + 𝛿𝐷𝑡𝜀𝑡−1
2 + 𝛽𝜎𝑡−1

2  (4) 

where 𝐷𝑡−1is an indicator for negative 𝜀𝑡−𝑖. Meanwhile, 𝛼, 𝛿  and 𝛽  non-negative parameters that 
satisfy the same requirements as GARCH models.  

From the Equation (4), it can be perceived that a positive 𝜀𝑡−1 changed 𝛼𝑖𝜀𝑡−𝑖
2  to 𝜎𝑡

2, and a negative 
𝜀𝑡−𝑖 affects the (𝛼𝑖 + 𝛿𝑖)𝜀𝑡−𝑖

2  with 𝛾𝑖 > 0. The aforementioned alternative models are better than the 
GARCH models in describing some stylized occurrences. For some cases, to isolate the effects of 
previous shocks, the model uses a threshold of zero.  

3.5 Model Estimation 

The Maximum Likelihood (ML) approach is used to estimate the parameters of the GARCH model, 
using varying distributional assumptions for the error components. The maximum likelihood 
estimation can be written as: 

(𝜃) = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑛; 𝜃) (5) 

𝐿(𝜃) =∏𝑓(𝑋𝑖)

𝑛

𝑖−1

; 𝜃 
(6) 

The function 𝐿(𝜃) is maximized by taking the logarithm of likelihood function. The parameter can be 
obtained through the first derivative of the log likelihood function equal to zero. 

3.6 Diagnostic Checking 

3.6.1 Ljung-Box Test 

The Ljung-Box test examines whether the errors are independent and identically distributed or 
whether the residual autocorrelation is non-zero. To perform the Ljung Box test, the statistic Q is as 
follows: 

𝑄(𝑚) = 𝑛(𝑛 + 2)∑
𝑟𝑗
2

𝑛 − 𝑗

𝑚

𝑗=1

 
(7) 

 

where 

𝑟𝑗
2 = the accumulated sample autocorrelations 

𝑚 = the time lag 

𝑛 = number 𝑝𝑓  observations 
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The null hypothesis should be rejected and conclude that the model is unfit. 

𝑄 > 𝜒1−𝛼,ℎ
2  (8) 

where 

𝜒1−𝛼,ℎ
2 = the value found on the chi-square distribution table for significance level of 𝛼  and ℎ  degrees 

of freedom 

3.7 Performance Measures 

This paper employs three common tools in measuring the model’s performance namely as Akaike 
Information Criterion, Bayesian Information Criterion and Hannan-Quinn Information Criterion. The 
best model is the model that yields the lowest values obtained from these three criteria mentioned.   

3.7.1 Akaike Information Criterion (AIC) 

AIC measure the goodness of fit of a statistical model by evaluating a model from a set of models that 
has been estimated. The formula is as follows: 

𝐴𝐼𝐶 = −2 ln 𝐿 + 2𝑘 (9) 

where 𝐿  is the maximized value of the likelihood function for the estimated model and 𝑘  is the 
number of free and independent parameters in the model. The model with the lowest AIC value is the 
best fit model. 

3.7.2 Bayesian Information Criterion (BIC) 

BIC is a criterion for model selection among a finite set of models same as AIC. The formula of BIC is 
as follows: 

𝐵𝐼𝐶 = −2 ln(𝐿) + 𝑘 ln(𝑇) (10) 

where 𝐿  is the maximized value of the likelihood function while 𝑘  is the number of parameters in 
the model. 

3.7.3 Hannan-Quinn Information Criteria (HQIC) 

Hannan-Quinn Information (HQIC) is another option of performance measure instead of Akaike 
Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Additionally, the HQIC can 
be used to compare estimated models only when the numerical values of the dependent variable are 
identical for all the estimates being compared. The formula is given as follows: 

𝐻𝑄𝐼𝐶 = −2 ln(𝐿) + 𝑘 ln(ln(𝑛)) (11) 

where 𝐿 is the log-likelihood, 𝑘 is the number of parameters and 𝑛 is the number of observations. 
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4 RESULTS AND DISCUSSIONS 

4.1 Description Of Return of Gold Price 

Figure 1 shows the gold price from January 2016 until October 2021. The price was moving up and 
down steadily until end of 2018. At the beginning of 2019, the price started to hike significantly, and 
the peak exceeded USD2000 by the mid 2020. The data series become more volatile as the price start 
the momentum at early year of 2019 and makes the forecasting process become more challenging. 
The increasing trend might suggest the price might not be stationary. The high volatility along the 
period may contribute also to instability in variance and lead to high risk. 

 

 

Figure 1: The Gold Price from January 2016 until October 2021 

Table 1: Description of Gold Price 

n Mean  Median  Skewness  Kurtosis  Standard error  

1465 1447.09 1321.1 0.72 -0.99 6.47 

 

Table 1 shows the descriptive statistics of gold price. The mean value for the gold price is USD1447.09 
(n=1465), while the median is USD1321.1. The skewness and kurtosis value are 0.72 and -0.99 
respectively which approaching to zero indicates that the gold price data is a normal distribution. 
Since the gold price is suspected to be not stationary, Augmented Dickey-Fuller Test was performed 
to confirm the stationarity of the data. The result of stationary between the gold price and return is 
as shown in Table 2. 

Table 2: Results of ADF test for gold price vs return 

 Gold price  Return  

Dickey-Fuller -1.8328 -10.838 

P-value 0.6491 0.01 

Conclusion  Not stationary Stationary  
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The p-value as depicted in Table 2 for gold price is more than 0.05. Hence, the gold price is not 
stationary data. However, the p-value for the return is less than 0.05. Therefore, the return price is 
stationary. 

Since the gold price is not stationary, the first order of differencing was performed. The first order of 
differencing is where the current price, yt minus with the price of one period before, yt-1. In 
investment, data of the first order of differencing is called “return”. Figure 2 shows the return of gold 
price from the year of 2016 to 2021. The chart reveals that the return data after differencing is 
stationary with the values volatile around zero. 

 

Figure 2: The Gold Price Return from January 2016 until October 2021 

Table 3: Description of Gold Price Return 

n Mean  Median  Skewness  Kurtosis  Standard error  

1464 0 0 -0.01 5.72 0 

 

Table 3 shows the mean and median for the return gold price is USD0 which mean on the average the 
gold price is neither gain profit nor loss. The distribution is approximately symmetric since the 
skewness is -0.01, and the kurtosis is 5.72, indicating that its tails are longer and fatter, and its central 
peak is usually high and sharp. High kurtosis of the return distribution indicates the investor will 
encounter occasional extreme returns (either positive or negative), more extreme than the usual + 
or - three standard deviations from the mean that is predicted by the normal distribution of returns. 

4.2 Modelling Gold Price Return via GARCH(1,1), EGARCH(1,1) AND TGARCH(1,1) Models 

4.2.1 Parameter Estimation 

Table 4 shows that the parameters are estimated by assuming that the errors are normally 
distributed. The first model to be estimated is the GARCH(1,1) model. Based on Table 3.4, the 
GARCH(1,1) model shows that the model has 4 parameters which are μ, ω, α and β. The p-values for 
parameters μ and ω are more than 0.05 which means that they are not statistically significant. It is 
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the opposite for parameters α and β. They are statistically significant since the p-value not more than 
0.05. 

For EGARCH(1,1) model, the results from Table 4.4 indicates that the coefficient of α parameter were 
positive and significant which reflects the shock effects. It means that the gold return’s volatility was 
affected by the shocks. In addition, the coefficients of the β parameters indicate the volatility 
persistence was positive. The leverage effect which indicates by γ shows that there is there is positive 
and significant relationship between gold price returns and conditional volatility. Moreover, a 
positive value on the asymmetric term implies that positive news have greater impact on volatility 
more than negative news with the same magnitude.  

Last but not least, the TGARCH(1,1) model shows that α and β terms are significant, with the p-value 
of 0.0002 and 0.0000 respectively. Both p-values are less than 0.05 which indicates that they are 
significant. However, it is the opposite for μ, ω and γ with the p-value exceed 0.05. Other than that, 
the results also show that the coefficient for γ is negative for the TGARCH(1,1) model, implying that 
good news have larger impact than bad news. 

Table 4: Estimated Parameter of GARCH(1,1), EGARCH(1,1) and TGARCH(1,1) 

Model  Coefficient  Estimate  Standard 

error  

T-value P-value 

GARCH(1,1) μ 0.000237 0.000217 1.0927 0.2745 

ω 0.000001 0.000001 1.0355 0.3004 

α 0.026917 0.004925 5.4649 0.0000 

β 0.964370 0.005056 190.7298 0.0000 

EGARCH(1,1) μ 0.000290 0.000181 1.6063 0.1082 

ω -0.116283 0.001832 -63.4730 0.0000 

α 0.030815 0.009131 3.3749 0.0007 

β 0.986998 0.000194 5092.3950 0.0000 

γ 0.088152 0.005291 16.6617 0.0000 

TGARCH(1,1) μ 0.000305 0.000218 1.3992 0.1617 

ω 0.000001 0.000001 1.3184 0.1873 

α 0.053158 0.014434 3.6828 0.0002 

β 0.948676 0.008893 106.6742 0.0000 

γ -0.031575 0.015480 -2.0397 0.0413 

 

4.2.2 Diagnostic Checking 

In this section, the Weighted Ljung-Box Test on Standardized Residuals is used to test whether the 
error terms for GARCH(1,1), EGARCH(1,1) and TGARCH(1,1) models has a serial correlation or not. 
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Table 5: Weighted Ljung-Box Test on Standardized Squared Residuals 

Model  Group Statistics  P-value  

GARCH(1,1) Lag[1] 0.7398 0.3897 

Lag[2*(p+q)+(p+q)-1][2] 4.0929 0.2427 

Lag[4*(p+q)+(p+q)-1][5] 5.2845 0.3888 

EGARCH(1,1) Lag[1] 0.2458 0.6200 

Lag[2*(p+q)+(p+q)-1][5] 2.0155 0.6148 

Lag[4*(p+q)+(p+q)-1][9] 3.5124 0.6722 

TGARCH(1,1) Lag[1] 1.1340 0.2869 

Lag[2*(p+q)+(p+q)-1][2] 2.9540 0.4155 

Lag[4*(p+q)+(p+q)-1][5] 3.8160 0.6201 

 

Table 5 shows  the Ljung Box Test on standardized squared residuals for GARCH(1,1), EGARCH(1,1) 
and TGARCH(1,1) respectively. For GARCH(1,1), since the p-value is greater than 0.05, failed to reject 
null hypothesis. Therefore, there is no evidence of serial correlation on standardized squared 
residuals. Hence, the residuals are behaved like white noise process, which means that the 
GARCH(1,1) model is valid for modeling gold price return. 

Furthermore, the p-value of EGARCH(1,1) and TGARCH(1,1) model was also higher than 0.05 
indicates that the residual of the models are independent and identically distributed. Thus, failed to 
reject the null hypothesis and conclude that there is no autocorrelation problem on standardized 
squared residual. 

4.2.3 Performance of GARCH(1,1), EGARCH(1,1) and TGARCH(1,1) Models on Return of Gold 
Price  

The performance of the GARCH type models varies substantially depending on the considered 
information criterion. The result in Table 4.6 contains model selection criteria for the three models 
based on their fitness and performance with respect to the basic three common selection criteria, 
which are the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC) and the 
Hannan-Quinn Information Criteria (HQIC). 

Table 6: Performance of GARCH Models on Return of Gold Price 

 GARCH(1,1) EGARHC(1,1) TGARCH(1,1) 

AIC -6.6362 -6.6377 -6.6387 

BIC -6.6218 -6.6197 -6.6206 

HQIC -6.6309 -6.6310 -6.6319 

Ranking  3 2 1 

 

From Table 6, GARCH (1,1) model does not perform very well and is ranked at the bottom rank of all 
the tested models. However, based on BIC, GARCH(1,1) outperforms compared to other models. 
Meanwhile, the EGARCH (1,1) model performs better, which is ranked second lowest based on Akaike 
and Hannan-Quinn information criterion values. Moreover, the TGARCH (1,1) model is the most 
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outperformed model compared to GARCH (1,1) and EGARCH (1,1) models. Based on AIC and HQIC 
values, the TGARCH model exhibits the lowest value, which indicates that it is the best fit model.  

Interestingly, the results obtained were supported by [8] who studied Malaysian gold using 
symmetric and asymmetric GARCH models. In the study, it was found that the TGARCH (1,1) model 
is the best fit for all the series as decision making criterion, Akaike information criterion (AIC) and 
Hannan-Quinn information criterion (HQIC) are least in this model. Overall, the TGARCH (1,1) model 
provided the best performance measures among the tested model, indicating the most appropriate 
model for forecasting the future gold price. 

4.2.4 Forecasting Using Best Model 

The prediction was executed by using the TGARCH(1,1) model, since it is the best model among the 
three models. 

Table 7: Forecast Value for The Return of Gold Price and its Volatility 

Time Price Return Volatility 

t+1 0.000305 0.008383 

t+2 0.000305 0.008397 

t+3 0.000305 0.008410 

t+4 0.000305 0.008424 

t+5 0.000305 0.008437 

 

Table 7 indicates that the forecast of gold price return for 5 days ahead is more than 0. It means that 
there is a low positive return for the gold price based on the predicted values by using TGARCH(1,1) 
model. The predicted volatility is expected to be increasing indicates that it can potentially be 
scattered out above the range if its volatility increases over the time. This also means that the return 
of gold price can move drastically in positive or negative direction in a short period of time. 

5 CONCLUSION  

The main objective of this research is to model the gold price data and its volatility. Since the gold 
price is not stationary, the gold price was converted into return by performing first order of 
differencing. The models are GARCH(1,1), EGARCH(1,1), and TGARCH(1,1). These models are 
capable of capturing volatility clustering or fluctuation periods and forecasting future volatility. 
EGARCH(1,1) and TGARCH(1,1) were found to be able to capture the news impact in the market.  

In order to determine the most suitable model to forecast the future gold price, AIC, BIC and HQIC 
were used to measure the performance of GARCH type models. The model with the lowest AIC, BIC 
and HQIC values is the better fit model. TGARCH(1,1) model fits the series well and outperforms the 
other models. The superiority of the TGARCH(1,1) model for modelling the series is highlighted by 
the lowest AIC and HQIC values compared to the corresponding GARCH(1,1) and EGARCH(1,1) 
models. Therefore, the TGARCH(1,1) model is the most potential approach among the tested models 
in modeling and forecasting future gold prices.  
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In this study, forecasting gold price return were analyzed. The returns were forecasted for 5 days 
ahead. As the results, the gold price return is not giving much profit or return to the investors for 
certain period. 

REFERENCES 

[1] S. Trück and K. Liang, “Modelling and Forecasting Volatility in the Gold Market,” International 
Journal of Banking and Finance, 2012, doi: 10.32890/ijbf2012.9.1.8448. 

[2] M. H. Ahmad and P. Y. Ping, “Modelling Malaysian gold using symmetric and asymmetric 
GARCH models,” Applied Mathematical Sciences, vol. 8, no. 17–20, 2014, doi: 
10.12988/ams.2014.312710. 

[3] S. Shafiee and E. Topal, “An overview of global gold market and gold price forecasting,” 
Resources Policy, vol. 35, no. 3, 2010, doi: 10.1016/j.resourpol.2010.05.004. 

[4] Y. Irene, M. Y. Wijaya, and A. Muhayani, “World Gold Price Forecast using APARCH, EGARCH 
and TGARCH Model,” InPrime: Indonesian Journal of Pure and Applied Mathematics, vol. 2, no. 
2, 2020, doi: 10.15408/inprime.v2i2.14779. 

[5] S. N. Kumari and A. Tan, “Modeling and forecasting volatility series: With reference to gold 
price,” Thailand Statistician, vol. 16, no. 1, 2018. 

[6] T. Bollerslev, “Generalized autoregressive conditional heteroskedasticity,” J Econom, vol. 31, 
no. 3, pp. 307–327, 1986. 

[7] A. W. Ayele, E. Gabreyohannes, and Y. Y. Tesfay, “Macroeconomic Determinants of Volatility 
for the Gold Price in Ethiopia: The Application of GARCH and EWMA Volatility Models,” Global 
Business Review, vol. 18, no. 2, 2017, doi: 10.1177/0972150916668601. 

[8] P. Y. Ping, N. H. Miswan, and M. H. Ahmad, “Forecasting malaysian gold using GARCH model,” 
Applied Mathematical Sciences, vol. 7, no. 57–60, 2013, doi: 10.12988/ams.2013.13255. 

[9] A. Jain and P. C. Biswal, “Dynamic linkages among oil price, gold price, exchange rate, and stock 
market in India,” Resources Policy, vol. 49, 2016, doi: 10.1016/j.resourpol.2016.06.001. 

[10] D. B. Nelson, “Conditional Heteroskedasticity in Asset Returns: A New Approach,” 
Econometrica, vol. 59, no. 2, 1991, doi: 10.2307/2938260. 

[11] H. Ezzat, “The application of GARCH and EGARCH in modeling the volatility of daily stock 
returns during massive shocks: The empirical case of Egypt,” International Research Journal of 
Finance and Economics, vol. 96, 2012. 

[12] G. Ali, "EGARCH, GJR-GARCH, TGARCH, AVGARCH, NGARCH, IGARCH and APARCH Models for 
Pathogens at Marine Recreational Sites," Journal of Statistical and Econometric Methods, vol. 2, 
no. 3, pp. 1-6, 2013. 

 

https://ideas.repec.org/a/spt/stecon/v2y2013i3f2_3_6.html
https://ideas.repec.org/a/spt/stecon/v2y2013i3f2_3_6.html
https://ideas.repec.org/s/spt/stecon.html


Applied Mathematics and Computational Intelligence 
Volume 11, No. 2, Dec 2022 [399 – 411] 

411 

[13] V. Naimy, O. Haddad, G. Fernández-Avilés, and R. el Khoury, “The predictive capacity of 
GARCH-type models in measuring the volatility of crypto and world currencies,” PLoS One, vol. 
16, no. 1 January, 2021, doi: 10.1371/journal.pone.0245904. 

[14] J. M. Zakoian, “Threshold heteroskedastic models,” J Econ Dyn Control, vol. 18, no. 5, 1994, doi: 
10.1016/0165-1889(94)90039-6. 

[15] M. Sabiruzzaman, M. Monimul Huq, R. A. Beg, and S. Anwar, “Modeling and forecasting trading 
volume index: GARCH versus TGARCH approach,” Quarterly Review of Economics and Finance, 
vol. 50, no. 2, 2010, doi: 10.1016/j.qref.2009.11.006. 

[16] C. M. Lim and S. K. Sek, “Comparing the Performances of GARCH-type Models in Capturing the 
Stock Market Volatility in Malaysia,” Procedia Economics and Finance, vol. 5, 2013, doi: 
10.1016/s2212-5671(13)00056-7. 

[17] R. Amudha and M. Muthukamu, “Modeling symmetric and asymmetric volatility in the Indian 
stock market,” Indian Journal of Finance, vol. 12, no. 11, 2018, doi: 
10.17010/ijf/2018/v12i11/138196. 

[18] M. Ausloos, Y. Zhang, and G. Dhesi, “Stock index futures trading impact on spot price volatility. 
The CSI 300 studied with a TGARCH model,” Expert Syst Appl, vol. 160, 2020, doi: 
10.1016/j.eswa.2020.113688. 

 


