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ABSTRACT

A new exponentially fitted numerical method based on uniform mesh is proposed to obtain
the solution of a class of singularly perturbed convection delayed dominated diffusion
equation. The considered equation is first reduced to the ordinary singularly perturbed
problem by expanding the term containing negative shift using Taylor series expansion
procedure and then a three-term scheme is obtained using the theory of finite differences. A
fitting factor is introduced in the derived scheme with the help of singular perturbation
theory. Thomas algorithm is employed to find the solution of the resulting tridiagonal system
of equations. Stability and convergence of the proposed method are discussed. The method
is shown to be first accurate. Computational results for two example problems are presented
for different values of the grid point, N and perturbation parameter, ¢. It is observed that
the method is capable of approximating the solution very well.

Keywords: Differential-Difference Equations, Exponential Fitting Factor, Finite
Difference, Singular Perturbations, Stability and Convergence of Numerical Methods.

1. INTRODUCTION

Any system involving feedback control mostly involve time delays because a finite time is
required to sense information and then react to it. The study of theoretical and applied problems
in science and engineering leads to the boundary value problems for singularly perturbed
differential equations with at least one delay (negative shift) and/or advance (positive shift) term.
These equations are of multi-scale character in general. That is, there is thin transition layer(s)
where solution varies most rapidly while away from the layers(s) solution behaves regularly and
varies slowly. These singularly perturbed problems occur very frequently in modelling various
real-life applications. Some of the applications of these problems can be found in high-level
monographs and the articles: Rihan [1], Stein [2-3], Longtin and Milton [4], Derstine et al. [5],
Bocharov and Rihan [6], Nelson and Perelson [7], Mackey and Glass [8], 0’'Malley [9,16], Knowles
and Messick [10], Gold [11], Kaushik [12], Kaushik and Sharma [13], Kadalbajoo and Sharma [14],
Kaushik [15], and Miller [17].

Developing efficient numerical methods for solving such singularly perturbed problems is
challenging due to the existence of boundary and/or interior layers. Standard discretization
techniques are unable to provide accurate results when the delay and/or advance parameter
is/are small/big order of perturbation parameter. Singular perturbation analysis of boundary
value problems for differential-difference equation with small shifts was initiated by Lange and
Miura [18-20]. In the recent past, various numerical approaches have been suggested as the
solution to such problems. The authors, Kadalbajoo and Sharma [21] gave an e-uniform fitted
operator method for solving boundary-value problems for singularly perturbed delay differential
equations with layer behaviour. Kadalbajoo and Sharma [22] devised a numerical technique
based on finite differences for solving singularly perturbed differential-difference equations.
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Sharma et al. [23] suggested a way of analytic approximation to delayed convection dominated
systems through transforms. Swamy et al. [24] presented a computational method for singularly
perturbed delay differential equations (SPDDE) with twin layers or oscillatory behaviour.
Numerical treatment for singularly perturbed convection delayed dominated diffusion equation
via tension splines was presented in Kanth and Kumar [25]. File et al. [26] proposed a fourth-
order finite difference method for finding the solution of SPDDE. Chakravarthy and Kumar [27]
suggested a novel method based on Numerov’s difference scheme for the solution of singularly
SPDDE of reaction-diffusion type. Sirisha and Reddy [28] proposed an exponential fitted
numerical integration technique for the solution of SPDDE. An extension of a fitted finite
difference method for third-order SPDDE of convention-diffusion type is presented by
Mahendran and Subburayan [29]. Kanth and Kumar [30] proposed a parametric spline scheme
for a class of nonlinear SPDDE. The solution of second-order SPDDE using Trigonometric B-Spline
was suggested by Vaid and Arora [31]. In this paper, we have suggested a new fitted numerical
method based on uniform mesh for solving singularly perturbed convection delayed dominated
diffusion equation. The paper is arranged as follows: statement of the considered problems with
the description of the proposed methods is presented in Section 2, stability and convergence of
the method is investigated in Section 3, and numerical illustrations are given in Section 4. Finally,
the discussions and conclusions are presented in Section 5.

2. PROBLEM STATEMENT
Consider a class of singularly perturbed differential-difference equation of the form:
£y"(x)+a(x)y'(x)+q(x)y(x-06) = f (x) on 2=[0,1], 8y

subject to the interval and boundary conditions:
y(X)=1(X) on 5<x<0,y() =7, (2)

where 0<g<<1 is a perturbation parameter and o =0(8) is a small shifting parameter.

Furthermore a(X),q(x), f(X) and 7(X) are sufficiently smooth functions in [0, 1] where ¥ is a
constant. The equation (1) reduces to a singularly perturbed ordinary differential equation when
& =0, and the corresponding problem has a boundary layer on the left side for a(X) > 0 or on the

right side for a(X) <0 on [0,1].

Using Taylor series expansion for the delayed term obtained from (1);

£y"(x)+ p(x)y'(x) +a(x)y(x) = f(x) on Q=[0.1], (3)
subject to the boundary conditions:

y(x)=1, and Y({)=y 4)

where, p(X) ={a(x) —(x)}. Under the assumption that p(X) > M > 0 throughout the interval
[0,1], where M is a positive constant, the problem (3) with (4) exhibits boundary layer at X=0.

Similarly when p(x) <M<0 throughout the interval [0,1], where M is a negative constant,
then the problem (3) with (4) exhibits boundary layer at X=1.
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Here, the operator L, =5d—2+ p(X)diJrq(X)l in (3) satisfies the following minimum
X X

principle.

Lemma 1. Suppose W(X) is a smooth function satisfying ¥(0)>0,(1)>0. The
L.y (x) <0,vxe(0,1) implies y(x) >0, vx[0,1].

Proof. We can prove the above lemma by the method of contradiction. Let K €[0,1] be such that
w(K)<0 and w(k) = )l(g(l)r}]l//(x) Clearly for k {0,1}, we have y'(k)=0 and w"(k) > 0. Therefore,

we obtain
L.y (k) = ey (k) + p(k)y (k) + a(k)y (k) > 0,

which is a contradiction to our assumption. Hence it is proved that w(k)>0 and thus

w(x)>0, ¥xe[0,1].
Lemma 2. Let Y(X) be the solution of the problem (3) and (4) then we have
[yl <6 |t]+max( 7 L.l 7. (5)

where || . || isthe L, norm given by ||y|| = ’JJ%| y(x)|.

Proof. Let y*(X) be two barrier functions define by

w () =07 [+ max( 7, |, 1) £ y(x).
Then this implies,

() =07 f|+max( ||y )£ y(©0) =0 |f[+max(n, || 7]) £, since y(0)=n(0)=7, 20,
y Q=07 |f]+max(m |y NEy@) =6 f|+max(m |l ¥ty since yB=y =0

= Ly () =&y (¥)"+p() @~ (9)+q()w = (x) = q09[6 7| f |+ max(rzo |, [1)] £ L, y(x)
=q()[ 07 f]|+max( 7 .| ) ] F(x) using (3).

As (X) <=0 <0 implies q(x)¢ " <-1 and since | f||> f(x), we have
Ly (x) < (—|| fl+f (x))+ q(x)ymax(| 7, |,| 7]) <0, vx [0,1].

Thus, by the minimum principle, we obtain, y* >0, Vx €[0,1], which gives the required estimate.

2.1. Description of the method for left-End Boundary Layer Problems

To describe the method, we consider the singularly perturbed boundary value problem (3)-(4)
with P(X) > M > 0. The theory of singular perturbation gives the solution of (3) with (4) which
is of the form (cf.[9], pp.22-26):
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Y00 =309+ B (-, @)e T " o), ©)
where Y,(X) is the solution of the reduced problem:
P(X) Yo (X) +a(X) Yo (X) = (X); Y, (D) = . (7)

Under the consideration of Taylor's series expansions of P(X) and ((X) about the point 'Xx=0"'
up to their first terms only, the equation (6) becomes:

{PO)_a(®

() = Yo () + (= ¥,(0))e (5756) +0(8). (8)

Further, considering equation (5) at the point X=X =ih,i=0,1,2,...,N and taking the limit as
h — 0 we obtain

(PO,

limy(ih) = y,(0) +(a-Y,(0))e ( PO ] +0(¢), (9)
where p=h/e.

Assuming that Y(X)is continuously differentiable in the interval [0,1] and applying Taylor’s

series expansion for Y(X;.,)and Y(X_,), we have:

0 = Yo =Y, + i oy Ty By Ty Mg oy By oy o)
y(a)=Yia =Y —hy + Z,y 23, yi’”+2—zyi‘4’—g—iyi(s’+:—jyi‘6’—g—7!yf” g, -o(h’). (1)
From finite differences, we have

Vor 29 Yo =y 2y 2 g0 2o o, (12)
Now we have the relation:

Vs 2y v = Ay 2Ty 2y 2 o0 o,

4
h" e

Substituting 127" from the above equation in (12), we get

-2 _h2 h4 (4) h _2 _h2 _(4) _h_6 _(8) 2h ® 0 hlo
Yia YitYia y' y o5 30 yl yl + y|+1 Yi 360 Yi 8' o Vit ( )

y-”_1—2y-”+y~”1)j+h—4y“‘)—h—4 0N _yo A

( . ®  O(h®
20 3% “Togge tar X O

2V v . =h?| V' —
yl—l y| + y|+1 (yl + 30(
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h* 13h®

- —2V. +V. h? +_é‘2 (4) _ ® 4 O(ht
yl—l yl y|+l [yl 30 yl ) 20 yl 302400 yl ( )
and

2

_ _2 : o " 28 " " R,

Vi =29+ Vi = 55 (Vs +28Y/+ ¥l ) + 13)
R=I 0 -y o).

where 20 302400
Now from the equation (3), we have
€Y == PraYia ~OaYia + fi (14)
Y =Py~ Gy + T, (15)
€Yl =—PiaYia —GaYia + fie (16)

Using the following three-point approximations for first-order derivatives:

ylr yH—l yl—l
2h (17)
Vi —4Y; +Viy

y|+1

2h (18)

"o —VYiu +4Yi _3yi—1

Yia= .

2h (19)

Substituting (17), (18) and (19) in (14), (15) and (16) respectively, and simplifying (13), we get

28,
60h

pi +1
60h

8( Vi — 2y, + Yi+1j Pia

2 60h (yi—l -4y, +3yi+1)"‘

( —3Y;, +4Yy; — yi+1) + (yi+1 - yi—l) +

hy. 23g‘y q'”yH1 (f +28f + ).

Now introducing the fitting factor O'( p) in the above scheme, we have

=2V + V. 28p. !
G(p)g(y'l ) y'“j IO'1( -3y, +4y, - yi+1)+—p'(yi+1—yi,1)+ p'*l(yi,1—4yi+
h 60h 60h 20)

i— 28 i i+ 1
3yi+l)+%yl—l 3_gy| qsol yi+l 30( fl -1 +28f + f|+1)

The fitting factor O'(p) is to be determined in such a way that the solution of difference scheme

(20) converges uniformly to the solution of equation (3) with (2) and hence (1) with (2).
Multiplying (20) by hand taking the limitas h— 0, we get

25



Rakesh Ranjan, et al. / A Fitted Numerical Method for a Class of Singularly Perturbed...

Yia—2Y, + Y. p(0) 28p(0)
O'(P)g( ! 2 lj"‘ 60 (_3Yi71+4Yi _Yi+1)+ 60 (yi+l_yi—l)+

©) (21)
PO,
60 (yl—l 4y| +3y|+1) O
Let P= M By using (9), we get
p(0)

lim(y(ih—h) - 2y(ih) + y(ih+ h)) = (e~ y,(0) )e ™ (€7 +e™ -2)

(-3y(ih—h)+4y(ih) - y(ih+h)) = (ar - y,(0))e ™" (-3e™ —e ™ +4)
ngg(y(ih —h)—4y(ih) +3y(ih + h)) = (a - yo(O))e’Pi” (epp +3e” —4) and
Ilrrg(y(ih+h)—y(ih—h))=(a—yO(O)) ’P'p( = )
By using the above equations in equation (21), we get
O\P) (oPr 4 oPr = 0 Pp Pp
%(e re™r-2)=- ps(o)( ~30e™ +30e ™).
Therefore O'(p) =P [)2(0) coth [( P (0)2;(80(;(0))/)}, (22)

which is a required constant fitting factor G(p).

Finally, by making use of equation (20) and o(p) given by equation (22), we get the following
three-term recurrence relationship:

Eyyy—FY, +GYia =R, (=12,3,..N-1), (23)

where

. _o¢ 3p' -1 L_ﬂ.kh
'“h? 60h 30 60h 60h
_20¢ 4p., _ 28q; 4 " 4pi,
" h 60h 30  60h
X :O-_g_h_kh_kﬁ_kﬂ
""h> 60h 30 60h 60h

1
R = 3O(fI L 28+ 1)

Equation (23) gives a system of (N —1) equations with (N —1) unknowns Y, to Y,_,. These
(N —1) equations together with the Eq. (4) are sufficient to solve the obtained tri-diagonal system

by using an efficient solver called ‘Thomas Algorithm’ described in [32].
We assume the matrix of this set of linear equations as D,,.
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Lemma: For all €>0 and all =1/ N, the matrix D, is an irreducible and diagonally dominant
matrix.

Proof. Clearly, D, is a tri-diagonal matrix. Hence, D, is irreducible if its co-diagonals contain
non zero elements only. It is easily seen that the co-diagonals E;,G, do not vanish for all & >0,
h>0 and ¢; €R. Hence D, is irreducible.

Since E;,G; do notvanish forall £>0, h>0 and ¢; €R , these expressions are of constant sign.
Then obviously, E; >0, G, >0.

Now in each row of D,, the modulus of the diagonal element is greater than or equal to the sum

of the two off-diagonal elements for all 1,(i=12,3,...,N —1). This proves that D, is diagonally

dominant. Under the above-mentioned conditions, the “Thomas Algorithm’ is stable. The method
of LU decomposition (or Gaussian elimination) which is equivalent to the “Thomas algorithm”
provides a numerically stable technique for solving the system when the coefficient matrix of the
system is diagonally dominant or irreducibly diagonally dominant and hence non-singular.

2.1.1. Description of the method for Right-End Boundary Layer Problems

To describe the method, we again consider the singularly perturbed boundary value problem
(3) - (4) with P(X) <M < 0. The theory of singular perturbation provides the solution of (3)
with (4) in the form (cf.[9], pp.22-26):

o1 (00200
= _— — l x plx ,
Y09 =00+ D (5=, 0)e +o(e) (24)

where Y,(X) represents the solution of the reduced problem:
P(X) Y5 () +a(X) Yo ()= f (x); ¥,(0) = (25)

Expanding P(X) and q(X) in (24) with the help of Taylor's series about the point 'X=1" and
restricting to their first terms, we obtain:

pO)_a®

y) = Yo (X)+ (8- Yo (1))9[ S +0(¢). (26)

Further, considering equation (26) at the point X=X =ih,i=0,1,2,...,N and taking the limit as
h—0 we obtain

[M]{Lip]
limy(ih) =y,0)+(B-y,@)e. " 1 +o(e) (27)
where p=h/e.

Let p= P D—2q@®)

. By using (9), we get
p(®

27



Rakesh Ranjan, et al. / A Fitted Numerical Method for a Class of Singularly Perturbed...

Ligg(y(ih—h)—2y(ih)+y(ih+h))=(/3—yo(l))eﬁ@“’)(eme%_z)
lim(=3y(ih—h) +4y(ih) - y(ih+h)) = (B -y, (D)e e )( 3" —e " +4)
Ilm(y(lh h)—4y(ih) +3y(ih+h))=(8-y,(0))e (1 Pj( B 4 3a-Pr _ 4)
Ligg(y(ih+h)—y(ih—h)):(a_yo(o))ep(sip)(eﬁp_eﬁp)_

By using the above equations in equation (21), we get

M(e'ﬁp +e ™ -2)= —@(—30& +30e)
P 60
Therefore, o(p)=£ pz(o) coth[( P (1)2;‘8(1))’7 ] (28)

which is a required constant fitting factor. Using equation (20) with (p) given by equation (28),
we have the three-term recurrence relationship (23).

3. STABILITY AND CONVERGENCE ANALYSIS

Theorem 1: Assuming the conditions &>0, P(X) >M >0 and ¢(x) <0,vx&[0,1], the system of

difference equations (23), along with the given boundary conditions, possesses a solution which
is unique and satisfies

IV, <2M7[R],, + (7l +11).
where |||, | denotes the discrete |, — norm, given by ¥, = 5‘3,"1‘),&{|X-|}

Proof: Let the difference operator given on the left-hand side of (14) is denoted by L, () and @
represents any mesh function which satisfies L, (@ ( ): f.. Rearranging the difference scheme (23)

F. and G, are non-negative, we obtain

and using the condition that the coefficients of E,

Flal<[R|+Ela.[+Gla,]

(208_4pi_1_28qi_1+4pi+1]|w|<|R_| (as 3p., £_28pi+pmj|w |
hZ eon 30 _ eoh )T B

h* 60h 30 60h 60h
(f_h+£+28pi +3pi+1j|a) |
h? 60h 30 60h 60h) '

| +1| 2|a)|+|a)_1| pi—l |,+1|+4|a),|—3|a),_1| q|1| |+ | | q|+1| |+
|1 30 | +l

28D, |a)|+1|_|a)n—1| + Pia 3|a)l+1|—4|a),|+|w._1| +|R'|>0
30 2h 30 2h o
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Now, taking the help of the assumptions £>0 and P(X)>M and using the definition of | —
norm the above inequality gets changed into

| — 2| |+ | @ |+ 4o | -3|a 0. Q..
SEEE:CERR NUTEERIE IS BN E AR YRS PO

26M (|ov Jov] |, M (Aol Aol o] ), o
30 2h 30 2h B

To prove the uniqueness and existence of the solution, let {ui},{vi} represents two sets of

(29)

solutions of the difference equation (29) which satisfies the boundary conditions. Then
@ =U, -V, satisfies the condition Lh(a)l):RI where R =0 and «,=a®, =0. Performing

summation over 1=12,..,N -1 in (29), we obtain

' |l+1| 2|a)|+| 1| 'S |+1|+4|a)||_3| q|—1 8q|
Y D ) D

1

{0y \428M ([ - | 3, M (3@ -4a+|a.
z | '+1|+Z 30 [ 2h +230 2 Z|R|>O

i=1

|a11| | N—1| |a)1| | N—1|

== h2 +||p||hoo 60h ||p||hoo 60h 3oqufl| *1|+3oqu|a)|+ (30)
14 28M, | 28M
R
30,21: e 60h|w1| 60h|wN‘1|+Z| |=0

Since, £>0,|p|. . 20,q, <0 and |g|>0,Vi,i=12,...,N -1, therefore, for the inequality (30) to be

true, we must have
o =0Vi,i=12,.,N-1

This implies that the solution of the tri-diagonal system of difference equations (23) is unique. In
the case of linear equations, the uniqueness of the solution implies its existence.

Now to validate the estimate, let @, =Y, —|;, where Y, satisfies the difference equations (23) along
with the boundary conditions and |, =(1—ih)77+(ih);/, then @y =@, =0 and @,1=12,...,N-1.
Now, let |a)n| =||0)||hoo 2|a),|,i =0,12,...,N. Then performing summation over (29) from i=n to

N —1 and taking the help of the assumption on P(X), we obtain

w, oy 4| +4o,| -3
08(' |hl |] Gg| r:‘21|+30( | Nl| 2|h| | 1|J 3oqu—1|w—1|+ qu|a)|+

28M |a)N_1| |a) | |a) —1| |a)N_1| 3|a) | |a) —1|
R|>0
3ozq'*l| O+ { 2h +3 30 2h +Z| |

(31)
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Taking the condition on (X) into consideration, inequality (28, 31) implies

M N-1 N
COEDILED RN
i.e. we have

|| <2M 7[R}, (32)
Again, we have Yy, =@ +|,

¥l = me{ilf <[el,.. +[M,..

<l +]l,.. t)
Now to complete the proof of the estimate, the bound on |, has to be found.
I, = mex i} < max(L—in) | +[in]
< max{(L-ih) [ +(ih) |}
i.e., we have
M., <ll+ 17 (34)

From equations (33)-(34), we obtain the estimate
vl <2M7 R, .+ (7]-+[71)-

This theorem establishes the fact that the solution to the system of the difference equations (23)
are uniformly bounded and is independent of the mesh size h and perturbation parameter &.
This proves the stability of the scheme for all step sizes.

Corollary 1: Under the conditions stated in theorem-1, the error € =Y(X)—Y;, which occurs

between Y(X), the solution of the continuous problem (3)-(4) and Y;, the solution of the
discretized problem, together with boundary conditions, satisfies the estimate

lel.. =2M7e],,...
oh’s 28ph?
Where |7;| < max {7‘ y@ (x)‘} + max {W‘ y@ (x)‘}

(The coefficients P(X), §(X) are assumed to be sufficiently differentiable to ensure that the
solution Y(X) belongs to C*[0,1]).

Proof: Truncation error in the difference scheme, denoted by 7;, is written as
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P (yiﬂ_z)z/i +yi-1j_yi" +h (_3yi—1+4yi _)/i+1)_yir1 +28pi (yiﬂ_yi—lj_yi! +
h 30 2h 30 2h
Pia EYi1_4Yi +3Yi+1j_y_r
30 2h =)
=7, =0¢ h* (4)+h—4 ® 4. +h —h—2 -(3)—h—3 R 28p, i y(3>+ il yO Lt
12 360 ' 30| 37 127 30 |6 120
P ) Mo N @
30 { TRARETRONE
=< max 2]y o) max 1Oy o) 128y ) 1 Py
g SiSXy X <|<x " % l§|<>< ]_80 % 1£|<>< 90
=< max { ‘y<4>(x)‘}+x nax {ZSph \y@( )\} (35)

X Si<Xiyq

It can be easily shown that the error €, satisfies

L, (e(%)) =L, (y(x))- Ly (¥;)=7,i=12....N -
and g, =€y =0.
Then, Theorem-1 implies that

[el,.. <2M~[,... (36)

For fixed values of the parameter ¢, the convergence of the difference scheme is established by
the estimate (36).

Theorem 2: Under the assumptions &>0, p(X) <M <0 and q(x)<O,VXe[0,1],the system of

difference equations (23), along with the given boundary conditions, possesses a solution which
is unique and satisfies

I¥l,.. <2M7R], ., + (7l +11)

where ||||hoo represents the discrete |, — norm, given by ||X||hm = Q%{|x,|}

The proof of estimate can be established in a similar manner as done in theorem 1.

4. NUMERICAL ILLUSTRATIONS

In order to show the effectiveness of the proposed method, we have solved the two test example
problems and presented the computational results in terms of maximum absolute errors. These
test problems have been chosen because they have been widely discussed in the literature and
the approximate solutions are available for comparison. The computational results are presented
in Table 1 until Table 6 for various values of grid point N and perturbation parameter &,
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Note that the maximum absolute errors (MAE): EgN are calculated by E:‘ = gna')\‘(D y(x)— yi|],
<I<

where y(xi) and Y, denote the exact and approximate solution respectively. Since the exact
solutions of the problems are not known, the maximum absolute errors for the examples are

calculated using the following double mesh principle EgN = (r)na)N( D yiN — inN H The computational
<I<

rate of convergence is obtained by using the double mesh principle defined below:

i

. N
Let Z, = max y;‘ =Yi?l ) =1,...,N -1, where Y? is the computed solution on the mesh {Xj }0 at the

) h
nodal point X where X; =X;4+ h, ]=1 2,...,N and yjé is the computed solution at the nodal point

2N .
Xj on the mesh {Xj}o , Where Xj = Xj_1 +%, ] =12,...,2N.In the same way we can define Z% by

. . h h .
replacing h by % and N by 2N ie, Z% = max‘yjé —yjA ,1=1..,2N -1
log Z, —log ZV
The computed rate of convergence is defined as REN = 2
log(2)

We have find the computed rate of convergence for the example problems and the results are
shown in Table 7 and Table 8. The computational rate of convergence agrees with the theoretical
rate of convergence and the proposed method gives a second-order convergent.

Problem 1: First we consider the following constant-coefficient convection delayed dominated
diffusion equation:

ey (X)+5y'(X)+ y(x—6) =0;x €[0,1]

with interval boundary conditions Y(X)=1 on —~5<x<0 and Y(1) =0, which has a boundary
layer at the left side of the domain near X=0.

The exact solution of this example problem is given by: y(x)= }/ml_ Uem em™ +
et —ez

~(p-50)+(p-5a) ~42q _~(p—50)y(p-50)" - 42g

2¢ e 2¢ '
The computational results in terms of maximum absolute errors for Problem 1 are given in Tables
1,2and 3 for §=0.1, 6=0.3*¢ and 6=0.5%¢, respectively.

where m, =

Table 1 Maximum absolute errors for different values of N and & with §=0.1 for the problem-1

cd N =8 N =16 N =32 N =64 N =128 N =256

22 3.02393E-03  4.03771E-03 3.87004E-03 3.88572E-03 3.89066E-03 3.88840E-03
2-3 1.05762E-03  1.48334E-03 1.99890E-03 1.91614E-03 1.92806E-03 1.92919E-03
24 8.73248E-04  5.21208E-04 7.34664E-04 9.94653E-04 9.53466E-04 9.60916E-04
2-5 8.71867E-04  4.31150E-04 2.58763E-04 3.65622E-04 4.96119E-04 4.75496E-04
26 8.71870E-04  4.30487E-04 2.14248E-04 1.28916E-04 1.82368E-04 2.47687E-04
277 8.71870E-04  4.30490E-04 2.13911E-04 1.06780E-04 6.43576E-05 9.10759E-05
28 8.71870E-04  4.30490E-04 2.13914E-04 1.06628E-04 5.33440E-05 3.21586E-05
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279 8.71870E-04  4.30490E-04 2.13914E-04 1.06631E-04 5.32351E-05 2.66634E-05
2710 8.71870E-04  4.30490E-04 2.13914E-04 1.06631E-04 5.32382E-05 2.66004E-05
212 8.71870E-04  4.30490E-04 2.13914E-04 1.06631E-04 5.32382E-05 2.66035E-05
216 8.71870E-04  4.30490E-04 2.13914E-04 1.06631E-04 5.32382E-05 2.66035E-05
2%  8.71870E-04  4.30490E-04 2.13914E-04 1.06631E-04 5.32382E-05 2.66035E-05

Table 2 Maximum absolute errors for different values of N and & with 6 =0.3*¢ for the problem-1

sl N=32 N=64 N =128 N =256 N =512 N =1024

101 1.47474E-03 1.48383E-03 1.48931E-03  1.50031E-03  1.49804E-03  1.49792E-03
102 2.09726E-04 1.05763E-04 8.17031E-05 1.30370E-04  1.52379E-04  1.48565E-04
103 2.09620E-04 1.04496E-04 5.21722E-05  2.60666E-05  1.30188E-05  7.88132E-06
10+  2.09597E-04 1.04479E-04 5.21584E-05  2.60574E-05 1.30218E-05  6.50761E-06
105  2.09566E-04 1.04449E-04 5.21283E-05  2.60276E-05  1.29920E-05  6.47786E-06
106 2.09582E-04 1.04465E-04 5.21444E-05  2.60437E-05  1.30081E-05  6.49396E-06
107  2.09603E-04 1.04485E-04 5.21651E-05  2.60644E-05  1.30288E-05  6.51465E-06
108 2.09600E-04 1.04483E-04 5.21624E-05 2.60617E-05 1.30261E-05  6.51195E-06
10° 2.09600E-04 1.04482E-04 5.21622E-05 2.60614E-05 1.30258E-05  6.51168E-06
1010 2.09600E-04 1.04482E-04 5.21621E-05 2.60614E-05 1.30258E-05  6.51165E-06
1012 2.09600E-04 1.04482E-04 5.21621E-05 2.60614E-05 1.30258E-05  6.51165E-06
1015 2.09600E-04 1.04482E-04 5.21621E-05 2.60614E-05 1.30258E-05  6.51165E-06
1020 2.09600E-04 1.04482E-04 5.21621E-05 2.60614E-05 1.30258E-05  6.51165E-06
1030 2.09600E-04 1.04482E-04 5.21621E-05 2.60614E-05 1.30258E-05  6.51165E-06

Table 3 Maximum absolute errors for different values of N and & with 6 =05%¢

for the problem-1

ed  N=32 N =64 N =128 N =256 N =512 N =1024

101 1.48876E-03 1.49423E-03 1.50222E-03  1.51142E-03 1.51065E-03  1.51050E-03
102 2.09824E-04 1.05759E-04 8.18148E-05 1.30460E-04 1.52498E-04 1.48654E-04
103 2.09601E-04 1.04473E-04 5.21471E-05 2.60404E-05 1.30197E-05 7.89575E-06
104  2.09595E-04 1.04477E-04 5.21558E-05 2.60548E-05 1.30191E-05 6.50492E-06
105 2.09576E-04 1.04458E-04 5.21376E-05 2.60368E-05 1.30012E-05 6.48713E-06
106 2.09602E-04 1.04485E-04 5.21645E-05 2.60637E-05 1.30281E-05 6.51396E-06
107 2.09605E-04 1.04487E-04 5.21671E-05 2.60664E-05 1.30308E-05 6.51665E-06
108 2.09600E-04 1.04483E-04 5.21626E-05 2.60619E-05 1.30263E-05 6.51215E-06
10°  2.09600E-04 1.04482E-04 5.21622E-05 2.60614E-05 1.30258E-05 6.51170E-06
10-10©  2.09600E-04 1.04482E-04 5.21621E-05 2.60614E-05 1.30258E-05 6.51165E-06
1012 2.09600E-04 1.04482E-04 5.21621E-05 2.60614E-05 1.30258E-05 6.51165E-06
1015 2.09600E-04 1.04482E-04 5.21621E-05 2.60614E-05 1.30258E-05 6.51165E-06
1020 2.09600E-04 1.04482E-04 5.21621E-05 2.60614E-05 1.30258E-05 6.51165E-06
1030 2.09600E-04 1.04482E-04 5.21621E-05 2.60614E-05 1.30258E-05 6.51165E-06

Problem 2: Now, we consider the following constant-coefficient convection delayed dominated
diffusion equation from:

eY"(X)-5y'(X)+2y(x—0)=0;x[0,]

with interval boundary conditions Y(X)=0 on —6<x<0 and Y(1) = 2, which has a boundary

layer at the left side of the domain near X =1. The exact solution of this example is not given. The
computational results in terms of maximum absolute errors for the example in Problem 2 are
given in Tables 4,5 and 6 for §=0.1, 6=0.3*¢ and 6 =0.5*¢, respectively.
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Table 4 Maximum absolute errors for different values of N and ¢ with §=0.1 for problem- 2

ed N =8 N =16 N =32 N =64 N =128 N =256
2-3  3.10985E-03 1.17642E-03 3.35574E-04 7.40886E-05 1.65105E-05 1.00136E-05
24 3.34127E-03 1.51792E-03 5.79402E-04 1.65939E-04 3.82066E-05 7.27177E-06
25 3.36014E-03  1.63122E-03 7.50063E-04 2.87622E-04 8.26120E-05 1.81198E-05
2-6  3.36014E-03 1.64030E-03 7.50063E-04 3.72832E-04 1.43260E-04 4.13656E-05
-7 3.36024E-03  1.64036E-03 8.10560E-04 4.00718E-04 1.85880E-04 7.14660E-05
28  3.36024E-03  1.64036E-03 8.10586E-04 4.02911E-04 1.99774E-04 9.28054E-05
29  3.36024E-03 1.64036E-03 8.10586E-04 4.02925E-04 2.00854E-04 9.97361E-05
210 3.36024E-03  1.64036E-03 8.10586E-04 4.02925E-04 2.00862E-04 1.00262E-04
212 3.36024E-03 1.64036E-03 8.10586E-04 4.02925E-04 2.00862E-04 1.00267E-04
2716 3.36024E-03 1.64036E-03 8.10586E-04 4.02925E-04 2.00862E-04 1.00267E-04
232 3.36024E-03  1.64036E-03 8.10586E-04 4.02925E-04 2.00862E-04 1.00267E-04

Table 5 Maximum absolute errors for different values of N and & and 0 =0.3* ¢ for the problem-2

ed  N=32 N =64 N =128 N =256 N =512 N =1024

101 4.16249E-04 9.45330E-05 2.49743E-05 5.78165E-06  3.27826E-05 3.99351E-06
102 8.42048E-04 4.10273E-04 1.78698E-04 6.16014E-05 1.53184E-05 4.23193E-06
103 8.43312E-04 4.19100E-04 2.08906E-04 1.04270E-04 5.16622E-05 2.38419E-05
104  8.43449E-04 4.19189E-04 2.08973E-04 1.04338E-04 5.21380E-05 2.60674E-05
105  8.43385E-04 4.19122E-04 2.08903E-04 1.04267E-04 5.20667E-05  2.59958E-05
106 8.43418E-04 4.19153E-04 2.08934E-04 1.04298E-04 5.20977E-05  2.60268E-05
107 8.43431E-04 4.19166E-04 2.08947E-04 1.04311E-04 5.21104E-05 2.60394E-05
108 8.43441E-04 4.19177E-04 2.08947E-04 1.04322E-04 5.21212E-05 2.60502E-05
10°  8.43443E-04 4.19178E-04 2.08959E-04 1.04323E-04 5.21222E-05 2.60513E-05
10-10  8.43443E-04 4.19178E-04 2.08959E-04 1.04323E-04 5.21224E-05 2.60514E-05
1012 8.43443E-04 4.19178E-04 2.08959E-04 1.04323E-04 5.21224E-05 2.60514E-05
1015 8.43443E-04 4.19178E-04 2.08959E-04 1.04323E-04 5.21224E-05 2.60514E-05
1020 8.43443E-04 4.19178E-04 2.08959E-04 1.04323E-04 5.21224E-05 2.60514E-05
1030 8.43443E-04 4.19178E-04 2.08959E-04 1.04323E-04 5.21224E-05 2.60514E-05

Table 6 Computational results in terms of Maximum absolute errors for different values of N and &
and 0 =0.5*¢ for the problem- 2

ed  N=32 N =64 N =128 N =256 N =512 N =1024

101 4.15653E-04 9.51290E-05 2.48551E-05 5.72205E-06  3.13520E-05 7.21216E-06
102 8.41315E-04 4.09924E-04 1.78579E-04 6.16610E-05 1.53780E-05 2.98023E-06
103 8.43257E-04 4.19079E-04 2.08903E-04 1.04275E-04 5.16589E-05  2.36854E-05
104 8.43357E-04 4.19101E-04 2.08887E-04 1.04253E-04 5.20531E-05  2.59827E-05
105  8.43444E-04 4.19180E-04 2.08962E-04 1.04325E-04 5.21250E-05 2.60541E-05
106 8.43433E-04 4.19169E-04 2.08950E-04 1.04314E-04 5.21131E-05 2.60421E-05
107 8.43422E-04 4.19158E-04 2.08939E-04 1.04303E-04 5.21023E-05 2.60314E-05
108 8.43441E-04 4.19176E-04 2.08957E-04 1.04321E-04 5.21204E-05  2.60494E-05
10°  8.43442E-04 4.19178E-04 2.08959E-04 1.04323E-04 5.21222E-05 2.60512E-05
10-10  8.43443E-04 4.19178E-04 2.08959E-04 1.04323E-04 5.21223E-05 2.60514E-05
1012 8.43443E-04 4.19178E-04 2.08959E-04 1.04323E-04 5.21224E-05 2.60514E-05
1015 8.43443E-04 4.19178E-04 2.08959E-04 1.04323E-04 5.21224E-05 2.60514E-05
1020 8.43443E-04 4.19178E-04 2.08959E-04 1.04323E-04 5.21224E-05 2.60514E-05
1030 8.43443E-04 4.19178E-04 2.08959E-04 1.04323E-04 5.21224E-05 2.60514E-05
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Table 7 The Rate of convergence R for various values of N and & and 6 =0.5*¢ for the problem 1

el N=8 N=16 N=32 N =64 N =128 N=256  N=512
103  7.294E-07 1.779E-07 4.393E-08 1.091E-08 2.719E-09 6.783E-10 1.666E-10
R;“ 2.0356 2.0178 2.0096 2.0045 2.0031 2.0255

104 7.293E-07 1.779E-07 4.393E-08 1.092E-08 2.720E-09 6.789E-10 1.695E-10
R;“ 2.0354 2.0178 2.0082 2.0053 2.0023 2.0019

105 7.293E-07 1.779E-07 4.392E-08 1.091E-08 2.718E-09 6.779E-10 1.690E-10
Rl\‘ 2.0354 2.0181 2.0092 2.0050 2.0034 2.0040

10-¢ 7.293E-07 1.779E-07 4.393E-08 1.092E-08 2.721E-09 6.793E-10 1.697E-10
REN 2.0354 2.0178 2.0082 2.0048 2.0020 2.0011

107 7.293E-07 1.779E-07 4.393E-08 1.092E-08 2.721E-09 6.795E-10 1.698E-10
RCN 2.0354 2.0178 2.0082 2.0048 2.0016 2.0006

108 7.293E-07 1.779E-07 4.393E-08 1.092E-08 2.721E-09 6.792E-10 1.697E-10
Re’\‘ 2.0354 2.0178 2.0082 2.0048 2.0022 2.0008

10° 7.293E-07 1.779E-07 4.393E-08 1.092E-08 2.721E-09 6.792E-10 1.697E-10
RSN 2.0354 2.0178 2.0082 2.0048 2.0022 2.0008

1010 7.293E-07 1.779E-07 4.393E-08 1.092E-08 2.721E-09 6.792E-10 1.697E-10
RSN 2.0354 2.0178 2.0082 2.0048 2.0022 2.0008

1015 7.293E-07 1.779E-07 4.393E-08 1.092E-08 2.721E-09 6.792E-10 1.697E-10
RN 2.0354 2.0178 2.0082 2.0048 2.0022 2.0008

Table 8 The Rate of convergence R!' for various values of N and & and 6 =0.3*¢ for the problem 2

cL N=8 N=16 N=32 N =64 N =128 N=256  N=512
103 6.134E-06 1.458E-06 3.557E-07 8.783E-08 2.182E-08 5.438E-09 7.287E-09
Re’\‘ 2.0728 2.0353 2.0179 2.0091 2.0045 0.4222

104 6.135E-06 1.459E-06 3.558E-07 8.787E-08 2.184E-08 5.443E-09 1.359E-09
RSN 2.0721 2.0358 2.0176 2.0084 2.0045 2.0019

105 6.135E-06 1.458E-06 3.557E-07 8.784E-08 2.182E-08 5.436E-09 1.355E-09
RSN 2.0731 2.0353 2.0177 2.0092 2.0050 2.0043

106 6.135E-06 1.459E-06 3.558E-07 8.785E-08 2.183E-08 5.439E-09 1.357E-09
RSN 2.0721 2.0358 2.0180 2.0087 2.0049 2.0029

107 6.135E-06 1.459E-06 3.558E-07 8.786E-08 2.183E-08 5.441E-09 1.358E-09
Re’\‘ 2.0721 2.0358 2.0178 2.0089 2.0044 2.0024

108 6.135E-06 1.459E-06 3.558E-07 8.786E-08 2.183E-08 5.442E-09 1.358E-09
Rl\‘ 2.0721 2.0358 2.0178 2.0089 2.0041 2.0027

10° 6.135E-06 1.459E-06 3.558E-07 8.786E-08 2.183E-08 5.442E-09 1.358E-09
Rl\‘ 2.0721 2.0358 2.0178 2.0089 2.0041 2.0027

1010 6,135E-06 1.459E-06 3.558E-07 8.786E-08 2.183E-08 5.442E-09 1.358E-09
REN 2.0721 2.0358 2.0178 2.0089 2.0041 2.0027

1015 6.135E-06 1.459E-06 3.558E-07 8.786E-08 2.183E-08 5.442E-09 1.358E-09
RN 2.0721 2.0358 2.0178 2.0089 2.0041 2.0027

5. DISCUSSIONS AND CONCLUSIONS

We have examined a three-point exponentially fitted second-order numerical method for
singularly perturbed delayed boundary value problem having boundary layer at one end of the
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considered region. Introduction of a fitting factor in a second-order finite difference scheme was
made to take care of the rapid changes occurring in the boundary layer. The existence and
uniqueness of the discrete problem along with stability estimates are discussed. We have
presented maximum absolute errors for the standard examples chosen from the literature and
also presented maximum absolute errors for some of the examples to show the efficiency of the
method when ¢ << N. The computational results are presented in Tables 1-6. It is observed that
the MAE for the problem is becoming uniform, when singular perturbation parameter & — 0, for

any fixed value of N = % If the value of ¢ is small, for any fixed value of N = %, the maximum

absolute error decreases. Tables show that the method presented in this paper is capable of
producing second-order accurate results on uniform mesh with minimal computational effort.
The main feature of the proposed fitted scheme is that it is independent of the very fine mess size
like Shishkin mesh.
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